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ABSTRACT In this paper, we consider iterative learning control for trajectory tacking of robotic manipulator
with uncertainty. An improved quadratic-criterion-based iterative learning control approach (Q-ILC) is
proposed to obtain better trajectory tracking performance for the robotic manipulator. Besides of the position
error information, which has been used in existing Q-ILC methods for robotic control, the velocity error
information is also taken into consideration such that a new norm-optimal objective function is constructed.
Convergence and error sensitivity properties for the proposed method are also analyzed. To deal with
uncertainty, the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are incorporated for
estimation of uncertain parameters by constructing extended system states. The performances between the
two filters are also compared. Simulations on a 2DOF Robot manipulator demonstrate that the improved
Q-ILC with parameter estimators can achieve faster convergence and better transient performance compared
to the original Q-ILC, in the presence of measurement noise and model uncertainty.

INDEX TERMS Iterative learning control, quadratic-performance-criterion, norm-optimal, EKF, UKF, robot
manipulator, online dual estimation.

I. INTRODUCTION
Robot manipulators are widely used in the modern manu-
facturing such as injection molding, automobile assembly
industry and spinning, where there are plenty of repetitive
operations. This type of complex operation requires the
robot to guarantee high performance even in the presence of
measurement noise, external disturbances and model uncer-
tainties. The work in [1] and [2] proposes a robotic arm trajec-
tory tracking method based on sliding mode control, which
can quickly achieve trajectory tracking error convergence.
Although significant developments have been achieved by
applying these traditional control methods, some challenges
still exist. These challenges can be solved by adopting
recursive learning methods to adapt to complex external
environments and to deal with unknown mechanism model
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modeling problems. This efficient method can be character-
ized as iterative learning control (ILC), experience and data
from previous iteration are utilized to improve the trajectory
tracking performance of next trial. Since firstly proposed
by Arimoto et al. [3], ILC has become a popular approach
for trajectory tracking, especially in the automatic process
with repetitive characteristics, where iterative learning can
continuously update the control by using the mechanism of
repetition. An extensive overview over the field of ILC is
available in [4]–[6]. In general, research in trajectory tracking
of robot manipulator has made significant progress over the
past period [7]–[12]. For example, researchers proposed to
combine existing traditional control methods with ILC, such
as the fuzzy adaptive ILC [7], [8], where the robustness of
fuzzy control and the high-precision control performance of
ILC are absorbed. In order to deal with plant uncertainty, ILC
was combined with adaptive control for varying operating
conditions [12]. An adaptive ILC (AILC) scheme based on
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the proportional-derivative feedback structure was proposed
in [13]. Another improved adaptive ILC algorithm based on
an estimation procedure was proposed in [14]. Two-degree-
of-freedom ILC method was used in [15] to compensate
the joint flexibility of industrial robot manipulator, which
achieved more effective performance compared to the dual-
stage ILC that has been proposed previously in [16]. More
advanced learning strategies have been issued for robotic
trajectory tracking control. The ILC was combined with
system identification technique in [17], aiming to model the
controlled system using identification methods with a data-
driven approach such that the model-based ILC can more
efficiently solve tracjectory tracking problem of industrial
robots. In [18], a system identification method based on batch
adaptive control algorithm [19] was applied to the iterative
learning control system for online parameter identification,
which is appealing for practical usage. Neural networks and
iterative adaptive dynamic programming (ADP) algorithm
were applied in [20] to identity the unknown system dynam-
ics, approximate performance function and caculate control
inputs, respectively. In [21], the nonlinear parametric time-
delay uncertainties and non-zero initial error are considered,
an adaptive ILC scheme based on Lyapunov approach is
explored to achieve perfect tracking performance and extend
the application of ILC in industry.

Among various ILC oriented methods, a class of
optimization-based methods emerge as a hot topic, which
considers the control task as an optimization problem. Moore
[22] issued to update the input signal of the next operation by
solving an quadratic norm-optimal problem that constructed
by tracking error. This algorithm was later referred as the
Q-ILC. A more effective Q-ILC algorithm was proposed in
[23], taking the adjacent input variations into account. In arti-
cle [24], different types of stochastic disturbance are consid-
ered in the bias in a linear static model, and Q-ILC algorithms
are derived. On the other hand, since uncertainty is widely
present in robot system, the Kalman filter was typically con-
sidered to enhance the ILC performance [25]–[27]. In these
methods, the Kalman filter was used to estimate the system
states. The work in [28] gave a comprehensive comparison
between the Q-ILC and the estimation-based ILC combined
with Kalman filter (K-ILC). The work in [29] expanded
on the basis of full-order unknown input observer (FOUIO)
and reduced-order unknown input observer (ROUIO), and
proposed to use state vectors and input vectors to form novel
observers for system state estimation. A new adaptive ILC
that incorporate a Recursive Least Squares (RLS) algorithm
was proposed in [30], the learning gain tuned iteratively
along the learning axis and pointwisely along the time axis,
the new AILC achieves pointwise convergence over a finite
time interval. In [14], the AILC algorithm based on Kalman
filter was applied on industrial robot, demonstrates the appeal
of adaptive iterative learning in practical applications.

The approach presented in this paper is composed of
two novel schemes that encompass both the estimation
and control. In the estimation part, the Unscented Kalman

FIGURE 1. The general Q-ILC framework proposed in this paper.

Filter (UKF) is employed for simultaneous estimation for
system states and uncertain parameters. Compared with the
classical Extended Kalman Filter (EKF), UKF is more effi-
cient for state estimation of highly nonlinear system, as a
feedforward signal for iterative learning control, hence speed-
ing up convergence. In the control part, we propose an
improved Q-ILC scheme, that is, a new cost function by
adding the velocity error information in the optimization
formulation. Compared to existing methods that only use
the position error information for industrial robots, the new
scheme utilizes more available observations such that the
control performance can be improved, as verified by both the-
oretical analysis and simulation studies. In summary, the inte-
gration of improved Q-ILC algorithm and the UKF-based
dual estimation is able to greatly improve the trajectory track-
ing performance of uncertain robot systems, also, maintain
robustness to noise, disturbance and model errors. The gen-
eral algorithm framework is given in Fig. 1.

The article is organized as follows: In Section II, the orig-
inal Q-ILC algorithm is reviewed. Then, in Section III,
an improved Q-ILC algorithm is proposed, the conver-
gence properties and sensitivity performance are also derived.
Section IV introduces the dual estimation strategy for the
uncertain robot system, both the EKF and UKF are inves-
tigated. The performances are compared and the results are
analyzed with conclusive remarks. Simulation studies for the
2DOF robot are conducted in Section V to show the advan-
tages of the new approach. Finally, Section VI concludes this
paper and proposes future perspectives.

II. ORIGINAL Q-ILC ALGORITHM
In this section, the original Q-ILC algorithm will be intro-
duced briefly, consider the following sampled-time system:

x(m+ 1) = Ax(m)+ Bu(m), x(0) = x0, (1)

y(m) = Cx(m). (2)

where m denotes the time index, the state matrices A,B,C
are assumed to be time-invariant for simplicity. However, it is
straightforward for the formulation of a time-varying system
by using time-dependent matrices.
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Robotic manipulator operates repeatedly over a finite time
span [0,N ]. Define the stacked outputs and inputs as

yTk = [yTk (1) y
T
k (2) . . . y

T
k (N )], (3)

uTk = [uTk (0) u
T
k (1) . . . u

T
k (N − 1)]. (4)

where k represents the iteration index. Denoting the mapping
between the input and output as:

yk = Guk + Gddk + b (5)

where

G,


CB 0 · · · 0
CAB CB · · · 0
...

...
. . .

...

CAN−1B CAN−2B · · · CB


is the sensitivity between the stacked vector uk and yk ,
calculated by linearizing the robot model along the current
trajectory.Gd and d represent the disturbance matrix and dis-
turbance signals respectively, b represents a constant vector.

In general, the control objective of a robot is to design a
control law that asymptotically converges the actual position
trajectory (yk ) to the desired trajectory (yd ). The error expres-
sion has been derived in [4]:

ēk+1 = ēk − G1uk+1 + vk , (6)

ek = ēk + nk . (7)

where ek represents the tracking error, vk and nk are zero-
mean (batch-index-wise) independent identically distributed
random vector sequences. The zero tracking error is unable
to achieve when external disturbances exist, a reasonable idea
is to limit the final error to an acceptable range. Moore [22]
proposed to minimize the output tracking error by solving an
optimization problem, where the objective function is defined
as the norm of output errors. That is, solving the subproblem

min
uk+1
‖ek+1‖2

whose solution is the optimal control input for the (k + 1)th
trial. Alternatively, Lee et al. [4] proposed a more complete
optimality criteria that considers both output trajectory errors
and adjacent input changes,

min
1uk+1

1
2
{eTk+1Qek+1 +1u

T
k+1R1uk+1}

where ek+1 = yd − yk+1 and 1uk+1 are output trajectory
errors and input change for the (k+1)th iteration, respectively.
The weight matrices Q and R are generally positive-definite.
Lee et al. [4] derived the Direct-error-based Q-ILC algo-

rithm as follows:

uk+1 = uk + HQek (8)

HQ
= (GTQG+ R)−1GTQ (9)

where HQ is the closed-form solution of the original Q-ILC
optimization function.

III. IMPROVED Q-ILC DESIGN FOR
TRAJECTORY TRACKING
A. IMPROVED Q-ILC
It is noted that existing Q-ILC methods for trajectory track-
ing of robots only use position error [23]. Generally, better
performance can be achieved by taking full advantage of
the known information. Therefore, this paper proposes to
add the velocity information, which is often measured in the
robot system. The following new quadratic criterion based
optimization problem is considered:

min
1uk+1

J=
1
2
{eTθ,k+1Qeθ,k+1+1u

T
k+1R1uk+1+e

T
v,k+1We

T
v,k+1}

(10)

where eθ,k+1 and ev,k+1 represent angle error and angular
velocity error at (k + 1)th iteration, respectively. W denotes
the weight matrix for the velocity.

To solve (10), consider a local linear model, yk = Gkuk ,
where yk and uk represent the actual joint angle position and
the control torques, respectively, then

ek = [eθ,k ; ev,k ], (11)

ek = yd − Vkuk , (12)

ek = ek−1 − Vk (uk − uk−1) = ek−1 − Vk1uk , . (13)

where

Vk =

[
Gk

Hk

]
,

Hk represents mapping matrix between control input and
output velocity state, ek denotes the combined representation
of errors. To be more specific, it has

eθ,k = yθ,d − Gkuk , (14)

ev,k = yv,d − Hkuk . (15)

where yθ,d and yv,d represent the desired joint angular trajec-
tory and the desired joint angular velocity trajectory, respec-
tively. Assuming that Gk+1 and Hk+1 are same to Gk and Hk ,
then

eθ,k+1 = yθ,d − Gk (uk +1uk+1), (16)

ev,k+1 = yv,d − Hk (uk +1uk+1). (17)

Combining (14) and (15),

eθ,k+1 = eθ,k − Gk1uk+1, (18)

ev,k+1 = ev,k − Hk1uk+1. (19)

Differentiating the objective function J :

∂J
∂1uk+1

= −2GkTQeθ,k+1 + 2R1uk+1 − 2HT
k Wev,k+1

(20)
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Let ∂J
∂1uk+1

= 0,

−2GkTQeθ,k+1 + 2R1uk+1 − 2HT
k Wev,k+1 = 0, (21)

⇓

(GTk QGk + R+ H
T
k WHk )1uk+1

= GTk Qeθ,k+1 + H
T
k Wev,k+1, (22)

1uk+1 = (GTk QGk + R+ H
T
k WHk )−1GTk Qeθ,k+1

+(GTk QGk + R+ H
T
k WHk )−1HT

k Wev,k+1. (23)

The closed-form solution 1uk+1 is derived.
To sum up, the improved quadratic-criterion-based itera-

tive learning control law is obtained as:

uk+1 = uk + HQ∗ek , (24)

HQ∗
=

[
HQ∗

1
HQ∗

2

]
, (25)

HQ∗

1 = (GTQG+ HTWH + R)−1GTQ, (26)

HQ∗

2 = (GTQG+ HTWH + R)−1HTW . (27)

In the presence of process disturbances and measurement
errors, the direct use of (12) may be inefficient. To deal with
this issue, we will consider an observer-based method, as

uk+1 = uk + HQ∗ êk|k (28)

where êk|k is the optimal estimation of the true trajectory
tracking error, which can be obtained from filters, such as
the UKF.

B. CONVERGENCE ANALYSIS
1) CONVERGENCE PROPERTY OF ERROR SEQUENCE
Since system (13) is completely observable, we infer that the
observer can be designed as a stable system through Modern
control theory. The convergence property is proved as follow:

From observer system model (13), we can infer

ek+1 = (I − L)ek , (29)

where L,VHQ∗[
Vc
0

]
, UTQ1/2V =

[
UT
c

UT
uc

]
Q1/2V , with U−1 = UT .

(30)

Similarly, define [
ec
euc

]
, UTQ1/2e. (31)

where subscript c stands for controllable, subscript uc
stands for uncontrollable, U is orthogonal projection matrix
that extract the controllable subspace, trajectory tracking
error (29) is devided as controllable part and uncontrollable
part. The following convergence property of controllable out-
put has been proposed by Amann et al. [23].
Theorem 1: Under the condition that vk = nk = 0 ∀k,

the controllable part of ēk from system (7) converges expo-
nentially to origin under the observer-based Q-ILC of (28).
Furthermore, 1uk → 0 as k →∞.

From the derivation in last subsection, the optimal control
input has been obtained:

uk+1 = uk + HQ∗ek (32)

1uk+1 = HQ∗ek (33)

The tracking error propagation relation is given by using
e = r − Vu:

ek+1 = ek − V1uk+1 (34)

= ek − VHQ∗ek (35)

= (I − VHQ∗ )ek ∀k ≥ 0 (36)

Naturally, the following property is derived:

ek = (I − VHQ∗ )ke0 (37)

Similarly, the input propagation equation is derived
recursively:

uk+1 = uk + HQ∗ek (38)

= uk + HQ∗ (r − Vuk ) (39)

= (I − HQ∗V )uk + HQ∗r ∀k ≥ 0 (40)

which is similar to Levenberg-Marquardt (LM), the most
interesting property regarding the tracking errors is derived
as follows:

Converting the control law into another expression and
introducing some other symbols to form a more compact
representation:

uk+1 = uk + Pk−1VkTFek (41)

where

Pk =
[
GTk QG+H

TWH+R
GTk QG+H

TWH+R

]
,

F =
[
Q
W

]
.

Theorem 2: If either ker(VkT ) = 0 (the null space of
VkT ) or r ∈ rangeVk (the set of vectors formed by the
transformation matrix of all the vectors in a space), then
the norm of trajectory tracking error ek will eventually
converges to 0.

Proof: It is shown that 1uk+1→ 0 as k →∞:

0 = lim
k→∞

(uk+1 − uk ) = lim
k→∞

Pk−1VkTFek

1) If ker(VkT ) = 0, then there is no such e to satisfy
the relationship of Ve = 0, and the tracking error will
converge eventually to zero.

2) For the second case, if ker(VkT ) 6= 0 but r ∈ rangeVk ,
considering the monotonicity which implies as follow:

lim
k→∞
‖ek‖2 = lim

k→∞
Jk (uk ) := J∞ ≥ 0 (42)

From the above property, the following formula can be
inferred [23]:

lim
k→∞
‖uk+1 − uk‖2 = 0 (43)
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Considering the improved Q-ILC law given above,
the expression of J can be written as (the detailed
derivation process is given in Appendix A):

Jk = eTk Fek + e
T
k−1FVk−1(Pk−1)

−1V T
k−1Fek−1 (44)

= < ek−1, (I +8)ek−1 > (45)

With the tracking error propagation formulation
(37), the above optimization function can be further
deduced to:

Jk = < (I − VHQ∗ )(k−1)e0,

×(I +8)(I − VHQ∗ )−(k−1)e2k−2 >

= < e0, (I +8)e2k−2 > (46)

Then, the final result is obtained:

lim
k→∞

Jk = lim
k→∞

(V (u∗ − u0))TF(I +8)e2k−2

= lim
k→∞

(V (u∗ − u0))TF(I +8)HQ∗−1

×(u2k−1 − u2k−2) (47)

�

2) CONVERGENCE PROPERTY OF INPUT SEQUENCE
Theorem 3: The algorithm has the following property:

lim
k→∞

∥∥∥HQ∗ (r − Vuk )
∥∥∥ = 0. (48)

Proof: Refer to the above inference, the property

lim
k→∞
‖uk+1 − uk‖2 = 0

holds, it extends that:

uk+1 − uk = HQ∗ek (49)

= HQ∗ (r − Vuk ) (50)

Theorem 3 is proved by substituting equation (50) into above
property. �
Theorem 4: If HQ∗V has a inverse with norm 1/σ 2, then

the following theorem is established:

‖Vu‖2 ≥ σ 2
‖u‖2 (51)

then, the convergence property of input is as follows:

‖uk+1 − u∞‖ ≤ (1− σ 2)‖uk − u∞‖2 (52)

where u∞ = (HQ∗V )−1HQ∗r
The specific proof results can refer to Appendix B.

C. SENSITIVITY TO HIGH-FREQUENCY ERRORS
Sensitivity analysis can be derived from improved Q-ILC
learning filter matrix HQ∗ .∥∥∥HQ∗

∥∥∥
∞

=

∥∥∥(GTQG+HTWH+ R)−1(GTQ+HTW )
∥∥∥
∞

(53)

≤
σmax(G)σmax(Q)+ σmax(H )σmax(W )

σmin(GTQG+ HTWH + R)
(54)

≤
σmax(G)σmax(Q)+ σmax(H )σmax(W )

σmin(R)
(55)

where σmax and σmin represent maximum and minimum
sigular value, respectively, the upper bound of learning fil-
ter matrix HQ∗ remain constant value when matrices Q,
W and R are selected and guaranteed to be non-singular.
The upper bound value is independent of sampling period,
which indicates that the improved Q-ILC is insensitive to
high-frequency errors.

IV. DUAL ESTIMATION
As mentioned in Section III, the observer-based method need
to be combined with filtering algorithms. In practice, robot
system suffers from various uncertainties, such as the mea-
surement noise, process noise and disturbances. Furthermore,
the robot system is highly nonlinear and highly coupling,
which complicates the control task. Themeasurement noise is
caused by sensor error and external signal interference, which
make the measured robot states inaccurate to describe the
actual states. Previously, the extended Kalman filter (EKF)
has been widely used to filter the sensor noise [28], [31]. For
common nonlinear models, consider the following:

xk = f (xk−1, uk )+ vk , (56)

yk = h(xk )+ nk . (57)

where xk is the system state, yk represents the observed noisy
signal. uk denotes the control input, vk and nk represent the
process noise and measurement noise respectively. The spe-
cific prediction and update process of the EKF are described
in Algorithm 1.

where

Fk =


∂f 1
∂x1

· · ·
∂f 1
∂xn

...
. . .

...
∂fm
∂x1

· · ·
∂fm
∂xn



Hk =


∂h1
∂x1

· · ·
∂h1
∂xn

...
. . .

...
∂hm
∂x1

· · ·
∂hm
∂xn


The above Jacobian matrices are obtained by local lineariza-
tion, i.e. the first-order approximation term is used as the
approximate expression of the original state equation and
the measurement equation. Linearization also assumes that
the linearized state still obeys the Gaussian distribution, and
then, the standard Kalman filter can be used to obtain the opti-
mal state estimation. Using the local linearization technique,
the local optimal solution of the problem can be obtained,
but whether it can converge to the global optimal solution
depends on the nonlinear strength of the system model and
the choice of the expansion point. During the update of the
Jacobian matrix, the high-order terms of Taylor expansion
of the nonlinear function are ignored, only first-order term is
used, however, the robotic manipulator is generally a highly
nonlinear system. Local linearization will bring a large error,
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Algorithm 1 Extended Kalman filter
Input: Measurements zk and input uk ;
Output: Optimal state estimation x̂k|k ;
1: Calculate the prediction x̂k|k−1 and covariance matrix
Pk|k−1:

2: x̂k|k−1 = f (xk−1, uk , 0)
3: Pk|k−1 = FkPk−1|k−1FTk + Qk
4: Calculate the residual ỹk between measurement and

observation that obtained by linearized measurement
model h:

5: ỹk = zk − h(x̂k|k−1, 0)
6: Calculate the auxiliary matrix Sk and Kalman Gain Kk :
7: Sk = HkPk|k−1HT

k + Rk
8: Kk = Pk|k−1HT

k S
−1
k

9: Correct nominal state x̂k|k :
10: x̂k|k = x̂k|k−1 + Kk ỹk
11: Correct state covariance Pk|k :
12: Pk|k = (I − KkHk )Pk|k−1

which affects the system state estimation effect. Therefore,
only when the system’s state equation and observation equa-
tion are nearly linear and continuous, the results of EKF filter
come close to reality.

In order to improve the filtering effect for nonlinear sys-
tems, the UKF algorithm based on unscented transformation
was proposed [32]. Unlike EKF, UKF does not approximate
the nonlinear model, but approximates the posterior probabil-
ity density to obtain sub-optimal filtering performance. In this
paper, we further consider robots with unknown parameters.
Let the system state and the unknown parameters w be con-
catenated into an extended system state vector Xk , where
Xk = [xTk wTk ]

T , then, the state space in (56) and (57) can
be rewritten as:[

xk
wk

]
=

[
f (xk−1, uk ,wk−1)

I ·wk−1

]
+

[
υk
υk

]
(58)

yk =
[
1 0 · · · 0

] [xk
wk

]
+ nk (59)

The UKF explicitly extracts the so-called sigma sample
points from Gauss, and then transform them through a non-
linear function. Usually, these sigma points are located at the
mean value and symmetrically distributed at the covariance
of the main axis. For an n-dimensional Gaussian distribution
with mean and variance, the result 2n+1 sigma point χ [i] is
selected according to the following rules:

χ [0]
= µ (60)

χ [i]
= µ+ (

√
(n+ λ)6)i i = 1, · · · , n (61)

χ [i]
= µ− (

√
(n+ λ)6)i−n i = n+ 1, · · · , 2n (62)

where λ = α2(n + κ) − n, α and κ are proportional param-
eters that determine how far the sigma points are distributed
over the mean. Each sigma point has two weights associated
with it. A weight ω[i]

m is used for calculating the mean, and
another weight ω[i]

c is used when calculating the covariance

of Gaussian:

ω[0]
m =

λ

n+ λ
(63)

ω[0]
c =

λ

n+ λ
+ (1− α2 + β) (64)

ω[i]
m = ω

[i]
c =

1
2(n+ λ)

i = 1, · · · , 2n (65)

For Gaussian distribution, β = 2 is the best choice.
These sigma vectors are propagated through nonlinear
functions ψ(x):

y[i] = ψ(χ [i]) (66)

As a result, the mean (µ′) and covariance of the Gaussian
distribution (6′) are captured by weighted sample mean and
covariance of the sigma points,

µ′ =

2n∑
i=0

ω[i]
m y

[i] (67)

6′ =

2n∑
i=0

ω[i]
c (y[i] − µ′)(y[i] − µ′)T (68)

The specific UKF equation can refer to Algorithm 2,
where γ is a constant parameter, Rt and Qt denote additive
measurement noise and additive process noise, respectively.

Algorithm 2 Unscented Kalman filter
Input: Mean µt−1, variance 6t−1, measurements zk and

input ut ;
Output: Mean µt , variance 6t ;
1: Choosing sigma points χt−1:
2: χt−1 = (µt−1 µt−1 + γ

√
6t−1 µt−1 − γ

√
6t−1)

3: Noiseless predicted state propagation through nonlinear
function ψ :

4: χ̄∗t = ψ(ut , χt−1)
5: Calculate weighted mean µ̄t and variance 6̄t :
6: µ̄t =

∑2n
i=0 ω

[i]
m χ̄
∗[i]
t

7: 6̄t =
∑2n

i=0 ω
[i]
c (χ̄∗[i]t − µ̄t )(χ̄

∗[i]
t − µ̄t )

T
+ Rt

8: Get new sigma points χ̄t :
9: χ̄t = (µ̄t µ̄t + γ

√
6̄t µ̄t − γ

√
6̄t )

10: Calculate predicted observations Z̄t by observation
model h:

11: Z̄t = h(χ̄t )
12: Get weighted observation ẑt :
13: ẑt =

∑2n
i=0 ω

[i]
m Z̄

[i]
t

14: Calculate uncertainty St :
15: St =

∑2n
t=0 ω

[i]
c (Z̄ [i]

t − ẑt )(Z̄
[i]
t − ẑt )

T
+ Qt

16: Obtain the cross-covariance between state and
observation:

17: 6̄
x,z
t =

∑2n
i=0 ω

[i]
c (χ̄ [i]

t − µ̄t )(Z̄
[i]
t − ẑt )

T

18: Calculate Kalman Gain Kt :
19: Kt = 6̄

x,z
t S−1t

20: Update estimation for µt and 6t :
21: µt = µ̄+ Kt (zt − ẑt )
22: 6t = 6̄t − KtStKT

t
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FIGURE 2. 2 DOF Quanser robot plant [33].

Compare to EKF, UKF is more accurate and its accuracy
is equivalent to the second-order Taylor expansion. Another
great advantage of UKF is that there is no need to calculate
the Jacobian matrix that is sometimes not available. The
comparisons of estimation performance between EKF and
UKF are given in Section V.

V. SIMULATION
A. THE TESTBED
Fig.2 shows the 2 DOF Quanser robot plant, and the cor-
responding schematic diagram pictured in Fig.3 shows the
robot manipulator. The 2 DOF Robot module is connected to
two Rotary Servo Base Units, which are mounted at a fixed
distance. Two servomotors on the Rotary Servo Base Units
are mounted at a fixed distance and control a 4-bar linkage
system: two powered arms coupled through two non-powered
arms. The system is planar and has two actuated and three
unactuated revolute joints.

The goal of the 2 DOF Robot experiment is to manipulate
the X-Y position of a four-bar linkage end effector(joint E).
Such a system is similar to the kinematic problems encoun-
tered in the control of other parallel mechanisms that have
singularities. The actuated joint A and B are control by two
Quanser Rotary servo motors respectively. q1 and q2 repre-
sent the output shaft angle of SRV02 A and SRV02 B.

Let mi and li, i = 1, 2, 3, 4 be the mass and length of the
bars, and lsi =

li
2 , i = 1, 2, 3, 4 be the mass center positions

of the bars. The dynamics of the plane robot are given in [34]:

M (q)q̈+ C(q, q̇)q̇+ D(q) = τ (69)

M =
[
m11 m12
m21 m22

]
; C =

[
c11 c12
c21 c22

]
; D =

[
d1 d2

]T
. (70)

m11 = m1l2c1 + m2(l21 + l
2
c2 + 2l1lc2 cos q2(t))+ I1 + I2,

m12 = m21 = m2(l2c2 + l1lc2 cos q2(t))+ l2,

m22 = m2l2c2 + I2,

c11 = hq̇2(t),

c12 = hq̇1(t)+ hq̇2(t),

c21 = −hq̇1(t), c22 = 0,

h = −m2l1lc2 sin q2(t),

d1= (m1lc1+ m2l1)g cos q1(t)+ m2lc2g cos(q1(t)+ q2(t)),

d2 = m2lc2g cos(q1(t)+ q2(t)).

FIGURE 3. Schematic diagram of the 2DOF robot manipulator.

TABLE 1. Parameter list.

where q denotes the joint angle position, defined by
q = [q1 q2], q1 and q2 for the 1st and 2nd joint, respectively.
M (q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈ Rn×n denotes
the Centrifugal and Coriolis forces, andD(q) ∈ Rn represents
the gravitational force, τ ∈ Rn is the vector of torques which
operates at the joints.

In simulation, the robot system parameters are listed
in Table.1.

B. SIMULATION 1: COMPARISON OF ESTIMATION
PERFORMANCE
In this simulation, the estimation performance between EKF
and UKF are compared. The input torque is set to a fixed
value:

τ = [1, 1]T ,

the covariance of measurement noise is selected as:

R = diag([1, 1, 4, 4])2

and the unknown parameters I1 and I2 are all set to a constant
initial value:

[I1, I2] = [1, 1].

The results of parameter estimation by UKF and EKF are
shown in Fig.4. Fig.5 is a partial enlarged view of Fig.4,
it shows that the state estimation result of UKF are very close
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FIGURE 4. Comparison of state estimation performance between UKF
and EKF.

FIGURE 5. The partial enlarged view of Fig.4 (The line indicating the UKF
estimation result almost coincides with the line indicating the actual
state).

to the actual state, this is mainly because the application of
EKF in such a highly nonlinear system will bring a large
linearization error. Similarly, form Fig.6, it shows that UKF
achieved more stable and accurate parameter estimation per-
formance. All these experiments illustrate the applicability of
UKF in robot state estimation compared to EKF.

C. SIMULATION 2: COMPARISON OF CONVERGENCE
To control the joint E to have desired shape movement,
this can be done by giving a reference signal at each chan-
nel (Corresponding to q1 and q2 respectively), here select
the sinusoidal signal. In the absence of measurement noise,

FIGURE 6. Estimation of uncertain parameters of EKF and UKF.

FIGURE 7. The angle position tracking error of 2DOF planar robot.

the tracking performance of original Q-ILC and the improved
Q-ILC issued in this paper are shown in Fig.7. The e1,θ and
e2,θ represent two joint angle position error separately (the
error among q1, q2 and their corresponding expected value).
From Fig.7, it indicates that our improved Q-ILC algorithm
achieves faster convergence and better transient performance
compared to original Q-ILC, also, the results indicate that
with the same convergence criteria our algorithm provides
better final results. Thus for same quality of convergence it
can be used with less strict convergence criteria.

The method used in this paper requires the updates of
sensitivities Gk and Hk (iterative linearization). Generally,
linearization using finite difference is time consuming that
perhaps influence the robot real-time control. To this end,
we apply Automatic Differentiation (AD) that improves the
computational efficiency immensely.
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FIGURE 8. Comparison experiment of weight matrix R.

D. SIMULATION 3: INFLUENCE OF PARAMETERS ON
CONTROL PERFORMANCE
In this subsection, influences of weight matrices on control
performance will be disscussed. Since Q and W have similar
effects, only the effect of Q is considered here. Furthermore,
for simplicity, only the convergence result for the first joint is
analyzed.

Firstly, consider the two following parameter setting:
1) W=0.2I, R=I, Q=I;
2) W=0.2I, R is adjusted according to the parameter tun-

ing strategy (as described later), Q=I.
The experimental results are shown in Fig.8, it can be found
that for the first case the tracking errors cannot be further
reduced after 5th iteration, this is mainly because when the
tracking error converges to the neighborhood of the origin,
the control input will not change significantly. In this case,
a large weight for the control input increment discourages
the movement of inputs for the next batch, thus reducing
the trajectory tracking accuracy. In the second experiment,
a simple heuristic parameter selection strategy was consid-
ered for R: when the trajectory tracking error was lower
than a certain threshold, R was adjusted to 0.01I. The result
in Fig.8 proves the effectiveness of parameter adjustment
strategy.

In the next, we further analyze the general influence
of R on the control performance. To be straightforward
for demonstration, the following parameters are selected
for R:

1) R=0.1I;
2) R=0.5I;
3) R=I.

The results are given in Fig.9. Bascially, faster convergence
can be achieved when choose for a larger R. The results
confirm the usefulness of a switching strategy for R. That
is, a large R should be used in the early stage to speed up
the convergence and then a small R to improve the tracking
accuracy.

FIGURE 9. The influence of weight matrice R on error convergence.

FIGURE 10. The influence of weight matrice Q on error convergence.

In order to analyze the influence of Q, the parameters are
selected as follows(in this case, the switching strategy for R
is followed):

1) W=0.2I, R=I, Q=0.1I;
2) W=0.2I, R=I, Q=0.5I;
3) W=0.2I, R=I, Q=I.

The results are shown in Fig.10. We observe that with the
increase of Q, the convergence speed is mildly accelerated,
however, this phenomenon is not significant, because the
weight W has a major impact on the speed error, according
to the theoretical analysis. In practice, Q can be selected
as 0.5I∼I .

E. SIMULATION 4: CONVERGENCE AND ROBUSTNESS
In this simulation, convergence and robustness in the case
of noise and uncertainty parameters are studied. The Gaus-
sian white noise is added to the measured data, and the
uncertain parameters are selected as I1 and I2, the initial
values of these uncertain parameters are set to 0.1 and 1
respectively.

The robot state estimation and uncertain parameter estima-
tion results are given in Fig.11 and Fig.12, respectively. From
these figures, we can see that the dual estimation of UKF
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FIGURE 11. The estimated system states by UKF in one trial.

FIGURE 12. The estimated uncertain parameters by UKF.

enables to capture the actual states and model parameters,
which benefits a lot to the convergence rate of ILC. The
result of ‘‘improved Q-ILC+UKF’’ algorithm in the presence
of measurement noise and uncertain parameters is shown
in Fig.13, fluctuations of the error convergence curve can
be found, this is mainly due to the inaccurate estimation by
UKF in the first few batches. On the other hand, the selec-
tion strategy for R can reduce such fluctuation, as can be
seen, the final error curve is gradually stable. Although the
transient performance is influenced by measurement noise
and model errors, the combination of improved Q-ILC and
UKF achieves a satisfactory performance, the errors of q1
and q2 converge to zero at approximately the 10-th and 5-th
iterations, respectively.

FIGURE 13. The tracking error norm of 2DOF planar robot in the presence
of measurement noise and uncertain parameters.

FIGURE 14. The output trajectory of 15-th iteration when measurement
noise added.

Finally, the trajectory tracking performance is given
in Fig.14, which show that the output trajectory converges to
the given trajectory at 15-th iteration. The above simulation
results and theoretical analysis in this paper show that com-
pared with the original Q-ILC algorithm, the combination of
improved Q-ILC and UKF’s online dual estimation achieves
faster error convergence.

VOLUME 8, 2020 43131



M. Zhu et al.: Estimation-Based Quadratic ILC for Trajectory Tracking of Robotic Manipulator

VI. CONCLUSION
This paper proposed an improved Q-ILC algorithm for tra-
jectory tracking of uncertain robot manipulators, the velocity
information is considered compared to the original Q-ILC.
The closed-form solution of the newQILCmethod is derived,
together with convergence and robust analysis. Basically,
the trajectory tracking error of the previous batch is more
fruitfully used as the feedforward signal of the Q-ILC algo-
rithm, which is helpful for improving the control perfor-
mance. In this work, we presented a dual estimation strategy
using the UKF algorithm, where the unknown parameters and
systems states are simultaneously estimated. In the simulation
study of a 2DOF plane robot, the output trajectory converged
to the desired trajectory within a few iterations, the combi-
nation of the improved Q-ILC and UKF achieves faster error
convergence and is more robust to noise and model errors.
The improved Q-ILC algorithm is suitable for manipulator
systems that demand fast tracking for high production effi-
ciency. However, since industrial robots also suffer from real-
time disturbances that cannot be handled by iterative learning,
how to incorporate feedback control into the framework of
this paper for robot control is important. Moreover, iterative
learning control under completely unknown dynamics is also
a subject that will be studied in the future.

APPENDIXES
APPENDIX A

Jk = eTk Fek + e
T
k−1FVk−1P

−1
k−1V

T
k−1Fek−1 (71)

Using the tracking error propagation (34), Jk can be converted
to:

Jk = eTk Fek + e
T
k−1FVk−1P

−1
k−1V

T
k−1Fek−1

= eTk−1(I − Vk−1P
−1
k−1V

T
k−1F)

TF(I − Vk−1P
−1
k−1V

T
k−1F)

×ek−1 + eTk−1FVk−1P
−1
k−1V

T
k−1Fek−1

= eTk−1Fek−1 + e
T
k−1FVk−1P

−1
k−1V

T
k−1FVk−1P

−1
k−1V

T
k−1

×Fek−1 + eTk−1FVk−1P
−1
k−1V

T
k−1Fek−1

= eTk−1Fek−1 + e
T
k−1F(Vk−1H

Q∗

k−1)
2ek−1

+eTk−1FVk−1H
Q∗

k−1ek−1
= < ek−1, (I +8)ek−1 > (72)

where

8 = Vk−1H
Q∗

k−1 + (Vk−1H
Q∗

k−1)
2 (73)

APPENDIX B
If HQ∗V has a inverse, then, the formulation

(HQ∗V )−1(uk+1 − uk )

will also converge to zero as k →∞, it implies that

lim
k→∞

(HQ∗V )−1(uk+1 − uk )

= lim
k→∞

(HQ∗V )−1[HQ∗ (r − Vuk )]

= (HQ∗V )−1HQ∗r − uk (74)

so, the limit of uk is u∞ = (HQ∗V )−1HQ∗r , based on the
above derivation, it follows that:

uk+1 − u∞ = (I − HQ∗V )uk + HQ∗r − u∞
= (I − HQ∗V )uk + HQ∗Vu∞ − u∞
= (I − HQ∗V )(uk − u∞) (75)

According to the derivation given in [23], the following
inequality holds:

‖uk+1 − u∞‖ ≤ (1− σ 2)‖uk − u∞‖2 (76)
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