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ABSTRACT In the domain of geotechnical engineering analysis, fast Lagrangian analysis based on
the finite difference method is the most commonly used numerical analysis method. It is a classical
numerical algorithm applied to calculate the in situ stress. In this paper, we propose a deep learning (DL)
architecture called the enhance-and-split feature capsule network embedded in fully convolutional neural
networks (ES-Caps-FCN) to predict the in situ stress for a strain-softening model when using the finite
difference method for the numerical computation. Experiments indicate that this novel approach is stable
and convergent. Compared with some classical prediction methods including linear regression analysis
and a deep neural network, the mean squared error of our proposed algorithm is as low as 0.059866%,
which is lower than the 0.616676% of the deep neural network prediction algorithm and the 0.978495% of
the conventional machine learning algorithm. Additionally, the calculation efficiency of fully trained deep
learning models is superior to that of the conventional finite difference method. Therefore, DL is a feasible
and promising fast and accurate surrogate for the finite difference method for solving the in situ stress.

INDEX TERMS Deep learning, in situ stress field, DNN, ES-Caps-FCN.

I. INTRODUCTION
In situ stress [1] refers to the intrinsic stress of the crust and
rock formations in their original state without being disturbed
by artificial engineering. In situ stress is the source of the
force causing various mine pressures to appear and rock
mass deformation and displacement. It is also a mechanical
circumstance that plays a vital role in the coal mining process,
rock-soil excavation and oil exploration and development.
As a result, understanding its distribution situation plays a
major role in reasonably determining the layout of a stope,
mining procedures, roadway support forms and parameters,
etc. The current measurement techniques of in situ stress
are relatively mature, and include the ground stress relief
method, hydraulic fracturing method [2], [3], anelastic strain
recovery method [4], Kaiser effect method [5], deformation
rate analysis method [6], [7], differential strain curve analy-
sis method [8] and the latest Ultrasonic testing method [9].

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

Although directly measuring the in situ stress can accurately
obtain the in situ stress at a certain point, there are some
drawbacks including high measurement costs, high time con-
sumption, the local characteristics of the results and the
problems from applying multipoint stress analysis to perform
direct measurements. To overcome these shortcomings, geo-
logic body modeling by computer and numerical simulations
are effective methods to obtain more and broader geostress
data. Common numerical calculation and analysis methods
for the stress deformed state of rocks include the boundary
element method [10], discrete element method [11], finite
elementmethod (FEM) [12], finite differencemethod (FDM),
combined finite-discrete element method [13], displacement
inverse analysis method, etc. In addition, there are mechan-
ical engineering numerical simulations for calculating the
complexity of time-dependent models in various engineering
applications. Based on those numerical calculation meth-
ods, abundant approaches for in situ stress computation and
analysis have been developed, and the typical in situ stress
inference methods are the multivariate regression [14], [15]
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and neural network. Generally, numerical simulation anal-
ysis transforms basic equations and boundary conditions
into linear or nonlinear equations, high-order algebraic equa-
tions or integral equations via different processing meth-
ods. The properties of rock masses are very complex (such
as discontinuous and nonloose media, inelastic, nonplastic,
viscous, etc.), and the influence of temperature fields and
complex boundary conditions also should be considered.
Despite simplifying the model, this process is still very
complicated and time-consuming. In the field of mechanical
analysis, a great amount of efforts have been made to directly
determine stress distributions according tomaterial properties
and boundary and loading conditions, thus bypassing the
numerical simulation calculation process.

Machine learning [16] is dedicated to mining the implicit
rules of data sets from large amounts of data to predict or
classify the expected results and hopes that the resulting mod-
els possess excellent generalization capabilities. In a deep
learning model [17], [18], each layer of networks reasonably
composes and processes these features through perceiving
data via human brain-like neurons; therefore, the high-layer
can continually get more abstract and implicit features.
Machine learning and deep learning have become increas-
ingly more widespread in computational mechanics and
mechanical analysis [19]–[21]. For instance, Liang et al. [22]
developed a deep learning model to directly estimate the
stress distributions of the aorta. In addition, in [23], they
also used machine learning to estimate the zero-pressure
geometry for two given pressurized geometries of the same
patient at two different blood pressure levels for the human
thoracic aorta. Roewer-Despres et al. [20] approximated the
large deformations of a nonlinear, muscle actuated beam
by using a deep-autoencoder to simulate soft tissue biome-
chanics. Kononenko and Kononenko [24] demonstrated that
machine learning can be used as a supplement to the finite
element analysis of physical system modeling, and it can
efficiently address some corresponding problems. Moreover,
neural network algorithms have also been used to replace
the conventional constitutive material model to improve finite
element analysis [25]. Machine learning and neural networks
also perform well in other civil and geotechnical engineering
research areas, such as the prediction and classification of
rockburst [26], [27].

All the above studies have focused on replacing of the finite
element method to solve the mechanical component, while
fast Lagrangian analysis based on FDM is a more profes-
sional and common numerical analysis method to calculate
the in situ stress in geotechnical engineering. Therefore, this
paper attempts to imitate it to calculate the in situ stress and
discusses the feasibility of substituting it via deep learning.
The main objective of this paper is to verify feasibility of
using DL as an alternative method for fast Lagrangian anal-
ysis numerical simulation. We focus on predicting the three
dimensional stress components depending on the relationship
between the stress values and loads, boundary conditions,
and geometric figures by training some critical features.

Previous classical prediction and calculation methods for the
in situ stress based on neural networks simply find numer-
ical nonlinear relations between stress components and the
boundary conditions, which ignores the influence of the
direction and location of the stress component and boundary
force. Furthermore, they cannot explicitly express the geo-
metrical information of the model. These factors are signif-
icant for the training of neural networks, especially when
the external force value of each boundary surface is not
constant, which necessitates setting the variational external
load. To address these problems, a deep learning architecture
is proposed. We explicitly describe the geometric shape of
the geologic body model using a three dimensional matrix
and the boundary constraints and external force values using
the external boundary coordinates. We directly process the
three-dimensional matrix data to maintain the positional rela-
tionship between the external forces and stress components
via a three dimensional convolutional neural network, and
take full advantage of the orientation and position sensitivity
of the capsule network. Since the external force only acts
on the outer boundary, the resulting matrix is quite sparse.
We apply feature enhancement to reduce the impact of the
sparse matrix on the prediction results.

The remaining parts of this paper are structured as follows.
In section II, we review the most closely related literature
on 1) the finite difference method and the general modeling
process of the FLAC3D, and 2) the in situ stress inference
and prediction methods. Then, in Section III, we present
our proposed DL architecture and provide the details of the
networks used for the in situ stress prediction. We describe
the dataset and design comparison algorithms in Section IV,
which is followed by the experimental results and discussion.
Finally, some concluding remarks are made in Section V.

II. RELATED WORK
A. FAST LAGRANGIAN ANALYSIS METHOD BASED
ON THE FDM
The FDM [28] directly turns the differential problem into an
algebraic problem. The key is to establish unknown algebraic
equations for the grid node values. First, the solution area is
divided into a difference mesh, and a finite number of mesh
nodes is used to replace a continuous solution domain. There
are many approaches to construct a difference scheme in a
mesh region, such as the classical Taylor series expansion
method. The difference between the function values on the
grid nodes is used to replace the derivative for discretizing this
equation, and thus the algebraic equations of the grid node
values is established.

Using the principle of the finite differencemethod, Cundall
proposed the fast Lagrangian analysis method, which adopted
the mixed discrete method, dynamic relaxation method and
display difference method. As a typical numerical simu-
lation analysis method for geotechnical engineering prob-
lems, the fast Lagrangian analysis method based on FDM
contributes to large deformations and finite deformations.
When analyzing the mechanical structure of geotechnical
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engineering, we usually obtain several basic relationships
including the Equilibrium equation, Geometric equation,
Constitutive equation and Boundary conditions. Since these
relationships are mostly differential equations that can be
approximated by difference equations, then we will solve
the algebraic equations instead of solving the differential
equations for these problems.

Some large-scale numerical analysis software including
ANSYS, FLAC3D and ABAQUS have been developed for
the easy and convenient application of numerical analysis
methods in multiple fields. In particular, FLAC3D is the most
commonly used large-scale simulation software in geotech-
nical engineering and it can well simulate the force charac-
teristics and plastic flow of three-dimensional structures of
specified characteristic materials. Finite difference modeling
via FLAC3D forms the sets of data in this paper. The gen-
eral processes for analyzing the in situ stress by means of
FLAC3D [29] are as follows:
• Build the geometry.
• Divide grid, input the material property parameters as
needed and select the constitutivemodel. The evenly dis-
tributed external forces are applied in both the horizontal
and vertical directions to simulate in situ stress and the
boundary constraints are fixed.

• Perform balance calculations, and sometimes add the
initial stress values to increase the computational
efficiency.

B. IN-SITU STRESS INFERENCE AND PREDICTION
METHODS
Multiple regression analysis and neural networks are the
key technologies for in situ stress calculation and analysis.
A majority of the regression methods determine the coeffi-
cients according to the data of the measuring points and the
calculated values of a numerical simulation, then calculate
in situ stress of other points in the simulation region via a
regression equation. Junling Hou et al. used numerical FDM
for regression analysis to calculate the in situ stress for an
entire geological body. Li et al. [30] used a 3D displacement
discontinuity method (DDM) program to numerically simu-
late the nonlinear deformation for a fault.

Wei-Feng et al. [31] chose the density, elastic mod-
ulus, triaxial compressive strength, fracture rate of the
core and stress as the indexes to train neural net-
works. Zhong-Ming et al. [32] established a learning func-
tion between parameters and stresses via neural networks, and
then calculated simulation values of the initial in situ stress
field using the finite elementmethod for the positive sequence
calculation. Yong-Song et al. [33] gave an intelligent expres-
sion method for the in situ stress field using a neural network
method, which established a relationship between the X , Y ,
and Z coordinates of a node and the six corresponding stress
components calculated via the finite element calculation.
Ri-Qing et al. [34] determined the mechanics parameters
of soils and retaining walls during the excavation phase by
combining artificial neural networks and genetic arithmetic.

Zhang and Yin [35] used an artificial neural network to find
the relationship between the in situ stress and the shape of
borehole breakouts via inverse analysis.

The boundary load adjustment method and boundary dis-
placement adjustment method respectively adjust load and
displacement to obtain the optimal fitting between mea-
sured values and calculated values, which are often obtained
through a numerical simulation analysis method. In addition,
there are other in situ stress field calculation methods, such
as the trend analysis of the geostress function, the two-stage
optimization algorithm, the genetic algorithm and so on.

The in situ stress field is regarded as a linear combination
of the gravity stress and tectonic stress. Based on the above
viewpoint, the in situ stress component σ̂k is represented as a
linear superposition of the computational stress σ ik calculated
by the FEM, FDM or DDM for the first k measuring points.
Then, the regression equation of σ̂k can be expressed as
follows:

σ̂k =

n∑
i=0

Liσ ik (II.1)

where Li is the multivariable regression weight coefficient
corresponding to the stress components, and n is the num-
ber of loads for the computer modeling. When the number
of measuring points is sufficiently abundant, the objective
function can be defined as the following formula via the least
squares:

Sr =
m∑
k=1

6∑
j=1

(
σ ∗jk − Liσ

i
jk

)2
(II.2)

All regression coefficients L = (L1,L2, · · · ,Ln) can be
obtained after a set of calculations, and then the j-th stress
component of the in situ stress of any point p in the calcu-
lation region can be determined by the following regression
equation:

σjp = Liσ ijp (II.3)

where j = 1, 2, · · · , 6 represents the 6 respective in-situ
stress components.

III. MY METHODS
A. DEFINITION OF THE PHYSICAL PROBLEM
Cubes are adopted as the initial information carriers to
express the geometric characteristics of solid materials.
As the input of our DL model, we define a three-dimensional
matrix including the geometry, boundary condition and load
position information. The three dimensions of the matrix rep-
resent the x-axis, y-axis, and z-axis directions, and the length
of the x-axis, y-axis, and z-axis of the three-dimensional
matrix are determined according to the proportion and the
geometry of the problem. Actually, we can simulate a real
and complex model shape by using three dimensional matrix
points, and then constrain the surface and geometric shape via
the external force value. Herein, we use the (xmin, yi, zj) plane,
(xmax , yi, zj) plane, (xi, ymin, zj) plane, (xi, ymax , zj) plane and
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(xi, yj, zmax) plane to set the boundary conditions and exter-
nal force values, which are allowed to gradually change,
where i, j = 0, 4, 8, 12 . . . 60. A negative value represents
the compressive force, a positive value represents the tensile
force, a value of 0 denotes a free boundary surface without
restraint or force and a nonzero value indicates a constraint at
the boundary. In many cases [36], [37], only horizontal and
vertical forces are applied, and here we only study the stresses
in the X , Y and Z directions after the balance calculation.

B. THE DESCRIPTION OF THE NEURAL NETWORK
STRUCTURE USED IN OUR DL ARCHITECTURE
1) THREE-DIMENSIONAL CONVOLUTIONAL NEURAL
NETWORK(3D CNN)
A convolutional neural network [38] is a standard solution for
regression and classification problems. The 3D CNN [39] is
a great way to extract features via the relationships between
slices. A 3D convolution can be seen as an operation between
stacked two-dimensional data with a 3D convolution kernel.
The value at position (x, y, z) of the jth feature map in the ith
layer is as follows:

vxyzij = tanh

bij+∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

wpqrijm v
(x+p)(y+q)(z+r)
(i−1)m


(III.1)

where ‘‘tanh’’ is the activation function for the network. Ri
represents the size of the 3D kernel in the time dimension, and
wpqrijm is the (p, q, r) of the kernel connected to the m feature
graph in the previous layer.

The feature information extracted by the convolution oper-
ation in the convolution layer may be too large to further
improve the learning performance. The convolution layer is
followed by the pooling layer [40], which can decrease the
interference of redundant information and avoid overfitting,
so that the network model has strong robustness. The maxi-
mum pooling formula is as follows:

O(x, y, z)= max
(0≤i≤s1,0≤j≤s2,0≤k≤s3)

(
Ix∗p+i,y∗q+j,z∗r+k

)
(III.2)

where I is the input of the pooling layer; O is the output; and
p, q and r are the sampling steps in the three directions.

2) CAPSULE NETWORK(CapsNet)
Hinton [41] replaced the scalar of each neuron in the original
neural network with a vector named a capsule. The modulus
of each capsule represents the probability of occurrence of the
corresponding feature. The direction of the capsule typifies
some of the instantiation parameters of the corresponding
feature, such as the pose (position, size, and orientation),
deformation, velocity, albedo, hue, and texture. CapsNet can
detect the relationship between the orientation and relative
spatial features that are difficult to identify using traditional
CNNs. Simultaneously, CapsNet is competitived with many
state-of-the-art techniques on current datasets with less train-
ing data and fewer layers/network parameters. In fact, this is

beneficial to the matter that we are addressing. In terms of the
size and direction, the force we apply and the stress values we
get are vectors. Then, we add them into our model.

C. ENHANCE - AND - SPLIT FEATURE CAPSULE NETWORK
EMBEDDED IN FULLY CONVOLUTIONAL NEURAL
NETWORKS (ES-CAPS-FCN)
The input data contain several types of information including
direction, size and geometry of the solid material. The DL
model uses three network model links with the same structure
to train the stress values of the three different directions for
each point in parallel. The MSE loss function and the Adam
optimization function are applied in this model and a deep
neural network is also applied in the comparison experiment
in section IV. Meanwhile, the all results of three networks
are concatenated into a 4096×3 matrix. The top six layers of
the DL model except the fourth layer are three-dimensional
convolutional neural networks [42] with a kernel size of 2×
2× 2 and a stride of 1× 1× 1, and they have 9, 4, 8, 32, and
48 filters, respectively. The fourth layer is the pooling layer
with maxpooling of 2× 2× 2 and a stride of 1× 1× 1. The
seventh layer of the DL model is CapsNet with 48 capsules.
Fig. 1 depicts the whole structure of the ES-Caps-FCN.
We add a feature enhancement operation after the first

layer, split the extracted features into three links, join the
results with the original input, and then repeat the convo-
lution. The extracted features are divided into three equal
parts and concatenated with the input in sequence. After the
sixth layer, the same data feature enhancement processes are
carried out. After the input and feature are concatenated and
flattened, the training continues in the last two layers. The
last two layers are fully connected neural networks containing
128 neurons.

IV. EXPERIMENTS AND DISCUSSIONS
A. DATASETS
Academician Kang et al. [43], [44] established a database of
the underground in situ stress in Chinese coal mines. The
distribution characteristics and main influencing factors of
the underground in situ stress for coal mines in China were
analyzed using this database. Then, some results revealed that
the vertical stress and maximum and minimum horizontal
principal stresses are generally positively correlated with the
buried depth, but the data have a certain degree of dispersion.
The in situ stress type is primarily the normal type in coal
mines more than a thousand meters deep, and σv > σH >

σh repreats the vertical stress and maximum and minimum
horizontal principal stresses, respectively. The type of in situ
stress is primarily the thrust type stress in shallow coal mines,
and σH > σh > σv. The rock bulk density is basically
0.025− 0.033MPa/m3.
Consequently, according to the buried depth, we randomly

set the lateral pressure coefficient at 0.45−0.7 and 0.8−1.3 to
better serve engineering application. To simplify the models’
analysis, the material parameters remained unchanged for
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FIGURE 1. The architecture of the ES-Caps-FCN.

all cases, and the FLAC3D software is used to generate the
training and testing data. We got 877 cases and a total of
3592192 × 3 stress values, and some of the examples are
randomly selected from the total cases, as shown in Fig. 7.
Approximately 80% of the data set for the model was divided
into training set and the remaining 20% was used for the
testing set. The iteration of the cases calculation was stopped
once the error value is less than 10E−6, whichwas deemed as
an equilibrium state, and then we extracted the stress values
of the three directions for each point at this time.

In the case of a small volume of 60× 60× 60m3, it takes
more than 200 iterations on average, and it takes roughly an
average of 1 minute to extract and record the stress values in
the three directions. Some of the stress chromatograms are
show in Fig. 2. While the actual input is a three-dimensional
matrix, the output is a flattened one-dimensional matrix for
convenience. An intuitive display of the data examples with
one input and three output stresses is given in Fig. 2. The first
image uses the boundary constraints, force surfaces and force
vectors as the input. Figs. 2(b), 2(c) and 2(d) show the stress
component values in the X , Y and Z directions of the model,
respectively. The last two images show the meshing of the
hexahedrons for finite difference calculations. The units of
values in the graphs are Pa.

B. COMPARISON ALGORITHM
In response to this problem, to evaluate and analyze the gen-
eralization performance of the ES-Caps-FCN of this study,
some comparative experiments with machine learning model

are supplied, such as the linear regression and the neural
network model designed by us.

1) LINEAR REGRESSION
The linear regression is one of the most fundamental machine
learning algorithms to predict problems. A linear regression
model explores the linear relationship between a dependent
variable and one or more independent variables. It can take
the form of a unary linear regression model or a multiple
linear regression model.

Furthermore, the polynomial regression model is also a
linear regression model. Polynomials can be used to approx-
imate any function, so their application background is very
broad. A polynomial regression [45] can be either a unary
polynomial regression or a multivariate polynomial regres-
sion according to the number of independent variables. The
orders of a polynomial can also be freely selected and deter-
mined according to the data distribution, and we can choose
appropriate models to solve different problems.

The fundamentals of the FEM regression, FDM regression
and DDM regression are same as the stress function method.
Based on the principle of the in-stress regression method,
the linear superposition of external forces via multiple regres-
sion analysis is used to solve the stress components as one of
the comparative experiments in this paper.

2) DEEP NEURAL NETWORK(DNN)
The in situ stress prediction based on neural networks meth-
ods can explain the nonlinear relation between stress and

VOLUME 8, 2020 44067



W. Gao et al.: Deep Learning Approach Replacing the Finite Difference Method for In situ Stress Prediction

FIGURE 2. Intuitive display of the data examples with one input and three output stresses. The
units of the values in the graph are Pa.

boundary conditions, force, and physical properties of rocks
via a complex function, and then determine stress values via
numerical simulation or direct calculation according to the
measuring values and these relations. By employing the DNN
model, the authors in [22] predicted the Von Mises stress
distribution and peak Von Misesstress in experiments, and
they achieved excellent results with average errors of 0.492%
and 0.891%, respectively. Meanwhile, neural network mod-
eling performs better than the regression model at predicting
Vp [46]. As a consequence, we use this three-layer neural
network structure to predict the in situ stress at some specified
point, as illustrated in Fig. 3.

Our network is, in fact, a fully connected neural network
structure with three parallel links. Its input is the same as
the DL structure (ES-Caps-FCN) we designed and will enter
the neural network model after flattening. The first layer
and the second layer of each neural network model contain
128 neurons and the activation function is the ReLU. The
output layer of the model contains 4096 neurons without an
activation function. In the end, all outputs are concatenated to
a 4096× 3 matrix, which is similar to the ES-Caps-FCN.

3) EVALUATION METHODS
Themean squared error (MSE) [47] is not only a loss function
but also a critical evaluation index for fitting and prediction.
Other than this, the mean absolute error (MAE) and R2-Score
are also two of the most common metrics used to evaluate the

FIGURE 3. Deep neural network used to deal with our problem.

model accuracy for continuous variables [48], [49]:
1.mean-squared-error

MSE(y, ŷ) =
1

nsamples

nsamples∑
i=1

(yi − ŷi)2 (IV.1)
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2.mean-absolute-error

MAE(y, ŷ) =
1

nsamples

nsamples−1∑
i=1

|yi − ŷi| (IV.2)

3.R2-Score

R2(y, ŷ) = 1−

∑nsamples−1
i=0 (yi − ŷ)2∑nsamples−1
i=0 (yi − ȳ)2

(IV.3)

where nsamples is the number of test sample data sets. Our
prediction y and ground truth ŷ in this paper are both
one-dimensional vectors with a length of 4096. For the above
three criteria, the closer the first two get to 0 and the third gets
to 1, the better the performance of the model selection and fit.

In fact, there are other evaluation criteria, such as the
explained variance and root mean squared error (RMSE).
Here, we only use the three stated measures, which are rep-
resentative enough to measure the quality of our models and
the prediction results.

C. ANALYSIS RESULTS
Utilizing the above indicators, we evaluate and analyze our
model and their forecast results in this section. The three
algorithms used in this paper have their own respective char-
acteristics. In this regard, linear regression analysis is the
preferred prediction technique and can supply a workable
plan for many companies’ forecasting analysis. The neural
network and deep learning are special methods that can be
used as the predominant strategy since they have the potential
to analyze more complex nonlinear relationships.

A total of 701 cases are chosen as the training set, and the
remaining 176 cases are used as the testing set to validate
the models’ performance. For the three algorithms, we train
and validate them on a personal computer with an NVidia
GeForce GTX 1060. In terms of the ES-Caps-FCN and DNN
algorithms, we run both on all data sets six times for each
algorithm and average their respective evaluation indexes.
We display the percentage of each value to six decimal places.
All data presented in this article omit excess decimals by
rounding.

When the loss function reaches a minimum and does not
decrease in the next 500 epochs, the training process of our
model is stopped. In other words, we think that the model has
converged at this time. Fig. 4 displays the loss function values
in one of the training and validating processes of our models.
Fig. 4(a) and fig. 4(b) illustrate that all four loss curves rapidly
decrease in the first twenty epochs, and then tend to be flat.
From the loss curves of the ES-Caps-FCN and the DNN,
we know that they all have an acceptable convergence speed.
Fig. 5 illustrates the MAEs of the training and validation
processes of our models (randomly selected results).

In terms of processing the 176 FDM cases, it takes only
0.750464 seconds for the ES-Caps-FCN, 0.044518 seconds
for the DNN and 0.233359 seconds for the linear regression
on average to compute the stress fields. The times aboved are
the means of the six experiments, as shown in table 1. The

FIGURE 4. MSE curves for the training and validation of the ES-Caps-FCN
(a) and the DNN (b).

TABLE 1. Time for the validation of the ES-Caps-FCN, the deep neural
network and the linear regression.

FLAC3D software, by contrast, spends almost three hours
to accomplish the same amount of FDM computations and
record the stress values of points. This shows that fully trained
deep learning models have higher computational efficiency
over conventional FDM models for calculating the in stress
field. Therefore, the three algorithms are fast enough to calcu-
late the in situ stress field of the real stratum, and it is valuable
and significant to investigate the application of deep learning
in geotechnical engineering and coal mining.

After the aforementioned models converge, we derive the
MSE, MAE and R2-Score values, and then evaluate the mod-
els and prediction results. The MSE and MAE are error rates
that measure how close the predictions are to the truth. When
the MSE or MAE is zero, it means that the prediction is
absolutely the same as the truth.
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TABLE 2. Error indicator results. E means the ES-Caps-FCN, L means the Linear regression and D means the deep neural network.

FIGURE 5. MAE curves for the training and validation of the ES-Caps-FCN
(a) and the DNN (b).

The experimental results are shown in table 2, which
demonstrates that the MSE of the ES-Caps-FCN of
0.059866% is the lowest, and it is followed by the DNN
and linear regression. The MAE of the ES-Caps-FCN of
1.806252% is the lowest, followed by the DNN and linear
regression. We can draw from table 2 that the corresponding
R2-Score of the ES-Caps-FCN, DNN and linear regres-
sion are 99.813368%, 97.650430% and 95.784082%, respec-
tively. In summary, the generalization ability and prediction
accuracy of the ES-Caps-FCN are the best one among the
three algorithms in experiments.

FIGURE 6. One of the verification results of the DNN. From the top to
bottom are the following: the X direction, the Y direction, and the Z
direction. The x-axis denotes the test sample, and the y-axis denotes the
stress components.

The standard deviation can reflect the degree of dispersion
between individuals within their group. From the standard
deviation of the three indicators, as shown in table 2, we know
that the ES-Caps-FCN is generally stable for these six results,
and the DNN appears to be slightly unstable. Fig. 6 shows that
the DNN has great fluctuation for stresses prediction in the Z
direction in one experiment.

Zhenguo Nie and their coworkers [50] used a deep learning
method to simulate the finite element method to analyze rela-
tionships between the stress values and the loads, boundary
conditions, and geometric figures in a two-dimensional plane.
In this similar two-dimensional mechanics problem, this arti-
cle defines a criterion called the mean relative error (MRE)
by calculating the ratio of the MAE to the mean of the truth.
The specific calculation formula is as follows:

MRE =
MAE
ȳ
× 100% (IV.4)

where theMAE is calculated in the same way as in IV-B3 and
ȳ is as follows:

ȳ =
1
n

n∑
i=0

yi (IV.5)

In this paper, we also calculate the MREs to evaluate the
ES-Caps-FCN, DNN and linear regression. Table 3 lists the
results of the MREs for the aforementioned three algorithms.
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FIGURE 7. A part of the verification results of the three models are randomly selected for display: the ground truth and
predictions in the X direction, Y direction, Z direction. From top to bottom are the following: the ES-Caps-FCN (a), DNN
(b) and linear regression (c). The x-axis denotes the test sample, and the y-axis denotes the stress components.
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TABLE 3. The MREs of the ES-Caps-FCN, deep neural network and linear
regression. E means the ES-Caps-FCN, L means the linear regression and
D means the deep neural network.

We show our data using percentages up to six decimal places.
Table 3 shows that theMREs of ES-Caps-FCN, DNN and lin-
ear regression are 0.011478%, 0.032781% and 0.363551%,
respectively, and the corresponding standard deviations of
the ES-Caps-FCN and DNN are 0.354337% and 2.450832%,
respectively. The MREs and thier standard deviations of the
ES-Caps-FCN are still lower than those of the DNN. There-
fore, the architecture designed by this paper performs the
best both in precision and stability. In fact, the accuracies
of these three methods meet the requirements of engineering
applications.

With regard to the prediction results for the different mod-
els, we display the true and predicted values of the random
testing samples that are extracted by the models. The fitting
curves are shown in Fig. 7. It is particularly necessary to point
out that the blue curves stand for the true stress values, and the
orange curves are the values predicted by the ES-Caps-FCN,
DNN, and linear regression, respectively. It can be seen from
the Fig. 7 (b) and (c) that the predicted trends of the DNN
and linear regression are the same as the true values, and the
curves of the two colors in the Fig. 7 (a) almost completely
overlap. So the predicted performances of the ES-Caps-FCN
are significantly better than those of the DNN and linear
regression for the X direction, Y direction, and Z direction.

V. CONCLUSION
We propose a DL framework to calculate the geostress in
a way of simulating the processing of the fast Lagrangian
analysis method based on the FDM, which can capture more
information about a three-dimensional geological body to
train themodel for stress analysis. The experiments prove that
its prediction accuracy is better than those of the traditional
neural network and linear regression analysis, and it has
better expansibility. Compared with linear regression, both
neural network and deep learning require additional training
time, but the training convergence speed of the DL frame-
work and DNN is efficient and the running time required to
predict the stress component values is distinctly shortened.
This indicates that the DL framework can be considered as
an alternative approach to efficiently calculate the in situ
stress component of the fast Lagrangian analysis method.

Although the features used in this paper are incomprehensive,
we believe that when there are enough features information
involved in the training, a deep learning model designed and
trained for a specific problem will be an excellent substitute
for the fast Lagrangian analysis method, thereby avoiding
complex calculations when predicting the in situ stress com-
ponents via numerical simulation calculations. This method,
therefore, has further research potential. In the future, more
efforts should be made to predict the distribution of the in
situ stress using more or even all of the input characteristics
and material behavior, or to evaluate the network model to
determine which parameters are the most important during
the procedure. This can possibly allow one to predict the
stress values in all directions.
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