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ABSTRACT Surface defect detection is a critical task in product quality assurance for manufacturing
lines. The deep learning-based methods recently developed for defect detection are typically trained using
a supervised learning strategy and large defect sample sets. Conventional methods often require additional
pixel-level labeling or bounding boxes to predict the location of defects. However, the number of required
samples and the time-intensive annotation process limits the practical use of these algorithms. As such, this
study proposes a weakly supervised detection framework in which a CNNmodel is trained to identify surface
cracks in motor commutators. The model was trained using small subsets of defect samples (∼5–30) and
does not require a pre-trained network. This approach consists of localization and decision networks that
simultaneously predict both the location and probability of defects. A new loss function was also developed
to identify abnormal regions in a sample with accessible image-level labels. A collaboration learning strategy
was then applied to utilize the loss function and compensate for imbalances at the pixel level. Experimental
results using a small number of image-level training labels from a real industrial dataset exhibited a 99.5%
recognition accuracy, which is comparable to relevant methods using pixel-level labels.

INDEX TERMS Surface defect detection, quality control, weak supervision, convolutional neural network,
localization network.

I. INTRODUCTION
Surface defect detection, an essential task in manufacturing
production quality assurance, has historically been performed
manually. However, this approach is highly inefficient, sub-
jective, and time-consuming. As such, computer vision-based
inspection techniques have been developed in recent years to
assist with or even replace human intervention [1]–[3].

Conventional machine learning models rely on specific
vision inspection tasks acquired by analyzing and extracting
defect features manually. A decision is thenmade using either
rule-based experience or learning-based classifiers. Support
vector machines (SVMs), neural networks, and decision trees
all utilize this type of approach, in which system performance
depends heavily on the accurate representation of specific
feature types. However, modern manufacturing technology
requires product lines to be more robust, limiting the use
of conventional machine learning models that require long
development cycles to be adapted for different tasks.

The associate editor coordinating the review of this manuscript and
approving it for publication was Shagufta Henna.

In recent years, deep learning (DL)methods have been suc-
cessfully applied to a variety of image related tasks [4], [5].

These algorithms are more easily adapted to different prod-
ucts and they have produced accurate results when applied
to surface quality control [6]. Unlike conventional machine
learning, DL models can automatically learn features from
low-level data, eliminating the need for manual intervention.
However, the success of these algorithms depends heavily on
the labeled images used to train the effective deep network,
which must efficiently represent a broad range of features.
Furthermore, the localizability and interpretability of defects
must be considered.

Various approaches to representative feature collection
have been proposed in the literature, to compensate for a
lack of defect samples. This has included partitioning image
patches to augment samples [7], re-using pre-trained models
with transfer learning [8], [9], and using pixel-level labels
to increase sample quantities [10] in a supervised model.
For example, He et al. [11] developed a defect classification
model for steel surfaces using a semi-supervised network.
These methods have produced viable results but they also
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have specific limitations [7]. For example, identifying defect
regions by partition image patches can be time-consuming
in the forward process [8], [9]. Transfer learning is effective
but imposes restrictions on network structure design [10].
Pixel-level labels are highly precise but labor-intensive [11].
As such, we propose an effective method to predict the defect
regions with image-level labels.

The interpretation of defects is an indispensable task in
detection processes. It is typically conducted with visual
localization and has been attempted using a variety of algo-
rithms. Image patch partitioning is a highly accurate selec-
tion strategy, but is very difficult and time-consuming [7].
Object detection algorithms represent defective regions using
a recognition model, which is trained by an additional bound-
ing box label [12]. Semantic segmentation networks are
trained by sample labeling in pixel-level and segment defect
regions [10], [13]. However, both semantic segmentation
and object detection are limited by the required labeling
information.

This study proposes a novel framework for defect detec-
tion, one that consists of localization and decision networks.
The model was trained using weakly labeled image-level
samples, and considered defect detection to be an anomaly
detection problem. Unlike conventional models, a large num-
ber of defect images are not required and labels are not anno-
tated at the instance or pixel levels in an image. In addition,
our framework is robust for different network structures as it
does not include transfer learning. The primary contributions
of this methodology are as follows:

1) A new multi-task framework is proposed for surface
defect detection using weakly supervised learning(WSL),
which consists of localization and decision networks. This
approach avoids the need for large collections of defect-
labeled samples.

2) A visual localization and classification description is
developed for surface defects. The localization network is
trained using image-level labels and outputs a heat map of
potential defect locations. The output of the localization net-
work was added to the decision network to improve classifi-
cation performance.

3) A new WSL loss function is proposed for overcoming
the limitations of small pixel-annotated samples, which is
used to train the localization network with image-level labels.
A collaboration learning strategy is applied in the training
process to optimize the loss function and address pixel-level
data imbalances, in which defective regions are differentiated
from the background by the localization network.

4) After training with only approximately 5–30 defect
images samples, the model achieves accurate defect detection
without the use of a pre-trained network. Successful localiza-
tion and decision results are demonstrated using a real-world
industrial dataset.

The remainder of this paper is organized as follows.
Section II examines previous research in automated machine
vision inspection. Section III describes the proposed frame-
work in detail, including a new WSL loss function and

learning process. Section IV presents experimental results
and compares the proposed model to conventional tech-
niques. Section V presents our conclusions.

II. RELATED WORK
In conventional machine learning algorithms, the classifi-
cation of individual pixels relies on the representation of
manually identified features. Each pixel is classified as a
defect or non-defect, based on features calculated from neigh-
boring pixels. The latest research work [14] reports that
a novel probabilistic salience framework is based on two
saliency features (absolute intensity deviation and local inten-
sity aggregation) and is proposed to shift the intensity of each
pixel according to its saliency during its iterative process.
Common features involve geometric and statistical descrip-
tors (i.e., length, width, area, mean, and standard deviation),
as well as localized wavelet decomposition [15]. Machine
learning algorithms such as SVM [16], fuzzy logic [17], and
random forest [2] have also been used, but have mostly been
outperformed by deep-learning models based on computer
vision techniques [18], [19].

The related task of automated surface inspection (ASI)
has also been reported in previous studies, in which sur-
face defects are generally described as local anomalies in
homogeneous textures. ASI algorithms can be divided into
four categories, depending on the properties of the surface
texture [7]. These categories are structural models [20], [21],
statistical methods [22], filter-based approaches [23], and
model-based techniques [24].

Deep learning (DL) has recently become the most influ-
ential technology in computer vision and pattern recognition
problems. Unprecedented achievements in image classifica-
tion have been produced by convolutional neural networks
(CNNs) such as AlexNet [25], VGG [26], ResNet [27], and
DenseNet [28], which have outperformed conventional clas-
sification models like SVM. As such, DL was applied to
surface defect detection after AlexNet was proposed [25].
For instance, Meier et al. [29] used a CNN for supervised
steel defect classification. However, their work was limited
to a shallow network in which ReLU and batch normalization
operations were not included. Ferreira et al. [30] used a CNN
to extract intrinsic stone patterns in small image patches
during granite tile classification. Chen et al. proposed a novel
vision-based method that used a deep CNN in the detection of
fastener defects [31]. Martelli et al. used a DL-based spatio-
temporal image analysis system to classify defects in metallic
gearboxes [32]. However, these techniques are either based
on image classification using DL models or depend heavily
on annotated data acquired manually, which cannot predict
defective regions using only image-level labeling.

Collecting and labeling large datasets for defect inspec-
tion is difficult in industrial environments and several tech-
niques have been proposed to address this issue [7]–[11].
Ren et al. [7] developed a generic approach that requires
partitioning of image patches. A classifier is then devel-
oped from these image patch features, which are transferred
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from a pre-trained DL network. In the defect segmentation
stage, the trained classifier iterates over all overlapping image
blocks to output the classification probability for every pixel
in an input image.

Transfer learning can also reduce training data require-
ments by transferring pre-trained model weights [8], [9].
Ferguson et al. [8] applied transfer learning to the CNN-
based inspection of casting defects in X-ray images. This
model was first trained using two large public image datasets
and then optimized with a relatively small casting dataset.
Transfer learning was also applied to the online training
and classification of Mura defects, in which AlexNet was
trained using the ImageNet LSVRC-2012 dataset and used as
a feature extractor [9]. Learned features were then transferred
from the pre-trained AlexNet to the networkmodel. However,
models pre-trained with non-industrial datasets have limited
adaptability in complex industrial environments.

Tabernik et al. [10] proposed an anomaly detection algo-
rithm based on semantic segmentation frames. This model
was trained with pixel-level labels to effectively augment the
capacity of the training dataset, but was only able to learn
25–30 defective training images. However, acquiring pixel-
level labels is both time- and labor-intensive. He et al. [11]
proposed a semi-surprised defect classification approach to
compensate for a lack of labeled samples in supervised
training. This approach used generative adversarial networks
(GANs) to generate large quantities of unlabeled data. Both
labeled and unlabeled samples have been used to train classi-
fiers with different learning strategies, but have been unable
to predict defect regions.

Defect localization, a necessary component of detection
tasks, has been achieved using three different techniques in
previous studies [6], [10], [12], [13]. Ren et al. [7] designed
a patch classifier that was trained using features transferred
from Decaf. The resulting classifier output the probability of
an input image belonging to a given class. The primary issue
with this technique is determining how to optimally select
patch sizes. Defect localization has also been approached
as a type of object detection task [12]. Jiangyun et al. used
the You Only Look Once (YOLO) convolutional network,
first introduced for object detection, to automatically extract
multi-scale features from surface defects and inspect image
regions for steal strips. However, this model required addi-
tional bounding boxes to be labeled in the training process.
Defect localization has also been pursued as a semantic
segmentation task. For example, Tabernik et al. [10] devel-
oped a segmentation network for performing pixel-based
localization of surface defects. In this model, each pixel
was considered an individual training sample to increase the
effective size of the training data and to avoid overfitting.
Lin et al. [33] used a class activation map (CAM) to localize
defect regions in the construction of a CNN model for LED
chip inspection. The predicted classification was mapped
back to the previous convolution layer and weighted to gener-
ate the CAM (with higher weighted values indicating object
location).

The present study represents the first weakly supervised
multi-task approach for surface-defect detection of indus-
trial products, specifically surface cracks in motor commu-
tators. The proposed technique differs from conventional
defect detection models based on image classification using
DL [25]–[30], image patch partitioning [7], object detec-
tion [12], and semi-supervised learning [11]. In contrast,
it is similar to the semantic segmentation developed by
Tabernik et al., in which a supervised learning strategy was
used to train a segmentation network with pixel-level labels.
However, our algorithm implements a weakly supervised
learning strategy (an uncertain supervision) to train the local-
ization network with accessible image-level labels. Unlike
previous studies [11], the resulting model directly outputs
defect localization. This approach is also similar to class
activation mapping, since a heat map was used as a visual
interpretation of classification results, which predicted object
location [33]. However, unlike a CAM, our model outputs
defect location probabilities using weakly supervised learn-
ing. The decision network also combines results from the
location network, improving classification results.

III. PROPOSED FRAMEWORK
The automated localization and classification of surface
defects is a complex task. As such, this study proposes a
novel weakly supervised defect detection algorithm using a
CNN. Specifically, the methodology focuses on surface crack
detection in motor commutators (see FIGURE 1). In this
study, weakly supervised learning was investigated in multi-
task frames, consisting of both localization and decision net-
works. The decision network determines whether defects are
present in an image and the localization network identifies
corresponding defect regions.

A novel loss function is also proposed to train the local-
ization network to recognize the defect regions using only
image-level labeling. This model was trained in three stages,
applied sequentially to the localization and decision net-
works, followed by a fine-tuning step. Every pixel was con-
sidered an individual sample when training the localization
network, to augment effective sample capacity and to improve
the pre-training model. The proposed architecture trains from
scratch using image-level labels to predict both the probabil-
ity and position of defects, thereby improving performance.

As shown in FIGURE 1, this framework consists of three
parts: shared layers and two sub-networks, as well as a loca-
tion network (LNet) and a decision network (DNet). The
shared layer extracts ample representation features from the
input image, to serve as inputs for the two sub-networks.
The LNet then takes output features from the shared layer as
inputs and outputs a single-channel image (called a heat map)
to predict defect locations. Each pixel in the heat map exhibits
a value between 0 and 1, which indicates the probability that
a defect exists at the corresponding location in the original
image. The DNet receives output characteristics from the
shared layer and the LNet outputs a heat map that predicts
the probability of defects being present at specific locations.
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FIGURE 1. The proposed framework.

The output of the DNet also has a value between 0 and 1,
indicating the probability of a defect existing somewhere in
the image. The proposed network model can simultaneously
predict whether defects are present in the input image, as well
as the location of the defects. Each of these steps is discussed
in detail below.

A. NETWORK STRUCTURE DESIGN
1) SHARED LAYERS
The shared layer is based on a VGG [26] architecture and
consists of six convolutional layers and three maximum pool-
ing layers. Batch normalization and non-linear ReLU layers
were included after each convolutional layer, which used a
3 × 3 kernel with a step size of 1 to capture small targets
(defects) in high-resolution images. The pooling layers used
2 × 2 kernels, which were more likely to capture image
changes and provide local information differences. The step
size in each maximum pooling layer was set to 2, thereby
reducing the runtime but also the resolution. The number of
channels in each convolutional layer was gradually increased
to maintain the size of the parameter space. As shown in
FIGURE 1, the shared layer output featured 128 channels,
each of which was 1/64 the size of the input image due to the
maximum pooling layers (see Table 1).

2) LNet
LNet input was the output feature in the shared layers. It con-
sisted of four convolutional layers with 64 channels and a
5 × 5 kernel in the first two layers. The third layer included
512 channels and a 15 × 15 kernel. The larger convolu-
tional kernel was used to increase the size of the network

TABLE 1. The network architecture and shared layer parameters.

TABLE 2. LNet architecture and parameters.

receptive field. The last convolutional layer included only a
single channel with a 1× 1 kernel, which can be regarded as a
linear transformation. A batch normalization layer and a non-
linear ReLU utilized a non-linear sigmoid activation function,
which mapped the output range to 0 to 1. All convolutional
operations in the LNet were performed in a single step and no
pooling layer was included, leading to variable output sizes.
Detailed LNet parameters are shown in Table 2. The output
heat map is a single-channel image whose width and height
are one-eighth the size of the original image, with each pixel
corresponding to an 8 × 8 region. Values closer to 1 indicate
higher defect probabilities. This LNet output was used as the
input to the DNet.
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TABLE 3. DNet architecture and parameters.

FIGURE 2. The residual spatial attention module.

3) DNet
Adetailed list of structural parameters for the binary DNet are
shown in Table 3. The front end is a residual spatial attention
module (RSAM), used to improve DNet performance by
weighting areas identified by the LNet (see FIGURE 2b).
FIGURE 2a) shows the residual ResNet [27] module used
to improve deep neural network performance by fitting the
residuals. In contrast, the RSAM included attention mask
input in the forward propagation step. In this process, each
channel of the input feature is multiplied by the attention-
weighted mask, causing the DNet to focus more attention on
heavily weighted areas. The RSAM also adds feature tensors
before and after the input mask in the next layer, to prevent
a lack of information after attention weighting. As such,
the output from shared layers was used as input features and
the output of the LNet was used as the attentionmask, causing
the DNet to focus more on areas identified by the LNet. Four
convolutional layers (with 64, 64, 128, and 256 channels)
and three maximum pooling layers were stacked after the
RSAM. Batch normalized and non-linear ReLU layers were
included after each convolutional layer and each maximum
pooling layer had a step size of 2, which reduced the height
and width of the feature map by a factor of 2. Output features
inthe shared layers were transformed into 256 channels via
the RSAM, stacked convolutional layers, and themax pooling
layer. The size of the final output feature was 1/64 of the
original input feature. This DNet structure and corresponding
parameters are shown in Table 3.

The back end of the DNet consisted of a global average
pooling and two fully connected layers with 266 nodes and

one node, respectively. The global average pooling eliminates
spatial information in the feature map and produces fixed-
length vectors, reducing the need to maintain a constant
input image size. These 256-channel convolution features
were transformed into vectors of length 256 using the global
average pooling. The output LNet heat map was then trans-
formed, using the global average pooling, into a vector of
length 1. These two vectors were then connected to form a
new 266-dimensional vector to be used as input to the fully
connected layer, in which the last node is a neuron output of 1.
A value between 0 and 1 represents the probability of a defect
existing anywhere in the image, output through the sigmoid
activation function.

B. WEAKLY SUPERVISED LOSS
While pixel labels for non-defective samples can be acquired
directly in industrial settings, defect labels for defective sam-
ples must be added manually, which is cost-prohibitive and
time-consuming. In this study, images containing defects are
referred to as positive samples and non-defective images are
referred to as negative samples.

In order to avoid the tedious process of rectangular frame
labeling (or pixel labeling), we propose a new weakly super-
vised objective function Lossweak , which includes Losspositive
and Lossnegative for training the LNet with only image-level
labels. Different optimization targets in the objective function
are used for positive and negative samples during training.
Losspositive and Lossnegative guide the network in learning how
to identify defective and non-defective pixels in the sample,
respectively. Table 4 introduces the variables and descriptions
used in the paper.

TABLE 4. Variable representations and descriptions.

The label for the input sample X is represented by y (X),
where a value of 1 indicates the presence of defective pixels
in the image (positive samples), 0 indicates the absence of
defective pixels (negative samples), and 8 is the network
learning weights. p(y|(X ,8)) represents the predicted prob-
ability that a defect is present in the input image. In binary
image classification tasks, objective functions are commonly
used as binary classification cross-entropy loss functions:

H [y(X ), p(y(X ,8)] = y(X )log(p(y|X ,8))

+ (1−y(X)) log (1−p (y |X,8)) . (1)

Here, χ represents the pixel set for the input sample X;
h and w represent the height and width of the image, respec-
tively; and y(xi) represents the label of pixel xi in the image.
Values of 1 and 0 indicate the pixel does and does not belong
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to a defective area, respectively. The term q(y|(xi,8)) rep-
resents the predicted probability that pixel xi belongs to the
defective group. The cross entropy-based objective function
in the foreground (defect) segmentation task is defined for
positive samples as:

Hχ [y(x),q(y |x,8) ] = −
1
h∗w

∑N

i=1

[
y(xi) log (q(y |xi,8) )

+ (1− y(xi)) log (1− q (y |xi,8))
]
.

(2)

When the input image is a positive sample (y(x) = 1),
pixels are divided into defective and non-defective categories.
The expected entropy is minimized when all pixels in an
input image are determined to be either defective or non-
defective. Entropy increases as the LNet outputs a heat map
with an increasingly uniform distribution of both defective
and non-defective pixels. As such, we converted the positive
sample foreground (defective pixel) segmentation problem
into an unsupervised maximum entropy optimization prob-
lem, thereby avoiding the use of defective labels and includ-
ing only image-level labels. The expected maximum entropy
function Losspositive for all pixels in a positive sample is
defined as:

Losspositive
= −Hχ [q(y |x,8) ] ∗y (X)

= −H
[

1
h∗w

∑N

i=1
[q(y |xi,8) ]

]
∗y(X)

= −H [Q(y |X,8) ] ∗y(X)

=
[
Q(y |X,8) log (Q(y |X,8) )

+ (1−Q(y |X,8) )(log (1−Q(y |X,8) ))
]
∗y(X). (3)

Here Q(y |X,8) = 1
h∗w

∑N
i=1 q(y |xi,8) and y(X) is 1 when

the input is a positive sample.
Cross-entropy loss was used to optimize negative samples

but the two objective functions were not on the same scale.
In this case, the larger objective function will dominate the
direction of the gradient. Since non-defective samples satisfy
y(X) = 0, p(xi) = y(X) = 0,∀xi ∈ Êχ (and the expectation
value of all pixels is 0), the problem of optimizing all pixels
can be converted into a problem of optimizing expectation
values. The two objective functions are then on the same order
of magnitude and the cross-entropy function for negative
samples can be rewritten as:

Lossnegative = Hχ [y(x),q(y |x,8) ]

=

(
y (x) log

(
1
h∗w

∑N

i=1
q(y|xi,8)

)
+ (1− y (x)) ∗ log(
1−

1
h∗w

∑N

i=1
q(y|xi,8)

))
∗ (1− y (x))

= − log (1− Q(y |X,8) ) ∗ (1− y(X))2 , (4)

where y(X) = 0 when the input is a negative sample.

The LNet optimization objective function can then be
defined as:

Lossweak = α∗Lossnegative + Losspositive

= α∗
[
− log

(
1−Q(y |X,8) 2

)
∗ (1−y(X))

]
∗y(X)

+Q(y |X,8) log (Q(y |X,8) )

+ (1− Q(y |X,8) ) (log (1− Q(y |X,8) )) , (5)

where α is a collaborative learning factor that controls
the learning speed of both non-defective and defective
samples (α > 0).

C. LEARNING
We propose a three-stage collaborative learning strategy for
training the LNet and a shared network using the weakly
supervised loss function proposed in (6). Networkweights are
then fixed and theDNet is trained using the binary image clas-
sification cross-entropy loss function of (2). Finally, the entire
network is fine-tuned using objective functions. This three-
stage learning approach trains the network to identify defec-
tive and non-defective pixels using only image-level labels,
thereby improving performance for small data sets.

Since positive and negative samples are unbalanced in the
dataset, the distribution of non-defective and defective pixels
is also unbalanced. This complicates network convergence
during random sampling of training data. A novel sampling
process was developed to compensate for image-level imbal-
ances and to alleviate this issue. During the learning process,
the batch size was set to one and defective and non-defective
samples were alternately trained to ensure that images of the
same category did not appear in adjacent positions. A training
step that includes both a positive and negative sample is
defined as an iteration. Meanwhile, a collaborative learning
strategy was implemented during LNet training with weakly
supervised loss, which effectively resolved imbalances at the
pixel level.

1) LNet COLLABORATIVE LEARNING
The weak supervision loss function proposed in (6) was used
to identify defective regions with image-level labels, in which
Lossnegative and Losspositive controlled the learning of non-
defective and defective pixel features. Since the distribution
of pixels in positive samples was unbalanced, the collabo-
rative learning factor α in (6) controlled the learning speed
for both sample types. As defective areas in positive samples
were typically small, α was often set to a number greater
than 1. During training, α was initialized with a constant
(αinit) and updated after every n iterations during the total N
iterations. The updated value at step i is given by:

αi = αinit∗
cos (i/k∗2π)+ 3

4
(6)

where k is the total number of updates: k = round(N/n),
i ≤ k .
As shown in FIGURE 3, the value of α first decreased and

then increased, reaching a minimum value of αinit/2. In the
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FIGURE 3. Variations in α during training the LNet.

early training stages, α is large and Lossnegative dominates,
which biases the network towards non-defective pixels in the
learning process. In the middle stages, α is relatively small
and the influence of Losspositive gradually increases as the
network predicts defective pixels that differ from the back-
background. In the latter stages, α gradually increases and
the influence of Lossnegative also increases to prevent the
background from being incorrectly identified as a defective
pixel.

Algorithm 1 LNet Collaborative Training

Input: dataset D = {xi}Ni=1, y (xi)∈ [0, 1]
Initialization: the number of steps N, the model 8, the

collaborative factor α, the α update cycle n, and the
learning rate lr.

For step = 1, 2, . . . ,N do:
If step % n = 0:

i = step/n; k = round(N/n)
α← Eq. (6) with i and k

← sample a positive image from D
Train the model to minimize Eq. (5) and update 8
with X
← sample a negative image from D
Train the model to minimize Eq. (5) and update 8
with X

End for

During the optimization process, Losspositive and
Lossnegative work collaboratively in the objective function
to differentiate between defective and non-defective pixels.
Weakly supervised training enables the LNet to locate defects
and allows shared layers to acquire suitable initialization
parameters to facilitate subsequent training. Equation (6)
was used to train the shared network and LNet cooper-
atively, the specific implementation of which is shown
in Algorithm 1.

2) DNet LEARNING AND NETWORK FINE-TUNING
Subsequent steps included training the DNet. Network
weights for the shared layers and LNet were then held
constant and the cross-entropy loss in (2) was used as the
objective function to optimize the DNet. Once training was
completed, the DNet could accurately predict the probability
of defects in an image. Finally, Equations. (2) and (6) were
combined to train the entire network using a lower learning
rate. No network layers were frozen during this process in
order to fine-tune the entire network.

FIGURE 4. Sample from the KolektorSDD dataset.

IV. EXPERIMENTAL VALIDATION
A. DATASET DESCRIPTION
The KolektorSDD dataset (http://www.vicos.si/ Downloads/
KolektorSDD) consists of labeled surface crack images on
plastics electronic commutators, as shown in FIGURE 4.
This set contains 50 commutator samples, each with ∼8 sur-
faces, totaling 399 pictures. These data were acquired in an
industrial environment to ensure high- quality images, with a
resolution of 1408 × 512 pixels. Among of these, 52 exhibit
clearly visible defects and serve as positive samples. The
remaining 347 images are defect-free negative samples. The
first row in FIGURE 4(a) contains defect-free negative sam-
ples and the second row contains positive samples with
defects. Each image is labeled at the pixel level. The weakly
supervised loss function proposed in this study does not
require the use of pixel-level labeling, which is included only
for a visual comparison with the positioning results.

B. PERFORMANCE METRICS
In this study, surface defect detection is treated as a binary
image classification problem. The primary purpose is to clas-
sify images into two categories: positive (with defects) and
negative (without defects). Since pixel-level positioning is
not important for defect detection, the LNet only provides
visualization results. As such, LNet positioning accuracy
was not evaluated, only picture classification errors. LNet
visualization results were output as interpretation results for
network discrimination.
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Three-fold cross validation was used to ensure that the
same picture did not simultaneously appear in the training
and testing sets. Average precision (AP) and the number of
false call samples were used to assess classification accuracy.
AP is determined using the calculated area under the
precision-recall curve, making it a precise representation of
comprehensive model performance for different thresholds,
particularly when the dataset contains large quantities of neg-
ative (non-defective) samples. False positive (FP) represents
negative samples that weremisreported as positive (defective)
samples and false negative (FN) represents positive samples
that were misreported as negative (non-defective) samples.
The TP, FP, TN, and FN values reported below were cal-
culated under the best F-measure. The F-measure metric is
defined as:

F =
(γ 2
+ 1)∗P∗R

γ 2∗P+ R
, (7)

where P and R are respectively the precision and recall:

P =
TP

TP+ FP
, (8)

R =
TP

TP+ FN
(9)

In this study, γ was set to 1 to utilize the most common
F1-measure.

C. IMPLEMENTATION
Since the weakly supervised objective functions were not
strongly constrained to each pixel, the network occasion-
ally classified the image boundary as anomalous when the
convolution padding consisted of null values. Therefore, all
convolution padding used a mirror mode in shared LNet
layers and a stochastic gradient descent (SGD) optimizer was
used in all the experiments. Training a pair of positive and
negative samples constituted a single iteration.

The first step involved training the LNet and shared layers
using the supervised loss proposed in (6). The learning rate
was set to 0.1 and the collaborative learning factor α in
the objective function was initialized to 8. This value var-
ied periodically, according to (7), being updated after every
30 iterations. After 750 iterations, the defect location was
determined by the output heat map.

The second step included training the DNet. After LNet
training, the shared layers and LNet weights were frozen and
the DNet weights were optimized. The initial learning rate
was set to 0.01 and the total number of iterations was 1200.
After 600 iterations, the learning rate was reduced to 0.001.
After training, the DNet output the probability of defects
existing in the input image.

Finally, Equations. (2) and (6) were used to jointly fine-
tune the network, setting the learning rate to 0.001 and the
number of iterations to 300. During this process, the col-
laborative learning factor α was fixed at its initial value
of 8. Once joint training was completed, this framework
achieved a simultaneous prediction of defect positions and

existence probability. The following section evaluates DNet
performance under different conditions. The network was
constructed using the PyTorch machine learning library
developed by Facebook’ AI Research Lab. All simulations
were conducted using a PC with an Intel Core i7-7820X CPU
running Windows 10, two GTX1080Ti GPUs (total 22 GB),
and 32.0 GB of RAM.

D. EVALUATION OF DNet PERFORMANCE FOR
DIFFERENT CONFIGURATION GROUPS
The primary DNet parameter configurations included: (i) the
number of unique defect samples, (ii) freezing/not freezing
shared layers and LNet weights, and (iii) randomly rotating
training images by 0◦, 90◦, 180◦, and 270◦. The proposed
methodwas evaluated using experimental results for differing
quantities of defective samples, and proved to be robust.
Selectively frozen and non-frozen DNet weights assisted
in evaluating the effects of LNet training on final decision
results. Finally, the impact of random rotations on network
discrimination was evaluated, as shown in FIGURE 5.

FIGURE 5. Classification results using the proposed model, applied to the
KolektorSDD set. The average precision (AP) and number of error
samples (FC) were determined with different parameters.

The figure displays detailed results using different color-
labeled bar charts, where frozen and non-frozen weights are
indicated as orange and green, respectively. The top and bot-
tom groups show results with and without random rotations
made during training, respectively. The left group shows the
average accuracy under all experimental conditions and the
right group shows the number of error samples. These results
indicate that only one negative sample was detected as a
positive sample (with frozen weights, no random rotations,
and 30 positive samples). This corresponds to an optimal AP
of 99.5%. The effect of a single learning configuration was
evaluated by observing changes in the average performance
for each specific setting parameter.
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TABLE 5. Average performance using different training sets.

FIGURE 5 also suggests the proposed method is not sensi-
tive to the number of defect samples, exhibiting strong robust-
ness. Even with only five defective samples, the AP value
reached 97.96%. The highest F-measure occurred when only
three samples were misclassified, two of which were FPs and
one was a FN. Random rotation did not result in significant
performance increases (as expected), but had a detrimental
effect on identification results. As shown in Table 5, rotating
the image during training caused the average performance to
decrease by 2.01%. FIGURE 5 indicates that frozen shared
layers and LNet weights led to significantly better results.
As seen in Table 5, for the case of frozen weights, the evalu-
ation index AP increased by an average of 0.76%. This indi-
cates that freezing weights can improve network performance
for small sample sets.

FIGURE 6. LNet output for various training iteration times. The images
from left to right show data samples, pixel labels, and output results after
30, 120, 240, 360, 480, 600, and 720 iterations. Also shown are (a) the
original image, (b) G.T., (c) output 1, (d) output 2, (e) output 3,
(f) output 4, (g) output 5, (h) output 6, and (i) output 7.

E. VISUALIZATION OF THE COLLABORATIVE
LEARNING PROCESS
The LNet identified defect locations by visualizing inter-
mediate results during different periods of the collaborative
learning process. The first and second columns in FIGURE 6
show sample input images and pixel labels, respectively.
Columns 3–9 show sequential LNet results after 30, 120,
240, 360, 480, 600, and 720 iterations. Results in the third

column indicate that prediction results were poor after 30 iter-
ations, with a large portion of the background area predicted
to be defective. In the early training stages, α is relatively
large and Losspositive dominates the loss function, which
biases the network toward non-defective pixels during the
learning process. Columns 3–5 demonstrate gradual classi-
fication improvements as all pixels are non-defective after
240 iterations. After additional training, α becomes relatively
small, the influence of the loss function on positive samples
gradually increases, and the network begins to dis- tinguish
defective pixels from the background in columns 5–7. In the
latter training stages, α gradually increases and the effect of
Lossnegative increases to prevent the background from being
falsely classified as defective. Columns 7–9 indicate that once
training is completed, the LNet can accurately predict defect
locations. However, due to the width of the CNN reception
field, the region around the defect was also identified as
defective during the optimization process. This caused some
blurring on the edges of defective regions.

F. LNet CONTRIBUTIONS
DNet results were evaluated with and without LNet training,
as an indicator of LNet performance. Network and shared
layer weights were frozen during LNet training. The DNet
was trained directly when the LNet was not trained and AP
was used as an evaluation indicator in related experiments.
In addition, FPs were included as a supplemental evaluation
index with a recall rate of 100%. The loss risk for FPs
is much smaller than that of FNs in industrial production
environments, which is indicative of the number of manual
rechecks required to achieve the desired accuracy.

FIGURE 7. Results produced with and without LNet optimization. Output
was evaluated using: (a) average precision (AP) and (b) the number of
error samples at 100% recall.

The contribution of the LNet to the final results was eval-
uated when the defect sample set was relatively small. The
number of positive (defective) samples in the training set
was 5, 6, 7, 8,9, and 10 in the experimental configuration,
the results of which are shown in FIGURE 7. The line chart
on the left depicts changes in AP with and without LNet
training (with trends represented by the red and black lines,
respectively). As seen in FIGURE 7(a), the red curve is
entirely above the black curve, indicating that AP was signif-
icantly improved by LNet training. With only 5–10 defective
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TABLE 6. A comparison of conventional algorithms using the KolektorSDD dataset.

samples, the tortuosity of the black curve is not pronounced,
while the red curve exhibits obvious drops as the number of
defective samples decreases. This indicates that LNet training
can improve AP robustness with respect to varying sample
sizes. The red curve in FIGURE 7(b) is entirely below the
black curve, indicating that LNet training effectively reduced
the average number of FPs at 100% recall.

FIGURE 8. Series of LNet heat maps, including (a) initial images, (b) pixel
labels, (c) output heat maps with LNet training, and (d) output heat maps
without LNet training.

FIGURES 8(c) and 8(d) show output LNet heat maps with
and without training, respectively. These heat maps were
used as attention weights in the DNet’s autonomous-learning
RSAM, which focused on defective areas when the LNet
was not trained. When the LNet was trained, the RSAM
effectively guided the DNet to focus on areas where defects
were located. A comparison of FIGURES 8(c) and 8(d) sug-
gests that training the LNet increased differences between the
foreground and background, highlighted defective pixels, and
improved DNet performance.

G. A COMPARISON WITH CONVENTIONAL TECHNIQUES
Table 6 compares the proposed method with other con-
ventional techniques. The results presented in this section
involved the same experimental configuration and the same
number of training and testing samples (33 defective images),
each of which utilized triple cross-validation. Primary eval-
uation metrics included AP, false count, and FP at 100%
recall. Compared with other methods, the proposed model
exhibited competitive classification performance, achiev-
ing an accuracy of 99.5% for the KolektorSDD dataset.
Tabernik et al. proposed a supervised two-stage network
structure and used pixel labels to train the network [10].
The resulting AP reached 99.9% and produced only a single

FN and FP. In addition, three FPs occurred at a 100%
recall. The proposed model utilizes a weak supervision
method with a three-stage learning strategy and requires
only image-level labels. This approach offers comparable
FN and FP rates, producing five FPs at a recall of 100%.
Table 6 also provides experimental results using commer-
cial software packages, such as the Cognex ViDi Suite
(Cognex2018) [34], and two segmented networks (U-net [35]
and DeepLabV3 + [36]).The ViDi model produced an AP
of 99.0%, five false counts, and seven FPs at 100% recall.
The U-Net produced an AP of 96.1%, nine false counts, and
up to 108 FPs at 100% recall.

The DeepLab v3 + segmentation decision method pro-
duced an average accuracy of 98.0%, nine false counts, and
68 FPs at a recall of 100%. The proposedmodel outperformed
DeepLabV3 +, Unet, and ViDi, as measured by the AP
metric. A standard residual network ResNet [26] was also
included in the comparison experiments. During training,
the ResNet model used weights that were pre-trained with
ImageNet, adjusting the number of nodes in the fully con-
nected layer (2) for binary classification tasks. The ResNet
achieved an AP of 97.8% and produced two FPs. There were
40 FNs at a recall of 100%. The proposed technique was
also superior to a pre-trained ResNet18 across all indica-
tors. Table 6 indicates that when the training set contained
only 10 positive samples (with negative samples remaining
unchanged), the average accuracy was lower than only ViDi
and the segmentation-decision methods.

These experimental results suggest that the proposed
method maintained good performance with fewer training
samples. Weakly supervised learning and collaborative train-
ing effectively enhanced differences between defective and
non-defective pixels, allowing the DNet to more effectively
distinguish between samples.

H. ANALYSIS AND DISCUSSION
Experimental results from the KolektorSDD set indicate that
our method achieved competitive performance using only
image-level labeling, which is much simpler than pixel-level
labeling. This benefit is the result of the proposed multi-task
framework and three-stage learning process. Among these,
the weak supervision approach and collaborative learning
strategy enabled the LNet to identify defective areas that dif-
fered from the background, by enhancing the characteristics
of the corresponding area. The included DNet used the output
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LNet heat map as an attention mask, biasing the network
toward anomalous regions in the input image.

A series of comparison experiments were conducted
by freezing or not freezing the shared layers and LNet,
the results of which showed that the positioning and decision
tasks were highly correlated. In the 5–10 positive sample
experiments, DNet performance improved after conducting
weakly supervised LNet training. This indicated that differ-
ences between background and foreground features could
be enhanced by the LNet, making this technique more
effective.

Various optimal objectives were selected for positive
and negative samples during training. The proposed weak
(uncertainty) supervision method uses only image-level
labels, which significantly reduces the required labeling time.
The performance, however, is comparable to other supervised
methods that do require instance or pixel labeling.

This study demonstrated that the adoption of a collabora-
tive learning strategy can compensate for pixel-level imbal-
ances. In the process of defect visualization, the area of
interest can be gradually enlarged by varying the collabora-
tion parameter α. This value is initially large, which biases
the learning process toward non-defective pixels during the
network learning process. As α decreases, the network grad-
ually begins to predict defective pixels. In the latter stages,
α gradually increases again to prevent the background from
being mistaken for defective pixels. In this way, the network
learns to distinguish pixel types and locate defects. A series
of comparison experiments demonstrated that the proposed
technique achieved an accuracy comparable to conventional
models. It was also highly robust to variable positive sample
quantities. Future work will focus on expanding the appli-
cability of the algorithm, which is currently able to detect
small anomalous features in large images. The edges of
defects were also slightly blurred in the LNet output images,
which could be improved by further development of the
model.

V. CONCLUSION
A novel weakly supervised framework was proposed for
surface defect detection using deep learning and demon-
strated with surface cracks in motor commutators. A new
weak supervision loss was developed to train the localization
network using image-level labels. A collaborative learning
strategy was implemented in the training process to assist
the weak supervision algorithm and compensate for pixel-
level data imbalances, in which defect position information
can be directly output and explained. This network design
enabled training with a small (approximately 5–30 defect
images) number of samples, achieving excellent performance
without pre-training. Experimental results demonstrated that
our approach produced comparable accuracy for a weakly
supervised mode, compared with fully supervised methods,
using the KolektorSDD dataset. Future work will involve
training the algorithm to identify defects in other materials,
such as steel or glass.
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