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ABSTRACT Internet of things (IoT) monitoring systems have been extensively applied in smart homes,
underwater monitoring, volcano monitoring, and health monitoring. In IoT applications, a wireless sensor
network (WSN) is deployed to collect data. Hierarchical routing protocols that effectively maintain the
energy consumed by sensor nodes (SNs) are usually employed in WSNs. Cluster heads (CHs) are important
in this type of protocol. An effective fault tolerance mechanism for CHs in this system can guarantee reliable
data acquisition. In this paper, a fault tolerance mechanism that combines CH static backup and dynamic
timing monitoring (SBDTM) is proposed, a CH reliability model based on the Markov model is developed,
and the minimum number of CHs necessary to satisfy the given reliability requirement is obtained. The data
structures and fault-tolerant operations are described, and the energy consumption and the latency of the
recovery of the SBDTMmechanism are quantitatively analysed. Simulations were carried out to compare the
total network energy consumption, number of dead nodes, throughput, and packet loss rate of the proposed
model with those of other methods presented in the literature. The simulation results show that the proposed
SBDTM fault tolerance mechanism is superior to current models. This study presents important theoretical
and application-based knowledge that can guarantee reliable data acquisition for IoT-based monitoring
systems.

INDEX TERMS Cluster head failure, fault tolerance, Internet of Things, Markov model, reliability.

I. INTRODUCTION
Internet of things (IoT) monitoring systems have been
extensively applied in smart homes, underwater monitor-
ing, volcano monitoring, and health monitoring. In an IoT
monitoring system, data are acquired by a wireless sensor
network (WSN) to facilitate the specific applications of the
IoT system [1], [2]. WSNs are deployed in wild, harsh envi-
ronments, where weather and human factors can cause node
failure. In addition, because of volume and cost considera-
tions, the nodes in WSNs mostly consist of miniature sensor
nodes (SNs) and are generally powered by batteries, which
are prone to failure. Hierarchical routing protocols are usually
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employed in WSNs to reduce node energy consumption [3].
In this type of protocol, if a cluster head (CH) fails, the data
collected by the SNs cannot be passed to the sink node.
A CH fault can cause the loss of data from all of the SNs in
the cluster and the subsequent failure of the IoT monitoring
system to obtain the necessary data.

A faulty CH can be replaced by a new CH to ensure normal
system operation, albeit by interrupting normal operation.
A relatively complex CH re-election scheme can increase the
network energy consumption and latency of the recovery of
the data transmission; such an increase seriously affects the
performance of the system and does not satisfy energy-saving
and real-time operation requirements.

Fault tolerance is the ability of a system to immedi-
ately and automatically detect and recover from faults [4].
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Fault tolerance is critical for reliable data delivery in an IoT
monitoring system and ensures that the system is available
for use during interruptions of any kind or in the presence of
faults.

To ensure reliability in an IoT monitoring system,
the design of an effective fault tolerance mechanism for
CHs is very important. Fault tolerance mechanisms are usu-
ally divided into three categories: redundancy-based mecha-
nisms, deployment-based mechanisms, and clustering-based
mechanisms [5]. Redundancy-based mechanisms include
node redundancy, path redundancy, data redundancy, and
time redundancy mechanisms; deployment-based mecha-
nisms include mechanisms before deployment (i.e., fault
tolerance during the network design phase), mechanisms
during deployment (i.e., fault tolerance during network use),
and mechanisms after deployment (i.e., topology-controlled
networks). Clustering-based mechanisms achieve the fault
tolerance of WSNs by using clusters. Many fault tolerance
algorithms are based on the low-energy adaptive clustering
hierarchy (LEACH) protocol, which has been accordingly
optimized. In this paper, an effective fault tolerance mech-
anism for CHs is designed to ensure the reliability of an IoT
monitoring system.

A. RELATED WORK
Many mechanisms have been proposed to increase the fault
tolerance of CHs to ensure reliability, save energy, and
prolong the network lifetime. Bansal et al. [6] proposed a
fault-tolerant election protocol (FTEP) based on a two-level
clustering scheme. The election process appoints a CH and
a backup node to handle CH failure. After the failed CH has
been identified, the backupCH automatically assumes the CH
role. This scheme requires significant power consumption.
The use of a single point (backup node) to detect failure
can have disastrous consequences. In [7], a fault-tolerant
two-level clustering protocol (FTTCP) where each cluster
member can separately identify CH failure is presented. Dis-
tributed identification is used for every cluster member to
reduce power consumption: a CH repeatedly sends a heart-
beat message for fault identification. To replace the faulty
CH, a backup node is selected as the new CH, and a new
backup node is assigned based on the remaining power of
the SNs. The simulation results showed that the proposed
protocol achieves high fault identification accuracy in a harsh
environment and consumes slightly more energy than the
FTEP.

Azharuddin et al. [8] presented a distributed fault-tolerant
clustering algorithm (DFCA) for WSNs to address sud-
den CH failure. After detecting a CH fault, the member
SNs broadcast a HELP message within their communication
range. A CH within this communication range can reply to
this HELP message, and the SNs join the cluster. Otherwise,
an SN within the communication range with the highest
residual energy is selected as a relay node to send data to the
CH. However, if a faulty CH has many members or there is a
simultaneous failure of multiple CHs, the DFCA approach

may cause severe HELP messaging problems and ineffi-
cient data transmission. Azharuddin et al. [9] proposed a
distributed fault-tolerant clustering and routing (DFCR) algo-
rithm for energy conservation and fault tolerance in a WSN.
The algorithm presented a distributed recovery of the fault
cluster members due to sudden failure of the CHs. Kaur and
Garg [10] developed an improved distributed fault-tolerant
clustering algorithm (IDFCA), which reduces energy con-
sumption by using hierarchy formation to select the CH and
replace the faulty node. This scheme can prolong the network
lifetime.

To address CH failure, two fault tolerance mechanisms
have been proposed: new cluster head generation (NCHG)
to elect a new CH and joining the existing cluster head
with the best transmission capability (JECHBTC) to join a
neighbouring CH. The performances of these two proposed
mechanisms were compared with those of the commonly
distributed fault tolerance and randomly added backup CH
mechanisms [2]. In [11], a CH fault tolerance mechanism that
involves a list of backup CHs was proposed. In this mech-
anism, by taking the sum of the remaining node energies,
node degree, and distance between a node and its neigh-
bouring node as the input of a fuzzy inference system (FIS),
the opportunity value of a node to become a CH is generated.
According to the opportunity value, a list of backup CHs is
formed to ensure data transfer between the member nodes
and the CHs. In [12], self-configurable cluster head selection
(SCCH), a fault tolerance mechanism that combines deter-
mination and backup was proposed for CHs. First, at the data
transmission stage, if the cluster member nodes do not receive
a data request message sent by a CH twice consecutively,
then the failing CHs are determined. Second, the member
nodes in the backup CH list are employed to promptly replace
the failing CHs. This mechanism enhances energy efficiency
while prolonging the network lifetime and reducing overhead.

The fault tolerance function of a sink node is achieved
by a combination of election and monitoring [13]. When
the energy of the sink node falls below a threshold value,
a new sink node is elected to replace the original sink
node. Reliable operation of the new sink node is achieved
as the replaced sink node periodically monitors the remain-
ing energy of the new sink node and backs up the data
acquired by the new sink node. This fault tolerance scheme
reduces the loss of collected source packets and time without
a sink. Gupta et al. [14] proposed a fault-tolerant cluster-
ing approach based on an inter-cluster monitoring mech-
anism. This method achieves fault tolerance by regularly
checking the gateway state. SNs managed by a faulty gate-
way are recovered by re-associating them to other clusters
based on the backup information created during the time
of clustering. A cluster-member-based fault-tolerant mech-
anism (CMATO) [15] uses the SNs’ listening capabilities
to monitor CH activity. In CMATOs, cluster members are
responsible for detecting faulty CHs bymonitoring their links
to the CH. The simulation results showed that the proposed
protocol performed better in terms of fault coverage and
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energy consumption. Khan et al. [16] proposed a zone-based
fault-tolerant management architecture (ZFTMA) for WSNs.
To minimize resource utilization, the network is divided into
four regions. Each zone is monitored by the zone man-
ager node (ZM). ZFTMAs implements four levels of fault
management, including self-managed CH rotation, SN fault
detection, CH node fault detection, and CH fault recovery.
Each CH continuously monitors its remaining energy lev-
els. SN failures are detected by the CHs. The ZM detects
CH faults and initiates CH fault recovery within its super-
vised zone. To complete the fault management, the WSN
should be monitored and scanned in real time. Node mon-
itoring has a variety of schemes, including active monitor-
ing, passive monitoring, reactive monitoring and proactive
monitoring [17]. Alrajei et al. [18] proposed techniques to
prevent failures in a WSN by monitoring the node status,
power levels, link quality, and network congestion. Mitra
and Das [19] proposed a fault recovery algorithm, in which
recovery actions are based on fault diagnosis notification.
The algorithm performs recovery using data checkpoints and
state checkpoints of the node in a distributed manner. The
topology and connectivity between two nodes are preserved.
For rapid recovery, primary-backup replication protocols are
extensively applied in different application settings, including
distributed databases, web services, and the IoT. Guler and
Ozkasap [20] addressed various combinations of checkpoint
and primary-backup replication mechanisms to improve the
efficiency of these mechanisms, especially in terms of lower
blocking times and higher throughput. Ai et al. [21] pro-
posed a smart collaborative routing protocol for reliable data
diffusion in IoT scenarios. The protocol integrates directed
diffusion routing, Greedy Perimeter Stateless Routing, and
the inspecting node mechanism. In accordance with game
theory, the inspecting node is selected to monitor the network
behavior. The scheme performed better in terms of network
delay, packet loss ratio, and throughput.

Two localization-free and energy-efficient algorithms have
been proposed to bypass the holes formed by group col-
lapse [22]. Holes are modelled using clusters, and hole
bypassing is solved by cluster bypassing. Intra-cluster and
inter-cluster bypassing are employed to heal corrupted com-
munication links in the presence of holes. These algorithms
significantly improve fault recovery percentages while con-
suming a reasonable amount of energy, even in the presence
of a high collapse ratio. In addition, this scheme can be
easily integrated into many protocols. Elsayed et al. [23] pre-
sented a distributed self-healing approach (DSHA) to detect,
diagnose, and respond to hardware failures in WSNs; this
approach enhances WSN reliability and performance. The
proposed mechanism is accomplished in four core phases (an
initialization/deployment phase, a computation phase, a fault
detection phase, and a fault diagnosis and recovery phase)
at two levels: the CH level and the node level. The experi-
mental results showed that DSHA was reasonably efficient
in fault detection and diagnosis and improved the network
lifetime.

In [24], a cluster-based fault-tolerant technique that
involves a genetic algorithm was presented for a WSN. A set
of backup nodes is selected for each CH. The key element of
this technique is that the genetic algorithm is applied in the
union of sponsored coverage of the backup nodes to include
the sensing area of the failed node. The parameters of the
residual energy, distance, link quality, sponsored coverage,
burst loss limit, and fault detection timer were investigated.
The simulation results showed that the proposed method
minimized the energy and the packet loss with reduced delay.
Unbalanced clustering and fault tolerance are considered in
the particle swarm optimization-based unequal and fault-
tolerant clustering (PSO-UFC) protocol [25]. To solve the
hot spot problem, the proposed protocol considers an addi-
tional CH, which is referred to as the secondary cluster head
(SCH) for CH nodes. The simulation results showed that the
proposed protocol performed better in terms of the network
lifetime and total energy consumption.

Evcimen et al. [26] extensively evaluated the performance
of distributed self-stabilizing dominating set algorithms for
WSNs. This study is the first experimental evaluation study
of self-stabilizing minimal dominating set (MDS) algorithms
applied in the WSN domain. Ozkan et al. [27] proposed an
energy-efficient, self-stabilizing, and distributed algorithm
for maximal independent set construction in WSNs with a
self-stabilization proof. The simulation results showed that
the proposed algorithm outperformed other algorithms in
terms of the move count and energy consumption. The frame-
work presented in [28] has been referred to as ECraft. This
framework has increased the fault tolerance capability at the
node and communication levels. The three techniques of self,
group, and hierarchical detection have been applied simul-
taneously for fault detection and fault recovery. An energy-
efficient fault tolerance (EFT) management framework that
increases fault tolerance quality and decreases network
energy consumption was introduced for WSNs [29]. This
framework can accept any protocol that lacks fault tolerance
and become integrated into the management framework as an
input. The output of the management framework is exactly
the same as the input protocol that has acquired fault tol-
erance. The weakness of the EFT framework is that a pre-
copy mechanism is not employed in the recovery phase of
the CH nodes. Hu and Li [30] investigated fault tolerance
in WSN applications by constructing a regular hexagonal-
based clustering scheme (RHCS), analysing the reliability of
the scheme, and proposing a scale-free topology evolution
mechanism (SFTEM). This scheme improved fault and intru-
sion tolerance. Jassbi et al. [31] proposed a fault tolerance
and energy-efficient clustering (FTEC) algorithm to detect
and recover the faults of CHs and cluster member nodes
by selecting a node as a backup CH. A weighted median is
employed to detect and recover the faults of the cluster nodes.
To recover a fault, the faulty node is isolated and replaced by
a neighbouring node, which is switched from sleep mode to
wake-up mode. This scheme improves energy consumption
and fault tolerance. Many proposed approaches involve the
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use of backup CHs (BCHs) [32], [33]. However, a maxi-
mum of two BCHs has been considered in the corresponding
protocols.

B. CONTRIBUTIONS
Many research works have provided insights into the fault
tolerance mechanisms of CHs, especially when an appli-
cation is run in wild, harsh environments. Most of these
mechanisms tend to use a maximum of two BCHs; con-
sequently, the formation of a cluster is not ensured. Some
studies have focused on joining the neighbouring CH; doing
so may cause the explosion of a HELP message and the low
efficiency of data transmission. Other studies have focused on
the CH reselection mechanism, which interrupts the normal
operation of a system and increases network energy con-
sumption. Only a few studies have provided a monitoring/
checkpoint mechanism to reduce the loss of collected source
packets and recovery time. To best of our knowledge, there
are no reports on fault tolerance mechanisms that combine
backup and monitoring. To reduce energy consumption and
the latency of the recovery, we propose a fault tolerance
mechanism that combines CH static backup and dynamic
timingmonitoring. Themain contributions of this paper are as
follows:

1) Considering that end users have different CH reliabil-
ity requirements for different IoT monitoring systems,
a CH reliability model is constructed based on the
Markov model. The number of CHs necessary to meet
the reliability requirement can be determined.

2) To avoid network function failure and reduce the
energy consumption of fault recovery, static backup
of CHs is proposed in the CH selection stage. One
of the CHs is selected as the primary CH, and the
remaining CHs are designated as backup CH nodes.
The backup CH nodes are selected based on energy and
distance.

3) Monitoring is important to detect abnormal behaviour
in the network. To detect a fault in the primary CH and
quickly recover from a transient fault, dynamic timing
monitoring is included in the data transmission. The
backup CHs successively send data packets at specified
time intervals to monitor whether the primary CH is
working properly.

4) The analytical and simulation results demonstrate the
superiority of the proposed fault tolerance mechanism
over current models.

The remainder of this paper is organized as follows:
In section II, the construction of the system model is
described. In section III, the novel fault tolerance mech-
anism is presented, and a reliability model for CHs is
constructed based on the Markov model. The model per-
formance is analysed in section IV. A performance evalu-
ation is presented in section V. The study is concluded in
section VI.

FIGURE 1. Hierarchical sensor network model.

II. SYSTEM MODEL
A. NETWORK MODEL
For simplicity, the following assumptions are used in the
proposed network model.

The sensor network has a hierarchical structure with a
simple path selection: a node does not need to store much
routing information. In the hierarchical model, the network is
divided into several smaller clusters for management. Each
cluster has one CH [34], [35]. The CH collects data from
the SNs in the same cluster, performs the necessary fusion
processing of the data, and sends the data to the sink node.
The sensor (ordinary) nodes continuously collect and trans-
mit sensor data to the CH. Fig. 1 shows the hierarchical sensor
network.

1) A few nodes are equipped with global positioning sys-
tem (GPS) devices and therefore have known positions.
The positions of the other nodes can be determined by
ranging or non-ranging technology. The node coordi-
nates are used to determine the partition of each node
in advance.

2) The nodes in the partition can adjust the communica-
tion radius to ensure normal communication among the
nodes in the partition.

B. FAULT MODEL
Generally, fault tolerance or reliability refers to the ability
of a sensor network to maintain functionality such that node
failures do not disrupt system performance [36]. A fault-
tolerant or reliable sensor network should be able to carry out
its overall task in the presence of node failures [4]. In fault-
tolerant systems, unique definitions are used to describe dif-
ferent flaws. We use the following definitions, which are
commonly applied in WSNs:
Definition 1 (Fault): Any disruption of the system.
Definition 2 (Error): The effect of a fault on the data.
Definition 3 (Failure): A collapse of the system, such that

the desired function cannot be provided.
Definition 4 (Fault Tolerance): The ability of a functional

unit or system to continue to perform a required function in
the presence of faults or errors.
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FIGURE 2. Schematic of proposed fault tolerance mechanism: (a) Normal
PCH and (b) PCH anomalies.

Definition 5 (Fault Detection): The detection of faulty
functionality in a system by self- or cooperative diagnosis.
Definition 6 (Fault Recovery): The recuperation of correct

functionality after fault detection by repair or replacement of
the failed component.

In our proposed fault model, CH failure is considered to be
a software-induced transient fault.

III. PROPOSED FAULT TOLERANCE MECHANISM
AND CH MODEL
A. PROPOSED FAULT TOLERANCE MECHANISM
To address CH failure, a fault tolerance mechanism that
combines the static backup of CH nodes and dynamic timing
monitoring (SBDTM) is proposed.
Definition 7 (Static Backup of CHs): In the CH selection

stage, multiple CHs are successively selected based on the
CH reliability requirement of the end user of the IoT mon-
itoring system and a CH selection rule. One of the CHs is
selected as the primary CH (PCH) which collects and fuses
the data from the SNs. The data are forwarded to the sink
node, and the remaining CHs are designated as backup CH
nodes.
Definition 8 (Dynamic Timing Monitoring):When the data

transmission in a cluster is stable, the BCHs successively send
data packets at specified time intervals to monitor whether
the PCH is working properly. If the PCH is operating nor-
mally, the information in the PCH is backed up; otherwise,
the backupCH,which currently consists ofmonitoring nodes,
broadcasts the CH advertisement (CH-ADV) to the nodes in
the cluster. The backup CH dynamically replaces the failed
PCH and becomes responsible for transmitting and receiving
data within the cluster.

The proposed SBDTM mechanism for a hierarchical sen-
sor network is shown in Fig. 2.

B. PROPOSED SBDTM ALGORITHM
In the proposed SBDTM algorithm, the initial dataset of the
PCH is Data = { init }, the remaining energy of the PCH is
Ech, the threshold remaining energy of the PCH set by the user
is Eth, the number of CHs is n, the total number of SN in the
cluster is m-1, the dataset of the backup CHs is BCH= {BC1,
BC2, . . . , BCj,. . . , BCn−1}, the dataset of the SNs is SN =
{SN1, SN2, . . . , SNi,. . . , SNm−1}, and the data collected by the
SNi are represented by Si. The time interval for the backup
CH monitoring is equal to that assigned to the SNs by the

FIGURE 3. Timeline of operations in a cluster that performs the
fault-tolerant scheme.

Algorithm 1 Fault Tolerance Algorithm of Our Proposed
Scheme
Input: Eth, PCH, BCH, SN, n, m.
Output: Data
1. Initialize i = 1, j = 1, Data = {init};
2. Repeat
3. PCH sends data packets to SNi;
4. SNi transmits sensor data to PCH;
5. Data = Data

⋃
{Si};

6. Backup BCj sends data packets to monitor PCH;
7. PCH sends Ech & Data to backup BCj;
8. If (Ech>Eth) then
9. Backup BCj save Data;
10. i = i+ 1;
11. IF (j < n − 1) then
12. j = j + 1;
13. End
14. Else
15. j = 1;
16. End
17. End
18. Else
19. Backup BCj broadcasts CH-ADV message to
nodes;
20. All elements in the SN send a request message to
join the cluster;
21. IF (j < n − 1) then
22. j = j + 1;
23. End
24. Else
25. j = 1;
26. End
27. End
28. Until (i >= m − 1); /*The entire data collection
period T ends */
29. Return Data;

PCH. The time axis of the different nodes in this mechanism
is shown in Fig. 3.

The following pseudo-code in Algorithm 1 shows how
the SBDTM algorithm is implemented. With this proposed
scheme, the IoT monitoring system can obtain reliable data.
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FIGURE 4. State transition diagram.

C. RELIABILITY MODELLING OF CHS BASED ON
THE MARKOV MODEL
In different IoT monitoring systems, end users have different
CH reliability requirements; therefore, the number of backup
CHs varies. When the PCH is normal, the remaining n-1 CHs
are backups; when the PCH fails, one of the backup CHs
dynamically replaces the failed node and becomes the new
PCH. The CH reliability model based on the Markov model
is constructed as follows:

1) The switch is completely reliable, and switching is
instantaneous.

2) The lifetime distribution of each CH is 1-e−λt , t≥ 0(λ:
failure rate).

3) A CH fault is a software-induced transient fault.
4) Instantaneous faults can be repaired by restarting the

nodes.
5) The repair time distribution after failure is 1-e−µt , t≥

0(µ: repair rate).
6) All of the random variables are independent.
7) The end user’s reliability requirement for the CH is R0.

The constructed CH state transition diagram based on the
Markov model is shown in Fig. 4. The Markov process has
a state-set {0, 1, 2, . . . , n − 1, n}, where 0, 1, 2, . . . , n − 1
are transients; thus, the number of selected static BCHs has
0, 1, 2, . . . , n− 1 failed states. State n is the absorbing state;
thus, all corresponding n CHs have failed and the CHs cannot
satisfy the reliability requirement of the system users.

The system has n+ 1 different states. We let
{X(t) = j}; if j faulty parts exist in the system at time t

(j = 1, 2, . . . , n),
then
E = {0, 1, . . . , n},W = {0, 1, . . . , n− 1},F = {n}
{X (t), t ≥ 0} is a time-homogeneous Markov process of

the state space E.
The state transition diagram (Fig. 4) of the system within

1t is used to obtain a transfer rate matrix.

A=



−λ λ 0
µ −λ− µ λ

µ −λ− µ λ

. . .
. . .

. . .

µ −λ− µ λ

0 µ −µ


(1)

Matrix A is tridiagonal; therefore,

πj = (
λ

µ
)j
µn+1 − λµn

µn+1 − λn+1
, j = 0, 1, . . . , n (2)

Refer to (2),

πn =
λnµn+1 − λn+1µn

µ2n+1 − λn+1µn
(3)

Because state n is the absorbing state, the reliability of the
CH is R = 1− πn.

R =
µn+1 − λnµ

µn+1 − λn+1
(4)

When R ≥ R0, the reliability of the CH satisfies the
requirement of the end users.WhenR = R0, parameters λ and
µ are known; therefore, n can be obtained from Equation (4).
In this case, the end user reliability requirement is satisfied,
and the number of static BCHs is n− 1.

IV. PERFORMANCE ANALYSIS
In this section, we perform a theoretical analysis of the
proposed SBDTM mechanism to show how this mechanism
improves NCHG [2] and SCCH [12] in terms of energy
consumption and the latency of the recovery.

The SNs in the same cluster are adjacent, and thus, the data
from the SNs are spatially correlated [37]. The data packets
collected by the CHs have a fixed length. The following
assumptions are made:

1) The cluster operation period is T, that is, the time
required for each sensor node in the cluster to send the
collected data once.

2) Within T, the percentage of CH failures with respect to
the total number of transmissions sent by the SNs is P.

3) The latency of the node scheduling is Tsdelay.
4) The length of the data packet is Lpack .
5) The energy required for a 1-byte data transmission

between two nodes is Etr .
6) The energy consumed by the proposed SBDTM mech-

anism is ESBDTM .
7) The energy consumed in the CH reselectionmechanism

(NCHG) is ENCHG.
8) The energy consumed in the SCCH mechanism is

ESCCH .
9) The latency of the recovery for the proposed SBDTM

mechanism is TSBDTM .
10) The latency of the recovery for NCHG is TNCHG.
11) The latency of the recovery for SCCH is TSCCH .

A. ENERGY CONSUMPTION ANALYSIS
Theorem 1: The energy consumption in the proposed
SBDTM mechanism (ESBDTM ) is:

[P ∗ (m− 1) ∗ (m− 2) ∗ Lpack ∗ Etr + (1− P)

∗(m− 1) ∗ Lpack ∗ Etr ]+ (m− 1) ∗ Lpack ∗ Etr

Proof: Based on the previously stated assumptions,
throughout the data collection period T, the number of CH
failures is P*(m-1), and the amount of energy consumed (Ean)
is assumed to be:

Ean = P ∗ (m− 1) ∗ (m− 2) ∗ Lpack ∗ Etr (5)
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Throughout the data collection period T, the number of
normal CH operations is (1-P)*(m-1), and the amount of
energy consumed (Enm) is assumed to be:

Enm = (1− P) ∗ (m− 1) ∗ Lpack ∗ Etr (6)

Therefore, the energy consumed by BCHmonitoring (Emt )
throughout the data collection period T is assumed to be:

Emt = Ean + Enm (7)

Throughout the data collection period T, assuming that
(m-1) SNs transmit the sensor data, the energy consumed by
the CH in receiving the data (Etd ) is:

Etd = (m− 1) ∗ Lpack ∗ Etr (8)

In the proposed SBDTMmechanism, the total energy con-
sumed throughout the data collection period T is the sum of
the energies consumed by the BCH monitoring, the SNs in
sending the sensor data, and the PCH in receiving the data.
Therefore,

ESBDTM = Emt + Etd (9)

= [P ∗ (m− 1) ∗ (m− 2) ∗ Lpack ∗ Etr + (1− P)

∗(m− 1) ∗ Lpack ∗ Etr ]+ (m− 1) ∗ Lpack ∗ Etr
(10)

Theorem 2 The amount of energy consumed by CH rese-
lection after CH failure (ENCHG) is:

P ∗ (m− 1) ∗ [(m− 1) ∗ (m− 2) ∗ Lpack ∗ Etr
+2 ∗ (m− 2) ∗ Lpack ∗ Etr ]+ (m− 1) ∗ Lpack ∗ Etr

Proof: In the new CH generation (NCHG) model, when
a CH fails and the cluster contains only SNs, the steps for CH
reselection are described as follows:

All of the SNs use Rmc as the communication radius (to
ensure communication among all of the members in the
cluster, where Rmc is twice the CH communication radius Rc,
as shown in Fig. 5) to broadcast the CH competition message
CH_SEL (which includes the message type, node ID, orig-
inal CH ID, and remaining energy, where the message type
indicates that this message is a CH competition message).

Assume that the broadcast energy consumed by m-1 nodes
(Esel) is:

Esel = (m− 1) ∗ (m− 2) ∗ Lpack ∗ Etr (11)

Meanwhile, the node with the highest amount of remain-
ing energy becomes the CH and broadcasts the message
CH_SUCC (including the message type and node ID), which
indicates successful competition.

The amount of energy consumed by broadcasting a suc-
cessful competition message (Esuc) is assumed to be:

Esuc = (m− 2) ∗ Lpack ∗ Etr (12)

After receiving the CH_SUCC message, the nodes in the
cluster send themessage CH_JOIN_REQ (including themes-
sage type, node ID, and CH ID) to join the cluster, and the CH

FIGURE 5. Schematic broadcasting of CH competition message by sensor
nodes.

sends the message CH_JOIN_SUCC (including the message
type, node ID, member ID, and time interval).

The energy required for the nodes to become member
nodes of a new CH (Emeb) is assumed to be:

Emeb = (m− 2) ∗ Lpack ∗ Etr (13)

Therefore, the energy consumed by one CH reselection
(Eelect ) is:

Eelect = Esel + Esuc + Emeb (14)

The energy consumed by the reselection of the CH during
the data collection period (Ereelec) is:

Ereelec = P ∗ (m− 1) ∗ [(m− 1) ∗ (m− 2) ∗ Lpack ∗ Etr
+2 ∗ (m− 2) ∗ Lpack ∗ Etr ] (15)

The total energy consumption for the CH reselection
throughout the data collection period T is the sum of the ener-
gies consumed by CH reselection, sensor data transmission
by the member nodes, and data receipt by the CHs; therefore,

ENCHG = P ∗ (m− 1) ∗ [(m− 1) ∗ (m− 2) ∗ Lpack ∗ Etr
+2 ∗ (m−2) ∗ Lpack ∗ Etr ]+ (m−1) ∗ Lpack ∗ Etr

(16)

By using the SCCH mechanism, the energy consumption
can be obtained in the same way.

ESCCH = P ∗ (m− 1) ∗ [3 ∗ (m− 1) ∗ Lpack ∗ Etr ]

+(m− 1) ∗ Lpack ∗ Etr (17)
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B. ANALYSIS OF LATENCY OF RECOVERY
In this paper, a media access control (MAC) protocol based
on time division multiple access (TDMA) is adopted.
Theorem 3: The latency of the data transmission recovery

(TSBDTM ) in the proposed SBDTM mechanism is:

Tsdelay + (m− 1) ∗ Tsdelay

Proof: In the proposed SBDTMmechanism, the latency
required for monitoring the PCH (Tmt ) by the BCHs is:

Tmt = Tsdelay (18)

The latency required for broadcasting the CH-ADV mes-
sage to m-1 SNs after one of the BCHs replaces the PCH
(Tbroad ) is:

Tbroad = (m− 1) ∗ Tsdelay (19)

Therefore, the latency of the data transmission recovery in
this mechanism is:

TSBDTM =Tmt+Tbroad=Tsdelay+(m−1) ∗ Tsdelay (20)

Theorem 4: In the NCHG model, the latency of the data
transmission recovery (TNCHG) is:

[2 ∗ (m− 2)+ (m− 1) ∗ (m− 2)] ∗ Tsdelay

Proof: For the NCHGmodel [2], the latency required for
the broadcasting of the CH competition message CH_SEL
by all SNs using Rmc as the communication radius (Tsel) is
assumed to be:

Tsel = (m− 1) ∗ (m− 2) ∗ Tsdelay (21)

The latency required for broadcasting a successful com-
petition message CH_SUCC when the node with the most
remaining energy becomes the CH (Tsuc) is assumed to be:

Tsuc = (m− 2) ∗ Tsdelay (22)

The latency required for all member nodes to send
the request message CH_JOIN_REQ after receiving the
CH_SUCC message (Tmeb) is assumed to be:

Tmeb = (m− 2) ∗ Tsdelay (23)

Therefore, the latency of the data transmission recovery
(TNCHG) from CH reselection is:

TNCHG = Tsel + Tsuc + Tmeb
= [2 ∗ (m− 2)+ (m− 1) ∗ (m− 2)] ∗ Tsdelay (24)

By using the SCCH mechanism, the latency of the data
transmission recovery can be obtained in the same way.

TSCCH = 2 ∗ (m− 1) ∗ Tsdelay (25)

V. PERFORMANCE EVALUATION
In this section, we present the evaluation results for the
SBDTM mechanism. We compare the performance indices
from the analytical and simulation results. We evaluate the
proposed scheme in terms of energy consumption, the recov-
ery latency, the number of dead nodes, the throughput, and
the packet loss rate.

TABLE 1. Simulation parameters.

FIGURE 6. Relationship between reliability and the number of CHs.

A. SIMULATION ENVIRONMENT
SBDTM, NCHG and LEACH are implemented on the
NS3 simulator in C++ language to compare the perfor-
mance of these mechanisms. The simulation environment is
described in this section. The WSN has 100 nodes, which
are randomly deployed and distributed over a square area
of 200 m * 200 m. Each SN is assumed to have an initial
energy of 0.75 J. The base station (BS) is located at (100,100).
The network parameters are shown in table 1.

B. RELIABILITY OF CHS
Equation (4) demonstrates that CH reliability depends on the
number of CHs n, the failure rate λ and the repair rate µ. The
failure rate λ is set to 1× 10−4, and the repair rate µ is set to
2×10−4. To elucidate the relationship between CH reliability
and n, a corresponding graph is shown in Fig. 6.

Fig. 6 shows that CH reliability increases as the number of
CHs increases. The number of CHs is determined according
to the given CH reliability requirement. A cluster CH reliabil-
ity requirement of 0.8 requires twoCHs, whereas a cluster CH
reliability requirement of 0.9 requires three CHs. However,
the increase in CH reliability with more than four CHs is not
distinct.

C. COMPARISON OF CLUSTER ENERGY CONSUMPTION
OF DIFFERENT FAULT TOLERANCE MECHANISMS
In the following experiments, we compare the energy con-
sumption of three fault tolerance mechanisms for CHs.
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FIGURE 7. Total energy consumption of all cluster nodes as a function of
the number of nodes.

TABLE 2. Total energy consumption over the data collection period.

According to Theorems 1 and 2, the total energy consumed by
the cluster throughout the data collection period T is related
to the number of nodes in the cluster m, length of the data
packet Lpack , percentage of CH failures with respect to the
total number of transmissions sent by the SNs P, and energy
required for a 1-byte data transmission between two nodes
Etr . Lpack is set to 128 bytes. P is set to 0.04. Etr is set
to 80 nJ/byte.

1) TOTAL ENERGY CONSUMED BY ALL CLUSTER NODES
We consider the proposed SBDTM, NCHG, and SCCHmod-
els throughout the data collection period T for the m values
of 20, 40, 60, 80, and 100. We compare the total energy
consumption of all of the nodes in the cluster throughout the
data collection period T for the three mechanisms. The results
are shown in Fig. 7.

The results in Fig. 7 show that for the same number of
nodes in the cluster, NCHG consumes more energy than
the other two mechanisms. The energy consumed by NCHG
sharply increases as the number of nodes increases, while
the energy consumed by the proposed SBDTM and SCCH
mechanisms increases steadily. The recovery of CH failure in
the proposed SBDTM and SCCH mechanisms by the backup
CHs reduces energy consumption.

Table 2 shows the total energy consumption over the data
collection period.

Table 2 shows that the proposed SBDTM mechanism con-
sumes much less total energy than NCHG. This result con-
firms our conclusion that the proposed SBDTM mechanism
produces more dramatic energy savings than NCHG. In addi-
tion, the total energy consumption of the proposed SBDTM

FIGURE 8. Average energy consumed by a cluster for different numbers
of nodes.

mechanism is slightly less than that of SCCH. The proposed
SBDTM mechanism combines dynamic timing monitoring
to rapidly identify CH failures. However, in SCCH, the SNs
continue sending data to the failed CHs, thereby increasing
the amount of energy consumption.

2) AVERAGE ENERGY CONSUMED BY A CLUSTER NODE
We consider the m values of 20, 40, 60, 80, and 100 and cal-
culate the average energy consumed by a node in the cluster
using the proposed SBDTM, NCHG, and SCCH models.

Fig. 8 shows that for the same number of nodes in the
cluster, the average energy consumed by each node is greater
when using the NCHG reselection mechanism than when
using the other two algorithms. As shown in Fig. 8, the lowest
energy consumption per node is obtained using the proposed
SBDTM mechanism.

D. COMPARISON OF LATENCY OF RECOVERY FOR
DIFFERENT FAULT TOLERANCE MECHANISMS
Equations (20), (24), and (25) show that the latency of recov-
ery depends onm and the latency of scheduling Tsdelay. Tsdelay
is set to 20 ms. For the m values of 20, 40, 60, 80, and
100, we compare the latency of recovery for the proposed
SBDTM, NCHG, and SCCH models. The results are shown
in Fig. 9.

Fig. 9 shows that the longest and shortest latencies
of recovery are obtained using NCHG and the proposed
SBDTM mechanism, respectively. In the NCHG reselection
mechanism, when a CH fails, the SNs in the cluster broadcast
the competition message of the CH, thereby increasing the
latency of the recovery of the cluster. In SCCH, when an SN
does not receive Data-Req, the SN waits until the next frame
to receive a request. If the request is not received in the second
frame, the CH of the SN is replaced by the BCH. Therefore,
SCCH requires a higher latency of recovery than the proposed
SBDTM mechanism. The CH failures are quickly identified
by the dynamic time monitoring mechanism and handled
by the BCHs in the proposed SBDTM mechanism, thereby
causing a short latency of recovery.
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FIGURE 9. Relationship between the latency of recovery and the number
of nodes.

FIGURE 10. Total network energy consumption by the network for each
round.

The simulation results are shown in the following sub-
sections. For comparative purposes, we ran the fault-tolerant
clustering algorithm (LEACH) and NCHGmodel.We choose
LEACH over other competitive clustering methods because it
is a simple, fast clustering protocol with minimum clustering
overhead.

E. COMPARISON OF TOTAL NETWORK
ENERGY CONSUMPTION
The total network energy consumptions in each round for the
different algorithms are compared in Fig. 10.

Fig. 10 shows that SBDTM performs better than LEACH
and NCHG in terms of the total network energy consump-
tion. The poor LEACH performance is attributed to CH
node selection at the end of each round of the re-clustering
stage in a global manner among all of the network nodes,
irrespective of whether the CH node fails or not, thereby
increasing the amount of energy consumed. For NCHG,when
the CH fails, the SNs broadcast the CH competition message
over twice the CH communication radius, thereby consum-
ing a massive amount of energy. By contrast, the proposed
SBDTM mechanism recovers CH failures using the backup
CHs, thereby considerably reducing the amount of energy
dissipation.

FIGURE 11. Number of dead nodes in each round.

FIGURE 12. Throughput for each round.

F. COMPARISON OF THE NUMBERS OF DEAD NODES
In Fig. 11, the results are compared in terms of the numbers
of dead nodes.

Fig. 11 shows that more dead nodes are generated using
NCHG than using the other two algorithms, thereby indi-
cating that NCHG is energy-consuming. SBDTM identifies
slightly fewer dead nodes than LEACH, although each of
these two algorithms produces a comparable number of dead
nodes. The reduction in energy consumption of the proposed
SBDTMmechanism as a result of the recovery of CH failures
by the backup CHs shows that SBDTM has a longer lifetime
than NCHG and LEACH. The results also confirm our con-
clusion that SBDTM reduces energy dissipation.

G. THROUGHPUT COMPARISON
Fig. 12 shows the throughput in each round; the throughput
is calculated as the accumulative size of the unique data that
are successfully transmitted to the BS in each round.

Fig. 12 shows that SBDTM has a higher throughput than
LEACH, as SBDTM (unlike LEACH) provides BCHs for
SNs when PCH faults occur. Thus, more data can be transmit-
ted to the BS in the proposed SBDTM mechanism, thereby
increasing the throughput. The throughput of SBDTM is
higher than that of NCHG. In NCHG, when CHs fail, the SNs
start to reselect new CHs, at which point data are not trans-
mitted to the BS. However, in the proposed SBDTM mech-
anism, CH failures are quickly identified by the dynamic
time monitoring mechanism and recovered by backup CHs;
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FIGURE 13. Packet loss rate for each round.

TABLE 3. Complexity comparison of four algorithms.

thus, the proposed SBDTM provides an alternative path for
the SNs while considerably reducing the amount of energy
dissipation. Thus, the SNs in SBDTM can work for longer
periods, and more data can be acquired and transmitted to
the BS.

H. COMPARISON OF THE PACKET LOSS RATES
Fig. 13 compares the results in terms of the packet loss rate,
which is the ratio of the number of bytes that are actually
received by the BS to the number of bytes sent without node
failure.

Fig. 13 shows that SBDTM and LEACH have the low-
est and highest packet loss rate, respectively. This result is
attributed to the high energy consumption and number of dead
nodes associated with the LEACH mechanism.

I. COMPLEXITY ANALYSIS
In this subsection, we perform a complexity analysis of
the proposed SBDTM mechanism to show how this mech-
anism improves upon the intra-cluster bypass, inter-cluster
bypass [22], and AMIS [27] in terms of time, space, and
message complexity.

Table 3 shows the comparison of time, space, and message
complexity of four algorithms.

(Dm is the maximum cluster diameter, Cm is the maximum
node count in a cluster, D is the network’s diameter, b is a
constant, k is the maximum number of clusters at the same
level, N is the number of nodes in the network, and C is the
number of clusters in the network).

SBDTM and intra-cluster bypass have the same time and
space complexity. SBDTM has better message complexity
than the intra-cluster bypass. The inter-cluster bypass and
AMIS have relatively worse time and message complexity.

VI. CONCLUSION
In this study, an SBDTM fault tolerance mechanism that
combines CH static backup and dynamic timing monitoring
for CHs is proposed to achieve reliable data acquisition and
ensure the reliability of an IoT monitoring system. AMarkov
model-based CH reliability model is established, and the
cluster energy consumption and latency of recovery for the
proposed SBDTM are quantitatively analysed. The proposed
SBDTM mechanism can effectively reduce the total energy
consumed by all of the nodes in a cluster, the average energy
consumed by each node in the cluster, and the latency of
recovery. Several experiments are conducted to precisely
evaluate the performance efficiency of the proposed SBDTM.
The simulation results show that compared with LEACH
and NCHG, SBDTM is reasonably efficient in reducing the
total network energy consumption and packet loss rate and
increasing the network lifetime and throughput. The proposed
scheme provides an important theoretical basis and has appli-
cation value for reliable data acquisition in an IoT monitoring
system. However, the optimal monitoring time interval has
not been considered in this study. The monitoring time inter-
val affects the reliability and performance of an IoT monitor-
ing system. In the proposed SBDTM mechanism, to ensure
the reliable data acquisition of an IoT monitoring system,
the time interval for backup CH monitoring is equivalent to
that of the SNs assigned by the PCH. In future studies, wewill
investigate the optimum time interval for BCH monitoring to
achieve reliability and performance optimization.
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