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ABSTRACT Compared with traditional wavelength division optical network, elastic optical network (EON)
divides the network spectrum into smaller spectrum slots to improve the spectrum utilization, but the high-
quality spectrum division also complicates the routing and spectrum allocation (RSA) problem. Various
strategies are proposed for reducing the RSA complexity and improving system traffic bearing capacity.
However, previous RSA strategies do not consider the changing physical layer impairments that will also
impact signal quality and even lead to violation of quality of transmission (QoT), the data cannot be
transmitted correctly if the link state is degraded. Therefore, cross-layer optimization is desired, whichmeans
that different layer information is taken into account in the RSA strategy. In this paper, we propose a new
link state-aware (LSA) RSA strategy to guarantee the QoT requirements under different link states. At first,
the link state is evaluated based on chromatic dispersion (CD) and optical signal-to-noise ratio (OSNR),
and a LightGBM model is exploited for CD and OSNR estimation. In LSA-RSA strategy, the link state is
considered as a metric for qualified routing paths finding, and the link capacity is calculated based on the link
state and used in spectrum allocation. Simulation results show that the average CD and OSNR estimation
errors of the LightGBMmodel are 0.28ps/nm and 0.68dB, respectively. Under different link states and traffic
loads, the LSA-RSA strategy can reduce traffic failure probability by more than 20%, and traffic load can
increase 40Erlang when the bandwidth blocking probability equals 10%.

INDEX TERMS Cross-layer optimization, elastic optical network, machine learning, optical performance
monitoring, routing and spectrum allocation.

I. INTRODUCTION
The continuous growth of network traffic volume requires
higher network capacity and more flexible network man-
agement. The optical networks which carry the most traffic
data are supposed to provide various bandwidth resources
to meet current traffic requirements. Suitable network
management allocates available resources in an optimal
method, reduces the wastage of the resources and increases
actual network throughput [1]. Nevertheless, the traditional
wavelength division multiplexing (WDM) networks use
fixed-sized spectrum grid as minimum resource granularity
(usually 50GHz or 100GHz), it is hard to adapt differ-
ent granularity service requests, an entire wavelength is
required in WDM networks even the traffic request has a
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low bit rate, so the spectrum resource utilization is limited.
To overcome the problem mentioned above, elastic optical
network (EON) which is based on orthogonal frequency-
division multiplexing (OFDM) is proposed [2], [3]. EON
divides spectrum resources into finer spectrum slots with the
bandwidth of 12.5GHz or smaller, narrower spectrum slots
could be allocated to lower bit rate traffic, thereby improving
the spectrum resource utilization. In the meantime, to reduce
the cost of the wavelength conversion devices, the data
transmitted from the source node to the destination node in
EON should use same spectrum slots, which is also referred to
as the spectral continuity constraint. Correspondingly, routing
and spectrum allocation (RSA) becomes the core problem
in EON, which is responsible to establish the lightpath for
traffic bearing, where the lightpath refers to a combination
of the routing path and spectrum slots assigned to the traffic
request.
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TABLE 1. The main variables and parameters.

At present, most existing works on RSA mainly focus
on improving the spectrum utilization [4]– [6]. However,
the absence of optical-electrical-optical in EON results
in the accumulation of the optical impairments, that is
to say, the optical signal is more susceptible to physical
layer impairments, such as dispersion, amplifier noise, and
crosstalk. Some traffic interruptions even start with link qual-
ity degradation caused by serious physical impairments [7].
Therefore, the lightpath establishment and the quality of
transmission (QoT) depend not only on sufficient spectrum
slots assigned by RSA strategy but also on the link or network
quality [8]–[10]. At this point, to improve resource utilization
and actual data throughput, it is desired to exploit dynamic
cross-layer network optimization in EON, which considers
information from different network layers. Related research
about cross-layer optimization has been carried out in optical
networks recently [11]–[13]. In EON, the cross-layer RSA
strategy should be adjusted based on physical layer infor-
mation to meet the QoT requirements, the links with poor
quality are limited for less traffic bearing, thereby avoiding
adverse effects on network reliability. Furthermore, load bal-
ancing in networks could be realized if spectrum occupancy
information in the physical layer is considered. Therefore,
for the implementation of cross-layer optimization, physical
layer impairments and states should be monitored firstly,
which is also known as optical performance monitoring
(OPM) technique [14], [15]. Recently, artificial intelligence
(AI) technique gets lots of attention in optical networks and
provides a prospective method for OPM [16], [17], several
parameters can be derived by analyzing physical signal
features through AI-based models. Then if the link state is
evaluated based on OPM results and treated as a reference
in RSA, cross-layer optimization could be implemented.
However, research work combining OPM and cross-layer
optimization is still relatively rare, and further research is
needed for better network management.

Based on the above mentioned considerations, we inves-
tigate the impacts of different link states on physical layer
signals in this paper. Then the link state is represented by
optical parameters, including chromatic dispersion (CD) and
optical signal to noise ratio (OSNR) which are estimated
via the LightGBM model. Based on the link state evaluation

results, we proposed a link state-aware (LSA) RSA strategy to
mitigate the adverse effects of link state degradations. In the
routing phase, LSA routing algorithm is proposed to search
qualified routing paths that satisfy the QoT requirements.
Traffic carried by the link is restricted when the link state
is degraded. The load balancing issue is also considered in
the routing phase. In the spectrum allocation process, frag-
mentation reducing (FR) algorithm is proposed to allocate
suitable spectrum resources for traffic. The effectiveness of
the proposed LSA-RSA strategy is validated by simulation,
and results show that the LSA-RSA strategy improves the
network throughput with the QoT requirements, especially
when the link state is degraded.

The rest of this paper is organized as follows: related
works are presented in Section II. In Section III, we intro-
duce the system model, which enables cross-layer network
optimization. Our link state evaluation method is presented
in Section IV, and the LSA-RSA strategy is presented in
Section V. Simulation results are given in Section VI. In the
end, we briefly summarize this paper in Section VII.

For the convenience of presentation, we summarize the
main variables and parameters used in this paper in Table 1.

II. RELATED WORKS
Cross-layer optimization in EON has recently attracted lots of
research to improve network performance, researchers con-
sider information from different network layers when making
network resource allocation. The joint optimization of delay-
bandwidth and fragmentation is proposed for RSA when
the physical layer impairments are considered [18], and the
extension work considers the bit loading and guarantees
the end-to-end BER for spectrum allocation [19]. However,
the above works are carried out under static traffic scenario
and exploit off-line RSA strategy. In real network operation,
the requests will arrive and tear down in randomness. To solve
the dynamic RSA problem, several spectrum allocation
schemes are proposed, such as first-fit (FF) [20], subcarrier-
slot partition with first-last-fit (FLF) [21], spectrum parti-
tion policy with FLF [22], traffic-based fragmentation-aware
spectrum allocation (TFSA) [23], and access blocking prob-
ability (ABP) based algorithm [24]. The performance of FF
is compared with random fit and exact fit [25], and last fit
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scheme is also included as a benchmark [26]. Based on these
strategies, dynamic and cross-layer optimization works in
EON are studied. Beyranvand et al. analyze the impairments
and nonlinear effects of fibers in the physical layer to esti-
mate the OSNR and the transmission distance under different
modulation formats [27]. To reduce the dispersion effect,
a dispersion-adaptive spectrum allocation scheme is proposed
to decrease the traffic blocking probability, the spectrum slots
with lower dispersion are assigned to longer lightpath [28].
Dharmaweera et al. propose an impairment-driven guard-
band allocation scheme to ensures the transmission quality
and improves the network throughput [29]. Fontinele et al.
consider QoT degradation caused by new establishing traffic,
then select suitable routing path, modulation format and spec-
trum resources for request aiming to reduce traffic blocking
probability [30].

However, these existing works only consider the theo-
retical impairments existing in the physical layer, without
considering the more significant real-time optical impair-
ments. These changing impairments may cause link state
degradation and could be represented by optical parameters.
Therefore, the parameter estimation is the basis to achieve
real-time cross-layer optimization. Dedicated equipment
could monitor several physical layer parameters, besides,
the development of machine learning (ML) in recent years
provides another promising and cost-effective way. Exten-
sive works are carried out via various ML techniques for
CD and OSNR estimation, since these two parameters are
directly related to signal transmission quality. Thrane et al.
exploit neural network (NN) to estimate OSNR values under
different modulation formats [31]. For multiple parameters
estimation, Huang et al. investigate an artificial neural net-
work (ANN) model for OSNR and CD estimation [32].
Wang et al. [33] use constellation data and convolution
neural network (CNN) to estimate OSNR, but the estima-
tion accuracy varies under different OSNR values. How-
ever, accurate clock synchronization is required in previous
works since the eye or constellation diagram is involved.
To extract signal features more effectively, asynchronous
amplitude histograms (AHs) is introduced [34]. Sun et al.
select AH as input data, and combine particle swarm opti-
mization and deep neural network (DNN) to implement
OSNR estimation [35]. Besides, asynchronous sampling
is used to preprocess the data, then the data is inputted
to the convolutional neural network (CNN) for OSNR
estimation [36], [37]. To improve the robustness of parameter
estimation, Tanimura et al. propose an OSNR estimation
model based on DNN, while assessing the current accu-
racy and providing the uncertainty information [38]. Besides
these various neural network models, LightGBM [39] and
XGBoost [40] models can also achieve the parameters esti-
mation. These two models are both based on gradient boost-
ing decision treewhich combinesmanyweak decision trees to
form a complicated and accurate decision tree. As mentioned
above, some works about parameters monitoring have been
studied, but the work about link state evaluation based on

FIGURE 1. Link state-aware system model based on EON.

monitoring results and regarding results as indicators in
network management is relatively less and still needs further
research, it is self-evident that the combination of cross-layer
and dynamic RSA can provide better performance when the
link state is degraded.

Based on existing research works, in this paper, we exploit
the LightGBM model for both CD and OSNR estimation,
then evaluate the link state for RSA and cross-layer opti-
mization. The network throughput with different link state
conditions is measured to validate the effectiveness of our
proposed strategy.

III. SYSTEM MODEL
The LSA-RSA strategy enables the cross-layer optimization,
routing path and spectrum resources are allocated according
to the evaluated link state, and the system model is shown
in Fig. 1. The model includes three planes: physical plane of
EON, IP network plane and control plane. The physical plane
is based on EON that provides spectrum resources and link
state information for lightpath establishment and link state
evaluation, respectively, it consists of two main components:
bandwidth variable transponder (BVT) and bandwidth vari-
able wavelength selective switch (BV-WSS). BVT assigns
traffic to the suitable central frequency with enough spectrum
resources, and BV-WSS performs cross-connect in EON,
the incoming signal at particular central frequency is switched
to specified destination fiber or node. The IP network plane
is responsible for traffic access and collects the request infor-
mation. Firstly, it receives traffic requests and aggregates the
data from different clients. Then, the request information,
including the source, destination node addresses, and the
required bandwidth, is forwarded to the control plane. The
IP network plane coordinates with the physical plane for
data transmission, the traffic is accessed by the IP network
plane and carried in the physical plane of EON. On the other
hand, the IP network plane coordinates with control plane for
network management, the system is controlled by the control
plane through the particular protocol, such as OpenFlow. And
the control plane can be seen as the brain of the entire system,
which is responsible for controlling the network, evaluating
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FIGURE 2. Schematic diagram of parameters estimation model.

the link state, routing traffic requests, and allocating spectrum
resources. To make the resource allocation decision, the con-
trol plane works with the other two planes and performs
two key processes: link state evaluation process and network
configuration process. In the link state evaluation process,
the physical signal is collected periodically and then used
to estimate optical domain parameters, including CD and
OSNR, then the optical link state is evaluated according to
these two parameters. For the network configuration process,
the controller module allocates routing path and spectrum
resources based on link state, then the network configuration
information including routing and spectrum allocation results
are provided to the IP network plane and EON for traffic
bearing. Two processes compose an evaluation-action cycle,
and then the link state based resource allocation in EON could
be triggered.

In the control plane, three modules work together to
implement link state evaluation and network control pro-
cesses. Signals in the physical plane are affected by phys-
ical layer impairments, and the impairments information is
also reserved due to the usage of high-speed sampling rate
devices in receiver. Therefore, it is possible to estimate related
parameters from physical layer signal. The controller module
evaluates the link state based on the CD andOSNR estimation
results and performs LSA-RSA strategy. The CD & OSNR
estimation module receives physical layer signals and imple-
ments parameters estimation. The virtual network topology
manager and path computation element (VNTM & PCE)
model is invoked to perform routing and resources allocation
process. The main function of VNTM is to maintain network
topology, VNTM can simplify the routing problem in optical
networks since it ignores connection details in lower planes.
Also, the spectrum occupancy status of EON is recorded in
VNTM. PCE is used to find routing paths and assign spectrum
resources for requests based on link state information. While
the controller getting routing path and resources allocation
scheme, the network configuration is triggered, then the cor-
responding lightpath is established in EON for traffic bearing.
VNTM&PCEmodel avoids the excessive workload of nodes
and centralized controller, which only need to focus on data
transmission and making decisions, respectively. Therefore,
the overall performance of the network can be improved.

The network states, including both the resource utilization
state and link state, are changing over time and are essential

for network management. Taking lower plane information
into account in network management, performance decreas-
ing introduced by link state degradation could be compen-
sated. We evaluate the link state based on CD and OSNR, and
then perform LSA-RSA strategy in the controller for better
network performance. The controller connects the different
planes and makes the global decisions, both link state and
spectrum resource information are considered. Through the
LSA-RSA strategy, almost all established lightpaths in EON
could meet the quality requirements, the transmission quality
is guaranteed and the network resource utilization is also
improved.

IV. LINK STATE EVALUATION
In this section, we propose a link state evaluation method
based on CD and OSNR estimation values. In optical com-
munication systems, the accumulation of link impairments,
including CD and amplified spontaneous emission (ASE)
noise, degrade the signal transmission quality. CD leads to
ISI and ASE reduces the signal OSNR, both of them lead the
signal degradation and severe bit errors at the receiver. In our
experiment, the link impairments are presented as CD and
OSNR pairs. The OSNR can be used to represent the link
noise level and is intuitive to indicate the link state, so we
regard the OSNR as one link parameter. Under different CD
and OSNR pair configurations, we first collect the received
signal and then estimate CD and OSNR values. Two key pro-
cesses are invoked in this section: CD and OSNR estimation
process and link state evaluation process.

In CD and OSNR estimation process, we build a model
consisting of an optical communication system [41] and
a data processing system, as shown in Fig. 2. In the
optical communication system, various link state condi-
tions can be configured and the signal can be transmitted.
Pseudo-random bit sequence (PRBS) is generated as an infor-
mation source, then the PRBS is modulated to a specified
format and converted to optical signal. During signal trans-
mission, the dispersion compensation fiber (DCF) compen-
sates the dispersion effect caused by singlemode fiber (SMF),
so the transmission distance can be extended. The erbium-
doped fiber amplifier (EDFA) amplifies the attenuated optical
signal, but ASE noise is also introduced into signal and
reduces the OSNR. At the receiver, the optical signal is
converted into electrical signal after photodiode (PD) and low
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FIGURE 3. AHs under different CD and OSNR pairs, interval number of AH
is equal to 150, and the CD value is residual dispersion that has been
compensated by DCF.

pass filter (LPF). In addition to the signal decision, part of
electrical signal is forwarded to the data processing system,
whose main role is to estimate the CD and OSNR values.
The key of estimation is to obtain the probability distribution
characteristics of the signal, so the received continuous signal
is sampled as discrete signal firstly, and the amplitude range
of the signal is divided into several intervals. Then each
sampled signal will fall into a specific amplitude interval.
We count the number of each amplitude interval, and the
probability distribution characteristics of signal amplitude
can be obtained and shown as amplitude histogram (AH).
In our experiment, we adjust the dispersion coefficient of
SMF and the noise figure of EDFA to configure CD and
received OSNR, respectively. Under different CD and OSNR
pair configurations, AHs have significantly different char-
acteristics, which are shown in Fig. 3. It can be seen that
the AH of the better quality signal has sharper and more
independent peaks than the degraded quality signal. Due to
different distribution characteristics of AHs containing CD
and OSNR information, it can be used to estimate the two
parameters by the LightGBM model.

The LightGBM model in the data processing system is
trained to learn the relationship between AHs and CD as well
as that between AHs and OSNR. In our experiment, several
sets of signal are collected under different CD and OSNR pair
configurations to construct the training set. The ith training
sample is expressed as xi = [h(i),max(s(i))], h(i) is the
AH result, and max(s(i)) is the maximum value of received
signal s(i). Then the training set can be expressed as X =
[x1; x2; . . . ; xm]. Correspondingly, the training set is labeled
as Y = [yCD1 , yOSNR1; yCD2 , yOSNR2; . . . ; yCDm , yOSNRm ].
To obtain a better LightGBM model and estimate CD and
OSNR values more accurately, the training process aims to
minimize the objective function, which is calculated as

Obj(2) = L(2)+�(2)

=

n∑
i=1

1
2
(yi − ŷi)2 +

K∑
k=1

(γTk +
1
2

Tk∑
j=1

w2
j ). (1)

where L(2) is loss function and can be represented as a
mean square error, yi and ŷi are the true and estimation
values of CD or OSNR, respectively. �(2) represents the
regularization term which is used to prevent overfitting. The
regularization term includes constraint on the number of
leaves Tk , and L2 norm of the leaf weight w2

j . Compared with
XGBoost model [40], LightGBM uses histogram optimiza-
tion to convert the feature values into histogram data before
training, thereby accelerating the split point finding. In our
work, the kth feature of training samples is the kth column
of training set X [:, k], and it can be seen as a m × 1 vector,
then the vector is converted into a n × 1vector through his-
togram technique, where n is the number of bins in histogram.
The training set dimension changes from m rows to n rows,
denoted by XH . During the training process, the decision tree
will split at the point which has the largest variance gain, and
variance gain of kth feature at split point d is defined as

Vk (d)=
1
n


(∑
{xi∈XH :xi,k≤d} gi

)
2

nkl (d)
+

(∑
{xi∈XH :xi,k>d} gi

)
2

nkr (d)

.
(2)

where gi is negative gradient of loss function and calculated
as − ∂L(2)

∂ ŷi
=
(
yi − ŷi

)
, it is also known as residual error.

xi,k is the kth feature of the ith training sample in processed
training set XH . nkl (d) =

∑
I (xi ∈ XH : xi,k < d) and I ()

is the indicator function. In one iteration, feature values of
all samples are traversed to split decision tree at d∗k , where
d∗k = argmax(Vk (d)). In the later iteration, the next decision
tree is generated to fit residual errors until the model accuracy
meets requirements or the number of iterations reaches preset
maximum number. In the end, the output of the LightGBM
model is expressed as ŷi =

∑LT
l=1 fl(x), where LT is total

number of iteration, i.e., the number of decision trees, and
fl(x) is the output of the lth decision tree. Once we get a
trained LightGBM model, CD and OSNR can be inferred
from AH data by the model.

In the link state evaluation process, the state is evalu-
ated according to CD and OSNR estimation results. Links
with different link states should offer acceptable transmission
quality for traffic bearing. Dispersion will cause ISI, to meet
the QoT requirement, the maximum allowed dispersion 1τ
should be less than one-fourth of the symbol pulse dura-
tion [8], which can be calculated as

1τ <
TS
4
, 1τ = LD1λ. (3)

where TS is the duration time of one symbol, L and D are the
fiber length and dispersion coefficient, respectively.1λ is the
spectral width of the laser. For example, the pulse duration
of one symbol equals 50ps at 20GSymbol/s (40Gbit/s at
4-PAM modulation format), so the dispersion delay must be
less than 12.5ps. In this case, if a laser with 0.1nm spectral
width, CD of the link cannot exceed 125ps/nm for the QoT
requirement. OSNR is the other important parameter that has
a direct relationship with bit error rate (BER) [9]. To ensure
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TABLE 2. Required parameters at different bit rates.

the data transmission quality, we should keep OSNR above
the threshold, and OSNR can be derived from BER. There-
fore, we set the BER threshold firstly and then calculate
the corresponding OSNR threshold. For M-PAM modulation
formats, the BER can be calculated as

BER =
M − 1

M log2M
erfc

(√
3 log2M

k
(
M2 − 1

) Eb
No

)
. (4)

Eb
No

∣∣∣∣
dB
= OSNR|dB − 10log10

Rslog2M
Bref

. (5)

where Eb and No represent energy per bit and spectral noise
density, respectively. The variance k indicates the detection
method used in receiver, k=1 means that coherent detection
is used and k=2 means direct detection is used. erfc() is the
complementary error function. Rs corresponds to the symbol
rate, and Bref means the optical measurement bandwidth and
is usually equal to 12.5GHz. In light of the above, different bit
rates require different CD and OSNR pairs. We take 40Gbps
bit rate with 4PAMmodulation format and coherent detection
as an example. When the OSNR equals 22dB, Eb/No equals
16.9dB, then BER can be derived as 2 × 10−10. With 1dB
OSNR redundancy and ensuring BER is below 10−9, we cal-
culate several CD and OSNR requirements based on [8], [9],
and the results are listed in Table 2.

The CD may change due to the variation of fiber aging
and other external environments. OSNR may vary due to
changes in signal power and noise levels.We evaluate the link
state based on CD and OSNR pairs. Once the CD or OSNR
cannotmeet the requirements, the data transmission should be
stopped due to QoT violation. The maximum traffic bit rate in
EON should also be restricted according to the link state, and
the number of available contiguous spectrum slots, i.e., the
maximum bandwidth is restricted accordingly. In optical net-
works, a lightpath may contain several links or spans, so the
total CD should be the accumulated value of multiple links,
and OSNR can be expressed as

OSNR|dB=PL−Loss−NF−10log10NS+58. (6)

where PL is launch power at the transmitter, Loss and NF are
the loss and noise figure of each span, NS is the number of
spans. To represent the worst case, we use the largest Loss
and NF among the lightpath to calculate OSNR.

V. LINK STATE-AWARE ROUTING AND SPECTRUM
ALLOCATION
Based on the link state evaluation results, we propose LSA
routing and FR spectrum allocation algorithms. For the
dynamic network operation, the source node, destination
node, and duration time of the request are unpredictable,

so the routing path and corresponding spectrum should
be allocated based on the current network state and the
information of the coming traffic request. In the routing
phase, the LSA algorithm guarantees that the traffic can
be transmitted with required QoT. Load balancing is also
taking into account in LSA. In the spectrum allocation
phase, the spectrum block and link capacity are calculated
based on link state, and then the proposed FR algorithm
allocates spectrum resources to carry traffic with minimum
link capacity loss. In this section, we present the link capac-
ity calculation method, then the details of LSA and FR
algorithms are designed. For convenience, we first intro-
duce several notations and variables used to represent EON.
V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em} represent
nodes and links in the network, respectively, then EON can
be represented as G(V ,E). The number of spectrum slots
in one link is represented as N , and the occupancy of slots
in EON is represented as a matrix M , where M (e, j) = 1
indicates that the jth slot in link e has been occupied, and
0 otherwise. T (vs, vd , bw) means that a traffic request starts
at node vs and ends at vd with requirement of bandwidth bw.
PT and SST represent the routing path and allocated spectrum
for traffic T , respectively.

A. LINK STATE BASED CAPACITY CALCULATION
The changing link state and spectrum slot occupancy both
lead to the link capacity changing, so the capacity calculation
should be as simple as possible to achieve rapid capacity
update. In this part, we utilize theory of the compositions of
number to calculate spectrum block capacity Csb(k), where
k means the number of adjacent and unoccupied spectrum
slots in one spectrum block. Link capacity is expressed as
Clink=

∑
Csb, and Csb(k) is calculated as

Csb (k)=
k∑
i=1

P (k, i) · i. (7)

where P(k, i) means the probability that only i slots can be
used in a spectrum block which has k slots, that is to say,
the next traffic request needs more than k − i slots while i
spectrum slots have been occupied. For example, if k=4 and
i = 3, there are 4 cases, as shown in Fig. 4. i). One request
with 3 slots. ii). Two requests and the first one requires 1 slot,
the second requires 2 slots. iii).Two requests and first requires
2 slots, second requires 1 slots, this case is different from the
ii) case. iv). Three requests and each requires 1 slot. Then
next traffic request needs more than one slots, so P(4, 3) can
be expressed as

P(4, 3)= (pr (3)+pr (1)pr (2)+pr (2)pr (1)+p3r (1)) · pr (>1).

(8)

where pr (i) means the probability that a traffic needs i slots,
and pr (> 1) means that a traffic needs more than one slot.
In the network operation, different traffic requests require

different bandwidths, we consider that the required band-
width follows a uniform distribution, that is to say, the proba-
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FIGURE 4. The example of P(4,3) calculation.

bility of requiring different number of slots is equal. For one
spectrum block which has i spectrum slots, we can find that if
Tn traffic requests occupy the block, it is equivalent to divide
spectrum block into Tn sub blocks, there are total

(i−1)!
(Tn−1)!(i−Tn)!

cases. Therefore, the capacity of the spectrum block can be
calculated as

Csb(k)=
k∑
i=1

i∑
j=1

(i− 1)!
(j− 1)!(i− j)!

· pjr · pr (> k−i) · i. (9)

Currently, the highest line rate in EON is generally
100Gbps, and a maximum bandwidth of 100GHz is required,
so we limit the maximum number of slots that traffic required
to 8 when a slot bandwidth is 12.5GHz. If one spectrum
block has more than 8 slots, we divided it into multiple
sub blocks, and the capacity is calculated separately. For
example, Csb(17) = 2×Csb(8) + Csb(1). Besides, the link
capacity is determined by the link state, if the link state is
degraded, the maximum number of continuous slots in the
link is reduced. Taking the CD increasing as an example, if the
CD value is more than 125ps/nm, the link can only carry
traffic with the maximum bit rate of 40Gbps. At that time,
the link capacity is decreasing even if the link has enough
unoccupied spectrum slots, the maximum number of contin-
uous slots is limited at 4 (i.e., 50GHz), a spectrum block will
be divided into several smaller blocks, and the block capacity
changes correspondingly. For example, Csb(17) is calculated
as 4×Csb(4)+ Csb(1).

B. LINK STATE-AWARE ROUTING ALGORITHM
In this subsection, we present the details of the LSA routing
algorithm in Alg. 1, which is designed to search k-available
routing paths (k-ASP) when a traffic request arrives. LSA
ensures that all the found paths are competent to carry arriving
traffic, which means that the CD and OSNR of the paths
could meet the requirements and the paths can transmit data
with QoT provisioning. As shown in Alg. 1, the link state
is evaluated after CD and OSNR estimation, then the con-
troller obtains CD and OSNR values of each link, which
are represented as LSD and LSO, respectively. Link weight is
determined by link capacity as weight=N/Clink , where N is
the total number of spectrum slots in one link, and the involve-
ment of link weight can achieve load balancing in the routing
phase. One link has a small weight if it has a larger free capac-
ity, and the lower weight path is the preferred routing path for
traffic bearing. After finding a path, the weight coefficients of

all links in this path is multiplied by a factor α (line7). The
total routing path CD value is calculated as the cumulative
value of all links (line9), the final OSNR is determined by
the worst link state (line10), CD and OSNR requirements are
presented in section IV. The available spectrum slots in the
path are searched (line12-17), the available slot means this
slot is unoccupied in all links among the path. Then whether
the path pt meets the requirements is determined. Only when
there are enough available slots in the path, the CD andOSNR
meet the requirements, the path can be recorded as a qualified
path (line18-22). All the qualified paths are represented by
PT . SST indicates the index of unoccupied spectrum blocks
in all paths. The number of iterations which is defined as
Iteration is used to avoid endless loop in the path searching
phase, and the LSA algorithm return an empty PT if none
suitable path can be found after several iterations.

Algorithm 1 LSA Routing Algorithm
Input: Network G(V ,E); Traffic request T (vs, vd , bw); Slot

state M ; Link State LS(LSD,LSO); Link Weight weight;
CD Requirement RD(T ); OSNR Requirement RO(T )

Output: Routing Path PT ; Assigned Slot SST for traffic T
1: function findpath(G,T ,M , k,LS)
2: Iteration← 1; sumM ← 0; i← 1
3: disps← 0; osnr ←∞
4: while i < k and Iteration < 2× k do
5: pt ← shortestpath(G, vs, vd ,weight)
6: for each link e in pt do
7: weight(e)← weight(e)× α
8: sumM ← sumM +M (e, :)
9: disps← disps+ LSD(e)
10: osnr ← min{osnr,LSO(e)− 10log(||pt ||)}
11: end for
12: fs← find(sumM == 0)
13: for j = 1 to length(fs)− bw+ 1 do
14: if fs(j+ bw− 1) == fs(j)+ bw− 1 then
15: avaslot ← avaslot .append(fs(j))
16: end if
17: end for
18: if avaslot 6= ∅ and disps ≤ RD and osnr ≥ RO

then
19: PT (i, :)← pt
20: SST (i, :)← avaslot
21: i← i+ 1
22: end if
23: Iteration← Iteration+ 1
24: end while
25: return PT , SST
26: end function

C. FRAGMENTATION REDUCING SPECTRUM ALLOCATION
ALGORITHM
Spectrum slots are allocated for lightpath establishment once
routing paths are obtained. The spectrum allocation algorithm
is implemented to select spectrum slots for traffic bearing.
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In our work, we use link capacity reduction as a metric to
evaluate the performance of different spectrum allocation
solutions. The solution with the lowest capacity reduction
will be selected as the final RSA solution to carry traffic.
The link capacity calculation method has been shown in
Section V-A. And the detail of our LSA-RSA strategy is
designed as Alg. 2, which contains the details of the LSA
routing algorithm and FR spectrum allocation algorithm.

While a traffic request arrives, routing paths are allocated
by Alg. 1 (line2-3). The capacity of each link is calculated
under the current network state and spectrum occupation
state. Then, for each routing path, all the spectrum allocation
schemes will cause link capacity reduction, and all the reduc-
tion values are calculated (line7-12), the scheme which owns
minimum capacity reduction is reserved as the final scheme
to allocate spectrum resources (line13-16). Once spectrum
slots are occupied or the traffic is released, the spectrum state
matrix is updated accordingly (line23-25). If the LSA routing
algorithm cannot find any available routing path, the traffic
request is blocked (line21).

Algorithm 2 LSA-RSA Strategy
Input: Same as Alg. 1
Output: Path Matrix Record PM ; Spectrum Slot Matrix

Record SSM for each traffic
1: Get the state of all links LS in network G(V ,E)
2: For incoming traffic T (vs, vd , bw)
3: [PT , SST ] =FINDPATH(G,T ,M ,LS)
4: LCbefore← LinkCapacity(G,M ,LS)
5: 1LC ←∞
6: if Pt 6= ∅ then
7: for each PT (i) in PT do
8: for each SST (i, j) in SST (i, :) do
9: M ′← M
10: M ′(PT (i), SST (i, j))← 1
11: LCafter ← LinkCapacity(G,M ′,QL)
12: 1Ctem← LCbefore − LCafter
13: if 1Ctem < 1LC then
14: 1LC ← 1Ctem
15: PM ← PT (i)
16: SSM ← SST (i, j)
17: end if
18: end for
19: end for
20: else
21: traffic T is blocking
22: end if
23: M (PM , SSM )← 1
24: while traffic T is releasing
25: M (PM , SSM )← 0

The time complexity of LSA-RSA strategy can be divided
into two parts, the LSA routing algorithm finds k routing
paths, the complexity can be determined as O(k×n2), where
n is the number of nodes in the network. In the FR algorithm,

TABLE 3. Simulation parameters of communication system shown
in Fig. 2.

all available spectrum blocks in k routing paths are detected,
the complexity isO(k×N ). Then, the capacity of each block is
calculated, and all spectrum allocation schemes are compared
with each other, the complexity isO(s), where s is the number
of spectrum blocks. Obviously, s is smaller than N , so the
complexity of spectrum allocation process can be determined
as O(k×N ).

VI. SIMULATION AND ANALYSIS
To evaluate the performance of the parameter estimation
model and LSA-RSA strategy, simulations are carried out in
this section with Intel i5 CPU@3.30GHz and 8GB memory.
In the part of the optical parameter estimation, we build the
LightGBM model by using the Python programming lan-
guage, then compare its performance with XGBoost model.
The simulation of the proposed LSA-RSA strategy is carried
out by MATLAB. Then the performance of the proposed
LSA-RSA strategy is compared with several existing RSA
strategies.

A. CD AND OSNR ESTIMATION RESULTS
In the part of CD and OSNR estimation, we first evaluate
the impact of the training set size on estimation accuracy.
The parameters of the optical communication system (shown
in Fig. 2) are listed in Table 3. The CD values are between
990ps/nm and 1260ps/nm with the interval of 30ps/nm,
and DCF could provide 990ps/nm dispersion compensation,
so the residual CD ranges from 0ps/nm to 270ps/nm. OSNR
values are between 30dB and 39dB, and the interval is 1dB.
The training sample s(i) is sampled as a 1×32768 vector and
converted to AH record with 150 interval bins. In the end,
each training sample consists of the AH and the maximum
value of s(i), expressed as a 1 × 151 vector. We collect
4000 training samples under different CD and OSNR pairs.
Then different numbers of training samples are selected
randomly to form training sets. After the training process,
another 200 samples are used as the test set. Estimation
accuracy is evaluated by the coefficient of determination [42],
which is determined by R2 and calculated as

R2 = 1−

∑K
i=1

(
yi − ŷi

)2∑K
i=1 (yi − y)

2
. (10)
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TABLE 4. Training time with different numbers of training samples (Unit: Second).

FIGURE 5. R2 values under different numbers of training samples, where
‘LightGBM_CD’ indicates that CD is estimated by LightGBM model.
Correspondingly, ‘XGBoost_OSNR’ indicates that OSNR value is estimated
by XGBoost model.

where K is the number of test samples, yi and ŷi represent
true and estimated CD or OSNR values of the ith sample,
respectively, and y is mean value of all samples in the test set.

To evaluate the estimation accuracy of the LightGBM
model, we select XGBoost as a baseline, since it outper-
forms the other gradient boosting decision tree based mod-
els [40]. The models’ parameter settings are introduced as
follows. The numbers of estimators of two models are set
to 400, the leaves number of LightGBM equals 63, while
the maximum depth of the decision tree in the XGBoost
model equals 6. The R2 values with different numbers of
training samples are shown in Fig. 5. As the number of
training samples increases, the R2 value increases, which
means that the parameter estimation accuracy improves. The
LightGBM model outperforms the XGBoost model in both
CD and OSNR estimation. Under 4000 training samples, R2

of the LightGBMmodel for CD and OSNR estimations equal
0.99 and 0.89, respectively. Besides, the results of R2 show
that LightGBM model converges faster, it remains stable
when the number of sample size reaches 3500.

To show the estimation results more intuitively, the CD
and OSNR estimation errors of the LightGBM model are
plotted as Fig. 6, the error bar (plotted in solid line) shows
the mean values and standard deviation values of estimated
results, and grey circles represent the estimated values. It can
be seen that the estimation error of CD is smaller than OSNR,
the maximum average errors of CD and OSNR estimation are

FIGURE 6. Errors of CD and OSNR estimation, grey circles represent
estimated results of all test samples, and the error bar shows the mean
values and the standard deviation values.

0.28ps/nm (at 270ps/nm) and 0.68dB (at 30dB), respectively,
where the average error is calculated as

∑K
i=1

∣∣yi − ŷi∣∣/K .
The training time of LightGBM and XGBoost models are

listed in Table 4, we disable the early stopping of two models
in the training process. The results indicate that the training
speed of the LightGBM model is 3-4 times faster than the
XGBoost model under different numbers of samples. Based
on the above simulation results, LightGBM gets higher esti-
mation accuracy with lower training time and is more suitable
for parameter estimation.

B. LSA-RSA PERFORMANCE
In this part, we evaluate the performance of proposed
LSA-RSA strategy through NSF network topology [43],
which has 14 nodes and 21 links. The traffic requests are gen-
erated where the arriving time follows the Poisson Process. λ
traffic requests arrive per time unit, and duration time of each
traffic follows a negative exponential distribution with amean
value of µ, so the traffic load can be expressed as λ·µ Erlang.
The number of required slots is denoted byNS∈{1, 2, . . . , 8},
and the required slots of different traffics follow uniform
distribution, i.e., pr (NS) = 0.125. The number of spectrum
slots of each link is set to 400. The LSA-RSA performance
is evaluated after 12000 traffic requests arrive during the
simulation. We first compare traffic failure probability (TFP)
under different link state conditions. Under normal link state
condition, which means that CD is small enough and OSNR
is large enough, bandwidth blocking probability (BBP) of
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FIGURE 7. The TFP results of different RSA strategies with different α
values.

different RSA strategies is compared. Spectrum fragmenta-
tion ratio (SFR) is measured under all link state conditions.
In the end, we use standard deviation (SD) [44] to evaluate
the performance of load balancing.

1) TFP: In EON, the prerequisite of the establishment of
a lightpath is that there must be enough available spectrum
resources and the state of all links meet the requirements.
Otherwise, the traffic request will be blocked or traffic data
cannot be transmitted correctly. In both two cases, traffic is
failed, so we defined TFP as the probability of failed traffic
transmission and calculate it as follows

TFP =

∑
T bwT × (bfT ||lsT )∑

T bwT
. (11)

where bwT indicates the number of spectrum slots required
by the traffic request T , and bfT is traffic blocking flag,
bfT = 1 means request T is blocked because there are not
enough spectrum slots, and 0 otherwise. Similarly, lsT = 1
indicates that the routing path cannot support traffic due to
the degradation of the link state, and lsT=0 means traffic data
can be transmitted correctly on the current path. The lower
TFP means higher network throughput and more traffic can
be transmitted.

The effect of α values on TFP in different RSA strategies
is analyzed firstly, and the results are shown in Fig. 7, where
α is used in the LSA routing algorithm to find multiple
routing paths. The traffic load is set to 600Erlang, k-ASP
(k=3) are found via LSA algorithm, FF, FLF, ABP based, and
the proposed FR methods are used for spectrum allocation.
We set α to 1.5 during our simulation since all strategies could
almost obtain the best performance in this setting. The TFP
with different k values is also measured (results are not shown
in this paper), we find that TFP decreases from 0.08 (k=1) to
about 0.07 (k=3) in normal link state, and then remains stable
even if k increases. Therefore, we set k equals 3 in the LSA
routing algorithm.

We compare TFP under different link state conditions.
Firstly, the CD values of all links are set to follow normal

FIGURE 8. The TFP results under different link state conditions. (a) shows
the TFP under different CD values and (b) shows TFP under different
OSNR values. ‘w_LSA’ means LSA is used, and ‘wo_LSA’ means LSA is not
considered in the routing algorithm.

distribution with mean values ranging from 6ps/nm to
15ps/nm, the variance always equals 25, and OSNR of all
links are 37dB. Secondly, OSNR values follow normal dis-
tribution with mean values ranging from 32.5dB to 37dB,
the variance equals 4, CD of all links are less than 5ps/nm.
The routing algorithm without considering the link state is
selected as the baseline, in which only the sufficient spectrum
resources are considered when searching the routing path. FR
spectrum allocation algorithm is always used to allocate spec-
trum slots. The results are shown in Fig. 8.When the link state
is degraded, the LSA routing algorithm can provide better
network throughput performance. Compared with the routing
algorithm without LSA, the LSA algorithm can reduce TFP
by up to 24% under different CD settings and up to 45% under
different OSNR settings.

Then, the TFP results under different traffic loads are mea-
sured. We select three link state conditions: i). The CD values
of all links follow normal distribution with the mean value
of 20ps/nm and the variance of 25, and OSNR values are
equal to 37dB. ii). The CD of all links are less than 5ps/nm,
and OSNR values follow normal distribution with the mean
value of 33dB and the variance of 4. iii). The CD and OSNR
both follow normal distribution withmean values of 15ps/nm,
34dB and variances of 25, 4. The results are shown in Fig. 9.
It can be seen that the LSA algorithm provides a better TFP
performance, the impact of link state degradation could be
compensated and we can get a performance closer to the
normal link state. In the first two conditions, the LSA routing
algorithm decreases TFP by about 58% and 52%. For the third
link state condition, in which the link state degradation is
slighter, the LSA algorithm can still decrease TFP by around
30%.

2) BBP:When the network operates normally, i.e., all links
are qualified to bear any traffic request, the LSA algorithm
only considers whether there are available spectrum resources
when searching k-ASP. In this scenario, lsT always equals 0,
so TFP can be represented as BBP, which means the probabil-
ity of blocking traffic. To compare the performance of LSA
and FR algorithms, we select shortest path (SP), k-shortest
path (k-SP, k=3) and one-available shortest path (k-ASP, k=1)
as routing path finding algorithms, where the weight of links
are calculated based on link capacity and load balancing is
considered in all routing strategies. FF, FLF, and ABP based
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FIGURE 9. The TFP results with different traffic loads, N(m, v ) in the
legend means the normal distribution with mean value of m and
variance of v .

FIGURE 10. The BBP results of different RSA strategies with different
traffic loads.

methods are used for spectrum allocation. The BBP results
are shown in Fig. 10. The proposed RSA strategy, which is
denoted as k-ASP (k=3)+FR, performs best among all the
RSA strategies, compared to SP+FF, it can increase the traffic
load of 40Erlang while the BBP equals 10%.

3) SFR: The SFR indicates the proportion of the fragmen-
tation spectrum in the network. In our work, the fragmenta-
tion spectrum means that the number of spectrum slots is less
than 3 in a spectrum block, i.e., the bandwidth of this block
is less than 37.5GHz. The SFR is calculated as

SFR =

∑
e∈E

∑
k |SSe,k|× sfk
|E|N

. (12)

where |SSe,k | is the slots number of kth spectrum block SSk in
link e, and if the number of slots is less than 3 in SSk , we set
sfk equals 1. |E| is the number of links in the network, and
N is the total number of slots in one link. The SFR results
with different traffic loads and link state conditions are shown
as Fig. 11. Considering the normal link state at first, the FR
algorithm has a higher SFR than ABP and FLF. However,

FIGURE 11. The SFR results with different traffic loads and link state
conditions, FR algorithm is used for spectrum slots allocation.

FIGURE 12. The SD results with different traffic loads. ‘LSA_w_LB’ means
load balancing is used and ‘LSA_wo_LB’ means load balancing is not used.

we should notice that FR provides the highest throughput,
more traffic requests are established in EON, so it brings
more fragmentary spectrum blocks. Secondly, SFR is lower
when the link state is degraded, since fewer traffic requests
are established in EON to guarantee the transmission quality,
so there can be more free spectrum blocks which have more
than 3 spectrum slots, and the number of fragmentary spec-
trum blocks decreases.

4) SD: We use SD as an indicator to determine the
uniformity of traffic distribution, which can be measured
based on the uniformity of spectrum occupation status and
calculated as

SD =

√√√√√ 1
|E|N 2

∑
e∈E

 N∑
j=1

M (e, j)−M

2

. (13)

M =

∑
e∈E

∑N
j=1M (e, j)

|E|
. (14)
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TABLE 5. Consuming time under different RSA strategies and traffic loads (Unit: Second).

where M (e, j) represents the occupation status of the jth slot
in link e. The SD results are shown in Fig. 12. As we can see,
our load balancing method decreases the SD in various traffic
loads, indicating that the traffic distributes more uniformly in
the network.

In the end, we measure the consuming time of differ-
ent RSA strategies and traffic loads, the results are listed
in Table 5. Under the high traffic load, the LSA-RSA strategy
consumes almost the same time under different link state
conditions, and the time is about the same as k-SP+FLF and
k-SP+ABP.

VII. CONCLUSION
To improve the network throughput performance when the
network state is degraded, resources should be allocated
based on network and link state. In this paper, we proposed
an LSA-RSA strategy. The link state was evaluated based on
CD andOSNR pairs, which were estimated by the LightGBM
model, and the link state was used as a metric in RSA. In the
routing phase, we proposed the LSA routing algorithm aim-
ing to find k-available routing paths, where the available path
means that the path has sufficient spectrum resources and is
capable to bear current traffic request. Then we proposed the
FR algorithm to allocate spectrum slots aiming to minimize
the link capacity reduction. The simulation results showed
that the LightGBM could provide accurate CD and OSNR
estimation results, and our LSA-RSA strategy could improve
the network throughput especially when the link state is
degraded.

REFERENCES

[1] H. Rastegarfar, L. A. Rusch, and A. Leon-Garcia, ‘‘Optical load-balancing
tradeoffs in wavelength-routing cloud data centers,’’ J. Opt. Commun.
Netw., vol. 7, no. 4, pp. 286–300, Mar. 2015.

[2] M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka,
‘‘Spectrum-efficient and scalable elastic optical path network: Architec-
ture, benefits, and enabling technologies,’’ IEEE Commun. Mag., vol. 47,
no. 11, pp. 66–73, Nov. 2009.

[3] I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and
E. Palkopoulou, ‘‘A tutorial on the flexible optical networking paradigm:
State of the art, trends, and research challenges,’’ Proc. IEEE, vol. 102,
no. 9, pp. 1317–1337, Sep. 2014.

[4] B. C. Chatterjee, N. Sarma, and E. Oki, ‘‘Routing and spectrum allocation
in elastic optical networks: A tutorial,’’ IEEE Commun. Surveys Tuts.,
vol. 17, no. 3, pp. 1776–1800, 3rd Quart., 2015.

[5] F. S. Abkenar and A. G. Rahbar, ‘‘Study and analysis of routing and spec-
trum allocation (RSA) and routing, modulation and spectrum allocation
(RMSA) algorithms in elastic optical networks (EONs),’’ Opt. Switching
Netw., vol. 23, no. 1, pp. 5–39, Jan. 2017.

[6] B. C. Chatterjee, S. Ba, and E. Oki, ‘‘Fragmentation problems andmanage-
ment approaches in elastic optical networks: A survey,’’ IEEE Commun.
Surveys Tuts., vol. 20, no. 1, pp. 183–210, 1st Quart., 2018.

[7] A. P. Vela, B. Shariati, M. Ruiz, F. Cugini, A. Castro, H. Lu, R. Proietti,
J. Comellas, P. Castoldi, S. J. B. Yoo, and L. Velasco, ‘‘Soft failure local-
ization during commissioning testing and lightpath operation,’’ J. Opt.
Commun. Netw., vol. 10, no. 1, pp. A27–A36, Nov. 2017.

[8] G. Chauvel, ‘‘Dispersion in optical fibers,’’ Anritsu, Kanagawa, Japan,
Tech. Rep. MBCDPMD-WP01-0801-A4, 2008.

[9] Y. Wang, ‘‘Study of the impact of nonlinearities on advanced modulation
formats in optical systems and networks,’’ M.S. thesis, Coll. Opt. Sci.,
Arizona Univ., Tucson, AZ, USA, 2017.

[10] N. Dong-Nhat, M. A. Elsherif, and A. Malekmohammadi, ‘‘Investigations
of high-speed optical transmission systems employing absolute added
correlative coding (AACC),’’ Opt. Fiber Technol., vol. 30, pp. 23–31,
Jul. 2016.

[11] Y. Pointurier, M. Brandt-Pearce, S. Subramaniam, and B. Xu, ‘‘Cross-
layer adaptive routing and wavelength assignment in all-optical networks,’’
IEEE J. Sel. Areas Commun., vol. 26, no. 6, pp. 32–44, Aug. 2008.

[12] I. Sartzetakis, K. Christodoulopoulos, and E. Varvarigos, ‘‘Cross-layer
adaptive elastic optical networks,’’ J. Opt. Commun. Netw., vol. 10, no. 2,
pp. A154–A164, Jan. 2018.

[13] X. Cao, N. Yoshikane, I. Popescu, T. Tsuritani, and I. Morita, ‘‘Software-
defined optical networks and network abstraction with functional ser-
vice design,’’ J. Opt. Commun. Netw., vol. 9, no. 4, pp. C65–C75,
Apr. 2017.

[14] Z. Dong, F. N. Khan, Q. Sui, K. Zhong, C. Lu, and A. P. T. Lau, ‘‘Optical
performance monitoring: A review of current and future technologies,’’
J. Lightw. Technol., vol. 34, no. 2, pp. 525–543, Jan. 15, 2016.

[15] M. S. Faruk, Y. Mori, and K. Kikuchi, ‘‘In-band estimation of optical
signal-to-noise ratio from equalized signals in digital coherent receivers,’’
IEEE Photon. J., vol. 6, no. 1, pp. 1–9, Feb. 2014.

[16] J. Mata, I. de Miguel, R. J. Durán, N. Merayo, S. K. Singh, A. Jukan, and
M. Chamania, ‘‘Artificial intelligence (AI) methods in optical networks:
A comprehensive survey,’’ Opt. Switching Netw., vol. 28, pp. 43–57,
Apr. 2018.

[17] F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. Zibar, M. Ruffini, and
M. Tornatore, ‘‘An overview on application of machine learning tech-
niques in optical networks,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 2,
pp. 1383–1408, 2nd Quart., 2019.

[18] S. Behera, J. George, and G. Das, ‘‘Effect of transmission impairments in
CO-OFDMbased elastic optical network design,’’Comput. Netw., vol. 144,
pp. 242–253, Oct. 2018.

[19] S. Behera, A. Deb, G. Das, and B. Mukherjee, ‘‘Impairment aware routing,
bit loading, and spectrum allocation in elastic optical networks,’’ J. Lightw.
Technol., vol. 37, no. 13, pp. 3009–3020, Jul. 1, 2019.

[20] A. Rosa, C. Cavdar, S. Carvalho, J. Costa, and L. Wosinska, ‘‘Spec-
trum allocation policy modeling for elastic optical networks,’’ in Proc.
High Capacity Opt. Netw. Emerg./Enabling Technol., Istanbul, Turkey,
Dec. 2012, p. 242.

[21] W. Fadini, B. C. Chatterjee, and E. Oki, ‘‘A subcarrier-slot partition
scheme with first-last fit spectrum allocation for elastic optical networks,’’
Comput. Netw., vol. 91, pp. 700–711, Nov. 2015.

[22] H.-L. Liu, L. Lv, Y. Chen, and C. Wei, ‘‘Fragmentation-avoiding spectrum
assignment strategy based on spectrum partition for elastic optical net-
works,’’ IEEE Photon. J., vol. 9, no. 5, pp. 1–13, Oct. 2017.

[23] X. Chen, J. Li, P. Zhu, R. Tang, Z. Chen, andY. He, ‘‘Fragmentation-aware
routing and spectrum allocation scheme based on distribution of traffic
bandwidth in elastic optical networks,’’ J. Opt. Commun. Netw., vol. 7,
no. 11, pp. 1064–1074, Oct. 2015.

45082 VOLUME 8, 2020



Y. Zhou et al.: Link State Aware Dynamic RSA Strategy in EONs

[24] D. Amar, E. Le Rouzic, N. Brochier, J.-L. Auge, C. Lepers, and N. Perrot,
‘‘Spectrum fragmentation issue in flexible optical networks: Analysis and
good practices,’’ Photonic Netw. Commun., vol. 29, no. 3, pp. 230–243,
Mar. 2015.

[25] D. Sharma and S. Kumar, ‘‘Evaluation of network blocking probability and
network utilization efficiency on proposed elastic optical network using
RSA algorithms,’’ J. Opt. Commun., to be published.

[26] D. Sharma and S. Kumar, ‘‘Network blocking probability-based evaluation
of proposed spectrum assignment strategy for a designed elastic optical
network link,’’ J. Opt., vol. 47, no. 4, pp. 496–503, Aug. 2018.

[27] H. Beyranvand and J. A. Salehi, ‘‘A quality-of-transmission aware
dynamic routing and spectrum assignment scheme for future elastic optical
networks,’’ J. Lightw. Technol., vol. 31, no. 18, pp. 3043–3054, Sep. 2013.

[28] B. C. Chatterjee and E. Oki, ‘‘Dispersion-adaptive first–last fit spectrum
allocation scheme for elastic optical networks,’’ IEEE Commun. Lett.,
vol. 20, no. 4, pp. 696–699, Apr. 2016.

[29] N. Dharmaweera, L. Yan, M. Karlsson, and E. Agrell, ‘‘An impairment-
aware resource allocation scheme for dynamic elastic optical networks,’’
inProc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, pp. 1–3.

[30] A. Fontinele, I. Santos, J. N. Neto, D. R. Campelo, and A. Soares,
‘‘An efficient IA-RMLSA algorithm for transparent elastic optical net-
works,’’ Comput. Netw., vol. 118, pp. 1–14, May 2017.

[31] J. Thrane, J. Wass, M. Piels, J. C. M. Diniz, R. Jones, and D. Zibar,
‘‘Machine learning techniques for optical performance monitoring from
directly detected PDM-QAM signals,’’ J. Lightw. Technol., vol. 35, no. 4,
pp. 868–875, Feb. 15, 2017.

[32] Y. Huang, Y. Chen, and J. Yu, ‘‘Optical performance monitoring of
56 Gbps optical PAM 4 signal using artificial neural networks,’’ in Proc.
Asia Commun. Photon. Conf., 2017, pp. 1–3.

[33] D. Wang, M. Zhang, J. Li, Z. Li, J. Li, C. Song, and X. Chen, ‘‘Intelligent
constellation diagram analyzer using convolutional neural network-based
deep learning,’’ Opt. Express, vol. 25, no. 15, pp. 17150–17166, Jul. 2017.

[34] L. Guesmi and M. Menif, ‘‘Modulation formats recognition technique
using artificial neural networks for radio over fiber systems,’’ in Proc. 17th
Int. Conf. Transparent Opt. Netw. (ICTON), Jul. 2015, pp. 1–4.

[35] X. Sun, S. Su, J. Wei, X. Guo, and X. Tan, ‘‘Monitoring of OSNR using an
improved binary particle swarm optimization and deep neural network in
coherent optical systems,’’ Photonics, vol. 6, no. 4, p. 111, Oct. 2019.

[36] T. Tanimura, T. Hoshida, T. Kato, S. Watanabe, and H. Morikawa, ‘‘Data-
analytics-based optical performance monitoring technique for optical
transport networks,’’ in Proc. Opt. Fiber Commun. Conf., Mar. 2018,
pp. 1–3.

[37] T. Tanimura, T. Hoshida, T. Kato, S. Watanabe, and H. Morikawa, ‘‘Con-
volutional neural network-based optical performance monitoring for
optical transport networks,’’ J. Opt. Commun. Netw., vol. 11, no. 1,
pp. A52–A59, Oct. 2018.

[38] T. Tanimura, T. Hoshida, T. Kato, and S. Watanabe, ‘‘OSNR estimation
providing self-confidence level as auxiliary output from neural networks,’’
J. Lightw. Technol., vol. 37, no. 7, pp. 1717–1723, Apr. 1, 2019.

[39] G. Ke, Q. Meng, T. Finley, T. Wang,W. Chen,W. Ma, Q. Ye, and T. Y. Liu,
‘‘LightGBM: A highly efficient gradient boosting decision tree,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2017, pp. 3146–3154.

[40] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting system,’’
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
(KDD), 2016, pp. 785–794.

[41] F. Da Ros, V. Cristofori, O. Ozolins, M. E. Chaibi, X. Pang, G. Jacobsen,
S. Popov, M. Galili, L. K. Oxenløwe, and C. Peucheret, ‘‘4-PAM
dispersion-uncompensated transmission with micro-ring resonator
enhanced 1.55-µm DML,’’ in Proc. Conf. Lasers Electro-Optics,
Oct. 2017, pp. 1–2.

[42] N. R. Draper and H. Smith, ‘‘The general regression situation,’’ in
Applied Regression Analysis, 3rd ed. New York, NY, USA: Wiley, 1998,
pp. 138–141.

[43] D. S. Yadav, S. Rana, and S. Prakash, ‘‘Hybrid connection algorithm: A
strategy for efficient restoration in WDM optical networks,’’ Opt. Fiber
Technol., vol. 16, no. 2, pp. 90–99, Mar. 2010.

[44] D. Batham, D. S. Yadav, and S. Prakash, ‘‘Least loaded and route frag-
mentation aware RSA strategies for elastic optical networks,’’ Opt. Fiber
Technol., vol. 39, pp. 95–108, Dec. 2017.

YANG ZHOU was born in 1993. He received the
B.S. degree in communication engineering from
the Qingdao University of Science and Technol-
ogy, in 2016. He is currently pursuing the Ph.D.
degree in communication and information systems
with Beijing Jiaotong University, Beijing, China.
His major study focuses on optical transport
networks and resource allocation.

QIANG SUN was born in 1959. He received
the M.S. degree in telecommunication automation
and the Ph.D. degree in electromagnetic field,
microwave technology, and microwave commu-
nication engineering from the Beijing University
of Posts and Telecommunications, in 1978 and
1986, respectively. He is currently a Professor
with the Railway Network Joint Laboratory, Insti-
tute of Cyber Security, Telecommunications, and
Information System, Beijing Jiaotong University,

Beijing, China. His major research interests include optical fiber communi-
cation, optical fiber sensor, and optical network technology.

SIYU LIN received the B.E. and Ph.D. degrees
in electronics engineering from Beijing Jiaotong
University, China, in 2007 and 2013, respec-
tively. From 2009 to 2010, he was an Exchange
Student with the Universidad Politénica de
Madrid,Madrid, Spain. From 2011 to 2012, hewas
a Visiting Student with the University of Victoria,
BC, Canada. Since 2016, he has been with Beijing
Jiaotong University, where he is currently an Asso-
ciate Professor. His main research interests include

wireless communication networks and railway mobile communications. He
received the First Class Award of Science and Technology in Railway,
in 2017. He has served as a Track Co-Chair of the IEEE VTC2020-Fall.

VOLUME 8, 2020 45083


	INTRODUCTION
	RELATED WORKS
	SYSTEM MODEL
	LINK STATE EVALUATION
	LINK STATE-AWARE ROUTING AND SPECTRUM ALLOCATION
	LINK STATE BASED CAPACITY CALCULATION
	LINK STATE-AWARE ROUTING ALGORITHM
	FRAGMENTATION REDUCING SPECTRUM ALLOCATION ALGORITHM

	SIMULATION AND ANALYSIS
	CD AND OSNR ESTIMATION RESULTS
	LSA-RSA PERFORMANCE

	CONCLUSION
	REFERENCES
	Biographies
	YANG ZHOU
	QIANG SUN
	SIYU LIN


