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ABSTRACT Intracranial artery stenosis is an important public health concern internationally, due to it being
one of the major causes of ischemic stroke. In this study, we aim to provide a computer-aided diagnosis
algorithm capable of automatically distinguishing between Internal Carotid Artery (ICA) stenosis and
normal to minimize the labor-intensiveness of stenosis detection. Using Time-of-Flight Magnetic Resonance
Angiography (TOF-MRA), a novel deep learning detection model via 3D Squeeze and Excitation Residual
Networks (SE-ResNet) is proposed. Pre-processing of TOF-MRA, data augmentation, training of 3D SE-
ResNet, and testing using patch-based and patient-based methods with cross-validation is described. The
proposed network using a database consisting of 50 normal cases (ICA-N) and 41 stenosis cases (ICA-
S) with grade level of above 30% was evaluated. All 41 ICA-S cases were categorized according to the
diameter (D_stenosis) of the artery at the site of the most severe stenosis by expert radiologists, whereas
percent stenosis was measured by Warfarin-Aspirin Symptomatic Intracranial Disease (WASID) method.
The proposed 3D SE-ResNet was further compared with more conventional networks including 3D ResNet
and 3D VGG. The results showed the capability to detect stenosis achieving overall Area Under the Curve
(AUC) and accuracies of 0.947 and 91.0% for patch-based and 0.884 and 81.0% for patient-based testing,
respectively. In addition, the proposed 3D SE-ResNet achieved better performance against conventional 3D
ResNet and 3D VGG with improvement rates of 0.053 and 0.095 for patch-based and 0.053 and 0.065 for
patient-based testing in terms of AUC, respectively.

INDEX TERMS Stenosis detection, magnetic resonance angiography, internal carotid artery, deep learning,
squeeze and excitation, residual networks.

I. INTRODUCTION
Intracranial atherosclerotic disease (ICAD) is one of the
most common fatal diseases worldwide occurring when brain
arteries become blocked with some deposits of waste such
as cholesterol and fat, leading to reduced blood flow in the
brain. ICAD has been closely related to the cause and risk
factors of ischemic stroke [1], [2]. Moreover, several studies
have demonstrated that internal carotid artery (ICA) stenosis
with grades of stenosis above 70% caused by atheroscle-
rosis could lead to ischemic cerebrovascular events [3], [4]
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thus prevention of major vascular events in patients with
symptomatic intracranial stenosis is important [5]. Time-
of-flight magnetic resonance angiography (TOF-MRA) is a
non-invasive imaging modality that is utilized for screening
the network of arteries in the brain, and hence for stenosis
diagnosis [6]–[8]. However, radiologists face challenges to
diagnose the stenosis from TOF-MRA due to the difficulty
of examining large amounts of brain images which is time-
consuming and fault-prone. An automated diagnostic tool for
stenosis identification from TOF-MRA is required to support
radiologists directly or via a second clinical assessment.

In previous studies, there have been many attempts to
use automated or semi-automated methods to detect stenosis
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either in the coronary or cerebral artery. Kang et al. devel-
oped an unsupervised computer method for coronary artery
stenosis detection using three-dimensional coronary com-
puted tomographic angiography (CTA) [9]. They achieved
sensitivity, specificity, and area under the curve (AUC) of
93%, 80%, and 0.87 for stenosis detection, respectively
(grade ≥ 25%). In [10], a multidetector method was utilized
to detect stenosis using 64-row coronary CTA. Stenosis detec-
tion performance showed sensitivity and specificity of 84%
and 92% per vessel-based and 94% and 83% per patient-
based, respectively (grade ≥ 70%). In 2018, Zreik et al.
proposed a multi-scale deep learning convolutional neural
network to detect stenosis at the left ventricle myocardium
in rest coronary CTA [11]. Detection performance showed an
accuracy of 71% and AUC of 0.74 per patient-based (grade≥
50%). However, there have been few studies applied for cere-
bral artery stenosis detection. For example, a retrospective
pilot trail method was proposed by Bucek et al. [12] for the
quantification of ICA stenosis using CTA. These studies were
done using CTA images. In clinical practice, the Warfarin-
aspirin symptomatic intracranial disease (WASID) method
[13], which manually calculates percent stenosis has been
used since 2000.

Deep learning (DL) has been used to solve various types
of imaging problems. Notably, various DL algorithms have
been widely used for image recognition to perform specific
tasks [14]. Recently, DL has been applied to several medical
imaging fields, including detection of malignant pulmonary
nodules [15], detection of cerebral aneurysms [16], segmen-
tation of skin lesions [17], MR artifact denoising [18], MR
image reconstruction [19]. A survey on DL in medical image
analysis has also been published [20]. In addition, several
studies have been developed to adapt 2D DL networks to 3D
medical analysis [21], and detection [22]. However, a diag-
nostic tool for cerebral stenosis detection via DL using TOF-
MRA has not been studied to the best of our knowledge.

Here, we developed a 3D detection DL algorithm for
detecting ICA stenosis from TOF-MRA. ResNets (Residual
Networks) have been used for many medical imaging appli-
cations [15], [20]. We propose a 3D Squeeze and Excitation
Residual Networks (SE-ResNet), which is inspired by 2D SE-
ResNet [21]. The 2D SE-ResNet, which combines residual
networks with Squeeze and Excitation Block (SE Block) is
one of the state-of-art networks for object recognition [21]. It
has shown that it can improve the representation of a network
by modeling the interdependencies between the channels of
its convolutional features. In this study, we train 3D SE-
ResNet with patched sub-volumes from the single-channel
TOF-MRA (160 × 160 × 96 × 1 to 64 × 64 × 64 × 1),
and testing was performed via patch-based and patient-based
methods. In addition, we compare the performance of our 3D
SE-ResNet against well-known methods (ResNet [22] and
VGGNet [23]) using the same dataset and under the same
experimental conditions.

The organization of this paper proceeds as follows. First,
we introduce the pre-processing of the utilized dataset.

TABLE 1. Data set characteristics.

TABLE 2. Data set characteristics.

Second, the details of the proposed 3D SE-ResNet method
are described. Then, we present and evaluate the results of
the proposed model for patch-based and patient-based tests
compared to the recent state-of-the-art approaches. Finally,
we show the conclusions of our study.

II. MATERIALS AND METHODS
A. OVERVIEW OF THE PROPOSED NETWORK
The overall schematic diagram of the proposed deep learning
3D SE-ResNet for stenosis detection is shown in Fig. 1. The
proposed work consists of four main stages: pre-processing,
data augmentation, training of 3D SE-ResNet, and testing
using patch-based and patient-based methods.

B. TOF-MRA DATASET
In this study, the TOF-MRA dataset of 91 patients were
acquired from Seoul National University Hospital, Repub-
lic of Korea using a 3.0-T MRI unit (MAGNETOM Verio,
Siemens Healthcare, Erlangen, Germany) with the following
imaging parameters: matrix size of 512× 416; field of view,
178× 220 mm; pixel spacing of 0.43 mm; slice thickness =
0.6 mm; number of slices = 124; repetition time 23 msec,
echo time 4.2 msec and multi-channel receivers. The dataset
characteristics are shown in Table 1 which involves 50 Inter-
nal Carotid Artery Normal (ICA-N) cases and 41 Internal
Carotid Artery Stenosis (ICA-S) ≥ 30% cases. The grade
was determined by the risk of stroke in patients with asymp-
tomatic internal carotid artery stenosis [2]. The characteristics
of the individual stenosis are shown in Table 2. It includes
a total of 51 stenoses from all patients. The stenosis was
categorized according to the diameter (D_stenosis) of the
artery at the site of the most severe stenosis [13], giving
7 cases with ≤ 1.5 mm, 18 cases in range 1.5 - 1.9 mm,
19 cases in range 2.0 - 2.4 mm, and 7 cases with ≥ 2.5 mm.
This categorization was done to show the capability of the
proposed 3D SE-ResNet in distinguishing between stenosis
of various diameters versus normal patches.
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FIGURE 1. Scheme of the proposed overall system shown with maximum intensity projection images.

To diagnose intracranial artery stenosis in the TOF image,
an expert radiologist (with over 10 years experience) eval-
uated the images using the following steps: 1) Transform
the TOF images into Maximum Intensity Projection (MIP)
image; 2) Discriminate stenosis in TOF image, which can be
found in theMIP image, to distinguish between irregularity or
artifact; 3) Use the Warfarin-Aspirin Symptomatic Intracra-
nial Disease (WASID) method [13] to calculate the percent of
stenosis. The procedure was further re-evaluated by another
radiologist.

C. DATA PREPROCESSING
Due to the different imaging situations (e.g. discrepancies of
pixel intensity and image location about the z-axes etc.), a
pre-processing was used to align the images in the database
similar to the method introduced in a previous study [24].
The following pre-processing steps were performed. First, 3D
TOF images were interpolated to 0.5 mm isotropic space, and
signal intensities were standardized (mean of zero and stan-
dard deviation of one). This step was done for data alignment,
converting the voxel sizes and intensities of each subject to
the same environment. Second, a slab of 48 mm thickness
was extracted using the middle cerebral artery (MCA) as
a reference point from 38 mm inferior to 10 mm superior
region. This region was selected since most TOF exams
include this region and thus can provide robustness to differ-
ent scanning conditions. Third, cropping of the outer regions
was performed to minimize the effects of non-ICA vascular
structures such as high signals from the skull or eye regions.
From this preprocessing, the final data were standardized

with a matrix size of 160 × 160 × 96, pixel resolution
of 0.5 mm, slice thickness of 0.5 mm.

D. PATCHED DATASET AND AUGMENTATION
The K-fold cross-validation (K=4) approach was used to
better estimate generalization errors under our finite dataset
[21]. The K-fold cross-validation strategy was used to divide
data into small groups (four groups in our case) and perform
the statistical analysis for each group independently. In each
time, one group (i.e., 25% of whole data) is utilized for
testing, while the remaining groups (i.e., 75%) are utilized
for training. This means that the training was performed four
times. This strategy ensures that every data gets to be in a test
exactly once. Table 3 shows the original training and testing
patches from our dataset [25]. Data augmentation to increase
the training data were performed using the following steps.

Each TOF-MRA was divided into 32 smaller patches for
each subject with a size of 64× 64× 64 pixels with a stride
of 32. This patch size was determined to create small patched
data that can fully contain stenosis regions. For patch-based
training and testing, only the patches which contained steno-
sis in their arteries, labeled by radiologists, were manually
selected from stenosis subject. By contrary, all patches from
TOF-MRA were utilized for the patient-based test.

In addition, we increased the number of stenosis patches
in patch-based training. Since the number of stenosis patches
was less than the number of normal patches, they were
augmented to 1,184 (or 1,248) patches similar to the num-
ber of normal patches in the corresponding fold test shown
in Table 3. The 3D patched data were augmented by shifting
about the x- and y- axes and flipped about the z- axes. Voxel
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TABLE 3. Internal carotid artery area characteristics throughout 4-fold cross validation.

was shifted within ±6.4 mm and flipped right to the left
by uniformly generate random variables within the defined
intervals [16], [26]. Since the size of stenosis was small, other
augmentation operations that contain interpolation were not
performed.

Finally, a uniform dataset of each fold were generated
using the above augmentation methods to train the proposed
stenosis detection network. Moreover, all training patches
were randomly mixed in order to avoid detection bias.

E. PROPOSED DEEP LEARNING DETECTION METHOD
As shown in Fig. 2(b), the Plain Block was built upon con-
volution operation using 3 × 3 × 3 filters. The outputs of a
convolution operator can be expressed as

We expanded 2D SE-ResNet [21] to our customized 3D
SE-ResNet as shown in Fig. 2. SE-Block [21] was proposed
to increase the sensitivity to informative features that can
be exploited by subsequent transformations and to suppress
less useful ones. Moreover, we fine-tuned the SE-ResNet
parameters (e.g. number of layers, filter sizes, etc.) for suit-
able performance in 3D. Our proposed 3D SE-ResNet scans
the ICA and determines the probability of stenosis using the
sigmoid function. The 3D SE-ResNet is the main module of
the architecture, while an explanation of submodules (Plain
Block, SE Block, and Residual Blocks) are described below.

1) PLAIN BLOCK

oc = BN(δ(kc∗I)) = BN(δ(
∑C ′

s=1
ksc ∗ i

s)). (1)

Here, the RELU operator (δ) and batch normalization (BN)
were used [27]. I = [i1, i2,. . . , iC

′

] refers to the input Plain
Block module and K = [k1, k2, . . . , kc] means the learned set
of filter kernels, where kc denotes the parameters of the c-th
filter.

2) SQUEEZE-AND-EXCITATION (SE) BLOCK
In our proposed model, SE-Block (Fig. 2(c)), which can be
performed in two operations, Squeeze, and Excitation was
designed to recalibrate contextual information [21].

Using global averaging pooling, the squeeze operation was
designed to squeeze global spatial information into a channel
descriptor [21]. A statistic S = [s1, s2, . . . , sC ] ∈RC was
generated by shrinking O through spatial dimensions X × Y

× Z, where the c-th element of s is calculated by:

sc=1/(X × Y × Z )
∑X

a=1

∑Y

b=1

∑Z

c=1
oc(a, b, c). (2)

The Excitation operation aims to fully capture channel-wise
dependencies using the information aggregated in the squeeze
operation. A fully connected neural network with two hidden
layers was used to meet the two criteria: learning a nonlinear
interaction and non-mutually exclusive relationship between
channels. The outputs of this fully connected neural network
S̃, where

S̃ = σ (W2δ (W1S)) . (3)

Here, σ refers to the sigmoid function, and W1∈R(C/r)×C

and W2∈RC×(C/r) refers to each fully connected layer with
a reduction ratio r (default set 16, [21]). Finally, the output
Õ = [õ1, õ2, . . . , õc] can be rewritten by channel-wise
multiplication between the scalar s̃c and feature map oc as
follows,

õc = s̃c�oc. (4)

3) RESIDUAL BLOCK
Residual Blocks [22] (Fig.2 (d)) were added consecutively to
generate a shortcut connection for efficient gradient propa-
gate training of the deep convolution neural network. The two
blocks generally used in Residual Blocks were implemented
(i.e Identity Block and Projection Block).

First, the output of the identity block can be written as

R = Õ+ I0. (5)

where, I0 is the input of the Residual Block module. when the
input and output are of the same dimensions.

Second, Projection Block [22] was used to match input and
output dimensions for dimension decrease. The shortcuts of
Projection Block go across feature maps with a stride of 2
in each Plain Block. Using linear projection Ws, Projection
Block output can be represented as

R = Õ+WsI0. (6)

4) 3D SE-ResNet
Based on the residual network [22], Plain block (Fig. 2(b))
reduces the internal covariance shift in the batch normaliza-
tion phase, and SE Block (Fig. 2(c)) recalibrate contextual
information in the squeeze phase and excitation phase. All
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FIGURE 2. (a) Scheme of the proposed overall system shown with maximum intensity projection images. The 6 × 6 × 6 or 3 × 3 × 3 in each
block refers to the 3D filter size, while 8, 16, 32, or 64 indicates the number of feature maps in each convolutional layer. (b) Plain block,
(c) SE block, (d) Residual Blocks.

global spatial information that went through Plain blocks,
identity blocks, and projection blocks is squeezed into a
channel descriptor by the global averaging pooling. At last,
the sigmoid function determines ICA stenosis or ICA normal.
Due to the 3D data complexity, the deeper network may
provide an overfitting problem. We experimentally tuned the
depth of the proposed 3D SE-ResNet according to the AUC.

F. TRAINING
The proposed 3D SE-ResNet was trained and tested utilizing
different shapes of stenosis and normal patches. The net-
work training was only performed utilizing the labeled patch-
based data. In this study, we randomly divided all TOF-MRA
3D patches into training and test sets with 80% and 20%
ratio, respectively. Of the training set, we randomly selected
10% of the data as a validation set in order to optimize
the proposed deep learning network. The data augmentation
including flipping and shifting processes were applied only to
the training data. As mentioned, we performed a k-fold cross-
validation strategy (k=4) for the network optimization and
overall evaluation.

Optimization was performed using Adam optimizer. The
initial learning rate was set to 0.001 and divided by a factor
of 10 for every 20 epochs. Our proposed 3D SE-ResNet was
trained with patched 3D TOF-MRA data for 50 epochs from
scratch, while parameters of the network were fine-tuned
during the training backpropagation phase.

The total learning time of each training fold took approx-
imately 30 hours for 50 epochs using a single NVIDIA
GeForce GTX 1080 TI GPU. This work was implemented
using Keras framework with TensorFlow backend, CUDA8,
and CUDNN5.1 on the operating system of Ubuntu 14.04.
The code is available at https://github.com/hjdata11/3D-
SEResNet.

G. TESTING
In this study, we performed two kinds of test evaluations;
patch-based test and patient-based test (Table 3). The patch-
based test was performed where the prediction of the pro-
posed network is based on individual patches compared
against the ground-truth diagnosis by the radiologists. This
determines the ability of the network to detect stenosis in
local regions. A threshold probability value was selected to
distinguish between stenosis versus normal. Second, we per-
formed patient-based test where the performance was based
on a per-subject evaluation. Here, the probabilities from the
patches with the top 15 probability values of a subject were
averaged and a threshold value was selected to determine
whether the subject had stenosis or not. The top 15 values
were experimentally chosen by investigating the AUC values
as a function of the number of patches (Fig. 3). As seen
in Fig. 3, the AUC value behaved asymptotically at a value
near 15, and further increasing the number of patches did not
enhance the AUC. As in the patient-based test, a threshold
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TABLE 4. Confusion matrices and performance of patch-based test throughout 4-fold cross validation.

FIGURE 3. Patient-based Test example. The AUC with respect to the
number of patches was investigated and the value when the AUC behave
asymptotically was selected.

value for the averaged probability was selected to distinguish
between stenosis versus normal.

H. EVALUATION METRICS
For objective measures, the confusion matrix and the
Receiver operator characteristic (ROC) were utilized [28].
Sensitivity and specificity values were determined from the
confusion matrix. In addition, the AUC of the ROC was
determined to measure the overall performance. Sensitivity
and specificity evaluation indices were used which is defined
as,

Sensitivity = (TP)/(TP+ FN ). (7)

Specificity = (TN )/(TN + FP). (8)

where, TP and FN represent the true positive and false neg-
ative, and TN and FP indicate the true negative and false
positive, respectively. The overall prediction accuracy was

computed as follows,

Overall accuracy = (TP+ TN)/(TP+ FN+ TN+ FP).

(9)

III. RESULTS
A. STENOSIS PROBABILITY
This section presents the stenosis detection performance of
our proposed 3D SE-ResNet. Fig. 4 shows examples of cases
for stenosis positive subjects. Fig. 4(a), (b), (c), and (d) show
the results related to patch-based test, whereas Fig. 4(A), (B),
(C), and (D) are for the patient-based test. These four exam-
ples represent differentDstenosis: 1.5mm, 1.7mm, 2.3mm, and
2.8mm for Fig. 4(a-A), (b-B), (c-C), and (d-D), respectively.
The resulting detection probabilities were: 0.99, 1.00, 0.69,
and 0.84 for patch-based examples in Fig. 4(a), (b), (c), and
(d); and the average of highest 15 probabilities were: 0.87,
0.77, 0.47, and 0.35 for patient-based examples in Fig. 4(A),
(B), (C), and (D).

B. RESULTS OF PATCH-BASED TEST
Results for the patch-based test for all four-fold test are
shown in Table 4 in terms of sensitivity, specificity, AUC, and
accuracy. At each fold test, a test dataset containing stenosis
and normal cases were used to evaluate our proposed 3D
SE-ResNet (refer to Table 3 for more details in numbers).
Overall, 1,741 patches were used as a testing set, which con-
tained 141 stenosis and 1,600 normal patches. The probability
threshold to distinguish between stenosis versus normal was
determined to be 0.015. The results show the robustness of
our 3D SE-ResNet on detecting the stenosis with an overall
average accuracy throughout four-fold tests of 91.0% in the
patch-based test. It is clearly seen that the stenosis cases were
correctly detected with an average of 81.0% in terms of sensi-
tivity, whereas the normal caseswere accurately detectedwith
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TABLE 5. Confusion matrices and performance of patient-based test throughout 4-fold cross validation.

FIGURE 4. Example cases for stenosis positive subjects. The resulting probabilities for patch-based result (a,b,c,d) and for patient-based
result (A,B,C,D). The four cases shown differ in the size of stenosis, which is shown by the maximum intensity projection images.

an average specificity of 91.0%. The results for the patch-
based test showed an overall average positive predictive value
(PPV) and negative predictive value (NPV) of 45.4% and
98.2%, respectively. The overall performance of our proposed
3D SE-ResNet showed the achievement of stenosis detection
with AUC of 0.947.

C. RESULTS OF PATIENT-BASED TEST
Results for the patient-based test are shown in Table 5. The
overall test dataset contained 91 patients which were divided
into 41 stenoses and 50 normal cases. The averaged prob-
ability threshold in differentiating stenosis vs normal was
experimentally determined to be 0.05. The results represent
the robustness of the ensemble approach to detect the stenosis

with an overall average accuracy of 81% through four-fold
tests in patient-based. It demonstrates that 34 stenosis patients
were precisely detected among 41 stenosis patients, whereas
40 out of 50 normal people were correctly detected. The
proposed work for patient-based test achieved an overall
average positive predictive value (PPV) of 77.3%, and neg-
ative predictive value (NPV) of 85.1%. The overall average
performance of our proposed 3D SE-ResNet showed AUC
of 0.884.

D. THE RECEIVER OPERATOR CHARACTERISTIC
PERFORMANCES OF 3D NETWORKS
Fig. 5 shows the overall AUCs of our model compared to 3D
ResNet and 3D VGG methods. There are 15 convolutional
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FIGURE 5. Overall area under the curves for (a) patch-based test and (b) patient-based test.

TABLE 6. Measurements in seconds of the training time per epoch and
test time per single patch.

layers, 4 max pooling layers and 1 dense layer in the 3D
VGG. To evaluate each model under the same conditions,
similar hyper-parameter optimization was determined for all
networks (i.e., 3D-VGG (15 convolutional, 4 max pooling,
1 fully connected), 3D-ResNet (17 convolutional, 1 max
pooling, 1 average pooling, 1 fully connected), and proposed
3D-ResNet (17 convolutional, 1 max pooling, 1 average pool-
ing, 15 fully connected)). All networks had approximately
800,000 training parameters. The motivation for adding the
SE block was to improve the performance of the diagnostic
ability compared to conventional 3D VGG or 3D ResNet.
Our detection model achieved an overall AUCs of 0.947 with
improvement rates of 0.053 and 0.095 compared to 3D
ResNet and 3DVGGmethods in the patch-based test, respec-
tively. Our 3D SE-ResNet also outperformed other networks
in the patient-based test with incremental rates of 0.053 and
0.065 compared to 3D ResNet and 3DVGGmethods, respec-
tively. These results indicate the capability and potential of
the proposed method.

IV. DISCUSSION
Our results show the potential of the proposed 3D SE-
ResNet in detecting the abnormalities of stenosis with high
accuracy and AUC. The 3D SE-ResNet network adaptively
generates global informative features and eliminates less use-
ful representations by recalibrating channel-wise informa-
tion through the convolutional layers. It can also be trained
with small patches. In this study, dataset were uniformly
distributed by applying data augmentation, and data augmen-
tation was imposed again during the training. Learning better

representations of the stenosis features of DL was improved
by these augmentation approaches as concluded in [29], [30].

The detection method seems feasible as an aid for clini-
cal usage since less than 1 second of processing time was
required to detect the potential stenosis in the TOF-MRA
volume. The training time per epoch and the test time per a
single patch for each of the TOF-MRA volumes are shown
in Table 6. It is seen that the proposed 3D SE-ResNet required
almost the same computation time compared to 3D ResNet
and 3D VGG methods even with the existing of Squeeze and
Excitation Block that contained more fully connected neural
network layers.

Our proposed 3D SE-ResNet outperformed one of themost
prominent deep learning approaches (i.e., 3D Resnet and 3D
VGG) on detection between stenosis and normal. To show the
feasibility and usefulness of our model, we conducted patch-
based test with small patches and the patient-based test with
the ensemble approach. In a previous study, discrimination
methods for stenosis [31] were non-automatic, whereas our
proposed network can make an automatic comprehensive
diagnosis of stenosis in ICA through the patch-based test
and the patient-based test. It was shown that patch-based
probability can estimate using the small matrix size (64 ×
64 × 64). Furthermore, patient-based probability can be
calculated within one subject and stenosis locations can be
extracted from the full TOF-MRA volume. Therefore, this
comprehensive judgment based on patch-based and patient-
based seems to be useful for radiologists as a second-party
evaluator.

In order to better understand the network’s function, Grad
Cam (Gradient-weighted Class Activation Mapping) [32]
was used which can provide visual explanations for deci-
sions and make them more transparent. Fig. 6 demonstrates
several Grad Cam maps for stenosis (Fig. 6(a)) and normal
(Fig. 6(b)). In the stenosis case, as seen, the Grad Cam map
is seen to correspond with the stenosis region. In the normal
case, the Grad Cammap of the normal case is seen to be more
dispersed than the stenosis case. These maps show that the
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FIGURE 6. Maximum intensity projection (MIP) of TOF-MRA images via gradient-weighted class activation mapping. (a) Stenosis case of
coronal and sagittal. (b) Normal case of coronal and sagittal.

FIGURE 7. False-negative cases for patch-based (a, b) and patient-based (A, B), which shown by maximum intensity projection images.

FIGURE 8. False-positive cases for patch-based (a, b) and patient-based (A, B), which shown by maximum intensity projection images.

network is adequately trained and that regions of importance
are being monitored by the 3D SE-ResNet.

The limitations of this work are as follows. Although
the proposed 3D SE-ResNet detection method outperformed
other deep learning approaches, it still needs improvement
in reducing false-negative and false-positive cases. Fig. 7(a,
b) represents the false-negative cases in the patch-based
test, whereas Fig. 7(A, B) shows false-negative cases in the
patient-based test. On the other hand, Fig. 8 shows the patch-
based test (a, b) and the patient-based test (A, B) that were
falsely predicted as positive. It is a very challenging task to
distinguish between stenosis and normal cases due to their
high similarity and irregularity and more data are needed
for improvement. In spite of the fact that conventional x-ray
digital subtraction angiography is a gold standard imaging
technique, it cannot be routinely used due to the risk, inconve-
nience, and cost [33], [34]. In opposite, in daily clinical prac-
tice, TOF MRA is a well-established technique for detecting
the stenosis of the intracranial arteries [6]–[8]. However, it is
prone to artifacts from signal saturation and off-resonance
near the skull base.

In the future, it would be worth studying the abilities to
detect small stenosis residing in the middle cerebral artery
(MCA) and/or the anterior cerebral artery (ACA) regions.
Moreover, in different modalities, Maximum Intensity Pro-
jection (MIP) images may increase the accuracy of the steno-
sis detection by showing various angles and generating a great
amount of training data. Therefore, MIP images could be
utilized to improve the detection performance of stenosis in
conjunction with TOF-MRA.

V. CONCLUSION
In this study, we presented a deep learning algorithm for
stenosis detection via the 3D SE-ResNet network. The pro-
posed 3D SE-ResNet utilized the Squeeze and Excitation
Block to compress the important information and rescale
features according to the importance, while Residual Block
prevents gradient vanishing problem by skip connection. As a
result, our model outperformed recent 3D deep learning VGG
and ResNet approaches in detecting stenosis of patch-based
and patient-based tests.
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