
Received January 19, 2020, accepted February 17, 2020, date of publication March 2, 2020, date of current version March 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2977690

Automatic Infrared Ship Target Segmentation
Based on Structure Tensor and Maximum
Histogram Entropy
YONGSONG LI 1,2, ZHENGZHOU LI 1,2,3, ZHIQUAN DING 4,
TIANQI QIN 4, AND WEIQI XIONG 1,2
1School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
2Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044, China
3Key Laboratory of Optical Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
4Sichuan Institute of Aerospace Electronic Equipment, Chengdu 610100, China

Corresponding author: Zhengzhou Li (lizhengzhou@cqu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61675036, in part by the Chinese
Academy of Sciences Key Laboratory of Beam Control Fund under Grant 2017LBC006, and in part by the 13th Five-year Plan Equipment
Pre-Research Fund.

ABSTRACT The existing infrared (IR) ship target segmentation methods may suffer serious performance
degradation in the situation of diverse background clutters and ship targets. To copewith this problem, a novel
ship target segmentation method is proposed in this paper. Initially, the IR image is transformed into the map
of large eigenvalues of structure tensor (STLE), where the horizon line and ship target boundary can be
explicitly characterized. According to the scene context clue, the automatic horizon line detection (AHLD)
is proposed to efficiently judge the existence of horizon line and remove sky/land region clutters. Then,
based on the intensity distribution of ship target and sea background, the adaptive maximum histogram
entropy (AMHE) is presented to accurately perceive the brightness (dark or bright) of ship target, and
coarsely segment the bright or dark ship target from sea background. After that, considering the ship
target boundary information, the regions-of-interest (ROI) of ship target is located and the ship foreground
map (SFM) is developed to address the under-segmentation. Finally, a new Watershed algorithm namely
structure tensor and maximum histogram entropy modified Watershed transform (TEWT) is constructed to
completely extract the whole ship target. Extensive experiments show that the proposed method outperforms
the state-of-the-art methods, especially for IR images with intricate background clutter and heavy noise.
Moreover, the proposed method can work stably for ship target with unknown brightness, uneven intensities,
low contrast, variable quantities, sizes, and shapes.

INDEX TERMS Infrared (IR) imaging, ship target segmentation, structure tensor, maximum histogram
entropy, modified watershed transform.

I. INTRODUCTION
Automatic ship target segmentation is an important issue
for maritime infrared search and track (IRST) systems,
such as maritime rescue, traffic monitoring and coastal
defense, where both accuracy and robustness are indispens-
able [1]–[3]. However, because infrared imaging depends
on weather conditions, sea surface reflections and thermal
radiations between ship target and background, the infrared
ship images are vulnerable to changeable imaging sce-
narios and can be characterized by low signal-to-noise

The associate editor coordinating the review of this manuscript and
approving it for publication was Shuo Sun.

ratio (SNR), low signal-to-clutter ratio (SCR) and lack
of details. Therefore, infrared ship target segmentation is still
considered as a challenging work [4]–[6].

Although many researchers have made a lot of effort for
infrared ship target segmentation and proposed numerous
corresponding methods, there are still the following main
downsides, which make it difficult to achieve robust segmen-
tation and limit their practical applications:

1) In general, the diverse background clutters especially
sky/land region clutters (e.g. buildings, cars, clouds and
islands) in IR ship image are unpredictable. Therefore, the
regular ship target segmentation method [2], [7] processes
the whole IR image regardless of the scene information,
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which will be seriously disturbed by the sky/land region clut-
ters. As an important scene context information for maritime
target detection and segmentation, horizon line (i.e. sea-sky-
line/coastline) can provide the region division clue to remove
the disturbance of sky/land region clutters and validate the
real ship targets. Thereby, some researches directly located
the longest straight line in the edge map as the horizon line to
eliminate the sky/land region clutters [3]. However, because
IR ship image itself has a lot of noise and sea clutter, classical
edge detectors [6], [13] will detect a large of tiny and trivial
noise edges and cannot depict the real horizon line.Moreover,
since the pitch angle between the imaging platform and the
sea level is variable and whether the horizon line exists is
unknown, the above two rude processing approaches will
reduce the accuracy of IR ship target segmentation under
diverse backgrounds.

2) Previous studies [1], [9], [15], [23] mostly focus on
the bright IR ship target segmentation, but the dark tar-
get whose IR radiation is lower than sea background also
exist in the backlighting IR images but is seldom covered.
Hence, these methods cannot extract the IR dark ship target
from the brighter maritime background. Nevertheless, in the
real-world IR maritime scenes, the global-contrast brightness
(bright or dark) of ship target is unknown [15], so adaptive
ship target segmentation for both bright and dark ones in IR
image remains to be worthy of further investigation.

3) Even in the sea region, the background clutter may
also have some uneven areas whose gray-level intensity is
close to the ship target (e.g. tail wave, reflective clutter
and backlit clutter). Accordingly, the intensity-based ship
target segmentation methods [10], [12], [16] will introduce
those uneven parts into the segmentation result and cause
under-segmentation. Furthermore, by staring at the appear-
ance model of ship target in IR image, the existing methods
commonly assume that the ship target is the uniform region
against the sea background [22], [25], [26]. However, for
IR ship image with low contrast or near-distance imaging,
the intensity of ship target will be inhomogeneous and even
the inner parts of the ship target with strong opposite inten-
sities. Therefore, these methods can easily lose the uneven
parts of ship target, resulting in over-segmentation. In sum-
mary, under-segmentation and over-segmentation are two
well-known difficulties for existing IR ship target segmen-
tation methods, which need more in-depth research.

4) The algorithm for IRST applications will be imple-
mented on common embedded system with limited comput-
ing resources in the future, thus it should meet the potential
demand of real-time computation.

To address the above drawbacks, this paper proposes an
effective and robust ship segmentation scheme based on
structure tensor andmaximumhistogram entropy (MHE) [38]
according to the intrinsic IR imaging characteristics between
ship target and background clutter. Firstly, the IR image
is transformed into the map of large eigenvalues of struc-
ture tensor (STLE), where the horizon line and ship target
boundary can be explicitly depicted. According to the scene

context clue of IR ship image, the automatic horizon line
detection (AHLD) is proposed to judge whether the horizon
line exists and remove the sky/land region clutters. Then,
according to the intensity distribution of IR ship target and
sea background, the adaptive MHE (AMHE) is presented to
perceive the brightness (dark or bright) of ship target, and
segment the ship target from sea background, but may cause
under- or over-segmentation. Finally, to overcome those two
problems, considering the boundary information of IR ship
target, a two-step strategy is introduced to refine the ship tar-
get segmentation by reasonably incorporating the boundary
information into the AMHE segmentation results. Extensive
experiments show that the proposed IR ship target segmen-
tation scheme outperforms the compared existing algorithms
under diverse backgrounds and heavy noise, and is suitable
for ship targets with unknown brightness, uneven intensities
and variable quantities, sizes, and shapes.

There are four contributions in this paper:
1) The STLE is introduced to perceive the thick and rough

edge characters of IR ship images while ignoring the small
and trivial details, so the horizon line and ship target boundary
can be well delineated. In addition, the AHLD is proposed
to automatically determine the existence of horizon line and
locate the horizon line, so the sky or land region clutters can
be reliably removed.

2) The AMHE is presented to accurately perceive the
brightness (bright or dark) of IR ship target, and adap-
tively segment the bright or dark ship target from sea
background. Meanwhile, the MHE guided gray-level mor-
phological reconstruction (EGMR) is designed to adaptively
smooth intricate sea clutters and heavy noise, and drive the
brightness and intensity of ship target to be more consistent,
so that the boundary information of the ship target can be
more reliably incorporated into the segmentation refinement
procedure.

3) By using the edge strength-based patch selectionmethod
in the binary STLE map to locate the regions-of-interest
(ROI) of ship target, the ship foreground map (SFM) is
developed to efficiently eliminate the sea clutter regions
whose gray-level intensity is approximate to the ship tar-
get and conquer the under-segmentation deficiency. Further-
more, by fully integrating the both advantages of STLE and
MHE, a new Watershed algorithm named as structure tensor
and maximum histogram entropy modified Watershed trans-
form (TEWT) is constructed to completely segment the IR
ship target with extremely uneven intensities.

4) Combining above methods and their advantages, an effi-
cient and robust infrared ship segmentation scheme is
developed and is superior to the compared state-of-the-art
ship target segmentation methods. Moreover, the proposed
method is computationally economical and has the potential
for real-time applications.

The structure of this paper is organized as follows:
Section II reviews the related works on IR ship target segmen-
tation. The signature characters of ship target and background
clutter in IR image are described in Section III. The efficiency
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of STLE is discussed and the AHLD for removing sky/land
clutters is proposed in the Section IV. In Section V, the
AMHE is presented to adaptively segment bright or dark ship
target from sea background. The two-step refinement for ship
target segmentation is developed in Section VI. Extensive
experiments are included in Section VII to evaluate the per-
formance of the proposed method. Finally, Section VIII gives
the conclusions of this paper.

II. RELATED WORK
Many infrared ship target segmentation algorithms have been
developed in recent years, which can be roughly divided
into four categories: background modeling-based methods,
thresholding-based methods, active contour-based methods,
and feature analysis-based methods.

In the background modeling-based methods, the back-
ground pixels are assumed to obey a certain probability
density function (PDF), while the ship target is regarded
as an abnormal component with great contrast. In [7], the
regions-of-interests are firstly located by variance weighted
information entropy and the background is molded by Gaus-
sian Markov random field (MRF), then the infrared tar-
get regions are extracted by background subtraction. In [8],
the infrared image is divided into a set of image blocks and
the radiation anomaly of each block is calculated by Gaus-
sian mixture model (GMM), then the ship target is checked
by a discriminative criterion in the anomaly image blocks.
Recently, Zhou et al. [9] developed a high order statistic fil-
tering in fractional Fourier domain to predict the background,
and the ship component is detected by the maximal peak
interval in the high order statistic curve. These background
modeling-based methods have outstanding performance for
common static maritime background suppression. However,
for infrared image with non-stationary complex background
clutters, simply treating the background as a pre-supposed
PDF is incorrect and will reduce the ship segmentation
performance.

In the thresholding-based methods, each pixel of infrared
image is considered as two-class (background class and
ship target class) division problem and is discriminated with
an optimal threshold by fully considering the gray inten-
sity distribution of infrared ship image. The well-known
two-dimensional (2-D) Otsu [10] and 2-D maximum
entropy [11], [12] were used to find the optimal segmentation
threshold by transferring the IR ship image into the 2-D
histogram. Zhang and Wu et al. [13], [14] employed Canny
operator to locate sea-sky line, and presented a recursive
Otsu segmentation method including global Otsu and local
Otsu to extract ship targets. Lately, Wang et al. [15] reported
an adaptive threshold segmentation method based on gray
histogram curve transform. By cyclically shifting the image
histogram, the average gray level could be the optimal thresh-
old for detecting targets. Yin et al. [16] proposed an IR ship
segmentation scheme based on fuzzy correlation and graph
cut optimization. The fuzzy correlation model constructed by
the S-shape function is used to search the optimal threshold

and the graph cut optimization is performed on the infrared
image for achieving completed segmentation result. Those
thresholding-based methods are widely used in the field
of ship target segmentation for their simplicity and easy-
implementation. Nevertheless, those methods only take the
gray intensity information into account, but less consider the
local spatial information and context information. Therefore,
the thresholding-based methods cannot extract real ship tar-
gets, when the gray level of sea clutters is close to that of ships
or the ship target and background are heterogeneous.

The active contour-based methods are based on the curve
evolution and convex optimization of a given energy function
to segment ship targets. In the early active contour-based
methods, Szpak and Tapamo [17] adopted a background sub-
traction method to detect moving ship targets and used the
level set-based active contour model to segment and track
the moving targets in the ocean. To further improve the accu-
racy of Szpak’s level set method, Frost and Tapamo [18] inte-
grated the ship prior-known shape information into the energy
functional for ship segmentation. Furthermore, Fang et al.
appended boundary information [19] and local entropy
energy [20] into the level set model to improve the segmen-
tation performance of ship targets with relatively heteroge-
neous intensity. These active contour-based methods work
well for ship target with relatively uneven intensity and weak
boundary to some extent. Whereas, the ship targets cannot be
segmented from the chaotic sea clutters with non-negligible
topology information. In addition, the segmentation perfor-
mance of these methods is easily affected by initial contour,
iterations and time consumption. These limitations decline
their application in practical ship target detection.

The feature analysis-based methods have been drawing
more and more attention in the past several years. In the
study of Tao et al. [21], the infrared image is filtered by
mean-shift algorithm based on gray feature space to form
divided regions, and then the divided regions are processed
by a graph region merging procedure to obtain the final
segmented ship target. The method can efficiently segment
the ship object under the disturbance of sea clutter. However,
because themethod is based on regionmerging, when the ship
target is too large or low contrast, the target will be wrongly
merged with the background. Liu et al. [22] presented a
multi-feature integration (MFI) method, which includes gray
intensity feature for segmenting potential target regions and
four shape features for identifying ship targets. By integrat-
ing more features of ship targets including local contrast,
salient linear structure and edge strength, the segmentation
performance of MFI method is further enhanced [23]. The
MFI methods can efficiently segment ship targets in het-
erogeneous background due to the full consideration of the
multiple features of ship targets. Nevertheless, these methods
are based on the assumption that the target regions are rela-
tively brighter than the dark sea surface, so they cannot detect
the negative-contrast dark ship targets under relatively bright
sea background. Bai et al. [1], [24] improved the classical
fuzzy c-means (FCM) clustering by adding nonlocal spatial
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information and the spatial shape information of the infrared
ship target, which can efficiently segment the ship target
in weakly textured backgrounds. In addition, the feature-
based fuzzy inference system was suggested in [25] to
segment infrared ship targets. In this system, the intensity
feature, local spatial feature and global spatial feature are
fuzzified using prior knowledge, and the ship targets are
segmented and extracted by fuzzy inference. The method
can effectively extract ship targets in low-contrast infrared
images. Yet since the fuzzy inference system is based on
prior knowledge, the uncertainty of ship segmentation results
would be increased in complex and changeable sea clutter.
In our previous work [26], we developed an IR ship target
detection method based on morphological reconstruction and
multi-feature analysis. Due to the reasonable integration of
multiple features after gray-level morphological reconstruc-
tion, the method is robust to the detection of both bright
and dark small ship target submerged in heavy sea clutter.
However, the method is based on the assumption that ship
targets are viewed as uniform regions under the sea back-
ground in long-distance IR imaging, so it cannot work well
for segmenting the entire ship target with uneven intensities
in near-distance imaging.

Comparing the advantages and disadvantages of above-
mentioned methods, although many studies have been
focused on the segmentation of IR ship target against complex
background in the past decades, it is still an open issue. To fur-
ther overcome the disturbance of heterogeneous background
clutters and heavy noise on the segmentation of ship targets
with unknown brightness, uneven intensities, low contrast
and different sizes, an effective and robust ship segmentation
scheme based on structure tensor and maximum histogram
entropy (MHE) according to the intrinsic IR imaging char-
acteristics between ship target and background clutter is pro-
posed in this paper.

III. SIGNATURE CHARACTERS OF SHIP TARGET AND
BACKGROUND CLUTTER IN INFRARED IMAGES
An IR ship image is commonly composed of three parts: ship
target, background clutter and noise component, and can be
briefly modeled as:

f (x, y) = fst (x, y)+ fb(x, y)+ fn(x, y) (1)

where f (x, y), fst (x, y), fb(x, y) and fn(x, y) denote the original
infrared image, the ship target image, the background clutter
image, and the noise image at pixel location (x, y), respec-
tively. In this paper, the noise fn is deemed as an additive
white Gaussian noise. Depending on the characters of fst ,
or the characters of fb or both of them, different ship target
segmentationmethods are designed in the past decades. Actu-
ally, in IR images, because different materials have different
thermal radiations, and the hotter object appears ‘‘white’’
while the cooler object appears ‘‘black’’, the ship target as
manmade objects in sea clutter can naturally form bright
or dark regions in the IR image despite the ship camou-
flage colors and the illumination condition in visible images.

FIGURE 1. Samples of infrared ship target images.

However, IR imaging results are complex and comprehensive
processes, which are easily affected by non-stationary inputs,
such as atmospheric radiations, solar refractions and engine
temperatures. Therefore, the characters of IR ship images are
usually various and unpredictable [26], [27].

Nevertheless, it can be seen from Fig. 1 that although dif-
ferent IR images have different ship targets and background
clutters, they still have some common points. Generally,
there are mainly three regions in IR ship images: sky/land,
ship target and sea background, and the three regions have
some certain distinguishable clues and properties. Through
the observation of the IR ship images, we find that there
are following three common properties and corresponding
difficulties:
Property 1: The horizon line (sea-sky-line/coastline) is a

thick and rough edge, which can be used as the cue to remove
the sky/land region clutters (such as buildings, cars, clouds
and islands), but it is often weak and has some discontinuous
and warping parts.
Property 2: The main body of ship target is much smaller

than sea background, and they have different gray-level inten-
sity features, but their intensities are inhomogeneous and
brightness (relative bright or dark) are unknown.
Property 3: The boundary of ship target is more conspic-

uous than its surroundings and sea background, but how to
reasonably delineate and incorporate it to refine the ship
target segmentation is a problem to be solved.

Depending on the above three properties and difficulties,
we develop an automatic IR ship target segmentation scheme
in this paper based on structure tensor and maximum his-
togram entropy (MHE). Firstly, the IR image is transformed
into the STLE map, where the thick and rough edge char-
acters of horizon line and ship target boundary can be well
depicted. Hence, according to Property 1, the AHLD method
based on binary STLE (BSTLE) and Hough transform is
proposed to efficiently judge whether the horizon line exists
and remove the sky/land region clutters. Then, according to
Property 2, the AMHE is presented to accurately detect the
ship hull brightness (relative dark or bright) and automatically
segment the main body of ship target from sea background.
However, the segmentation results of AMHE are relatively
coarse, and may cause some under- or over-segmentation
phenomena. To address those two problems, we introduce a
two-step strategy to refine the IR ship target segmentation
by reasonably incorporating the boundary information of
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FIGURE 2. Comparison results of different edge detectors on five representative IR ship images. (a) original IR ship images. (b) The STLE map
shown by color map. (c) The edge map computed by designed BSTLE. (d) The edge map computed Canny detector. (e) The edge map computed
by LoG operator. (f) The edge map computed by adaptive Canny detector.

ship target (according to Property 3). In order to make the
use of boundary information more reliable, the EGMR filter
is designed to adaptively smooth heavy noise clutters and
drive the brightness and intensity of ship target to be more
consistent. Thereby, after EGMR filtering, the recomputed
STLE (rSTLE) and recomputed BSTLE (rBSTLE) can be
obtained to reliably correct the boundary information of ship
target. After that, according to the boundary information of
ship target, the rBSTLE-based edge image patches selection
method is proposed to locate the ROI of ship target and then
the SFM is developed to address the under-segmentation.
Finally, the SFM and the complement of the ROI map are
extracted as the marker image, and the rSTLEmap is imposed
to the minima by the extracted marker image to obtain the
final rectified boundary information (FRBI) of ship target.
By taking the FRBI of ship target as the watershed line,
the TEWT is constructed to efficiently extract the entire ship
target. The details of the proposed method will be introduced
in the following sections.

IV. AUTOMATIC HORIZON LINE DETECTION FOR
SKY/LAND REGION CLUTTER REMOVAL
A. LARGE EIGENVALUES OF STRUCTURE TENSOR
According to theProperty 1 andProperty 3 of IR ship images,
both the horizon line and ship target boundary have obvious

thick and rough edge characters. Therefore, given the original
IR image f , the corresponding local gradient∇f can be firstly
computed to describe the edge characters:

∇f (x, y) =
[
∂f
∂x
,
∂f
∂y

]
(2)

∂f
∂x
=

f (x + 1, y)− f (x − 1, y)
2

(3)

∂f
∂y
=

f (x, y+ 1)− f (x, y− 1)
2

(4)

where ∂f
/
∂x and ∂f

/
∂y are the partial derivative value

in x direction and y direction, respectively. Because the
conventional local gradient detector (as Canny detector
in Fig. 2(d1-d5)) only considers the local pixel differences
and does not estimate the local image structure, it is easily
affected by noise and trivial clutters, resulting in the actual
thick and rough edges not being well perceived. Recently,
the structure tensor as a powerful tool for locally struc-
tural information analysis has achieved some impressive
results [28]–[30]. This is because the structure tensor is able
to transform the original relationship of the gradient in the
image into a new structure relationship, which is more effec-
tive for the perceptivity on the dominant edge at the local
image. In light of this finding, we use the structure tensor
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to perceive the thick and rough edge characters. Given a
2-D discrete image f , the structure tensor ST of image f is
calculated as:

ST (x, y)=Gσ (x, y)⊗
{
∇f (x, y)× [∇f (x, y)]T

}

=Gσ (x, y)⊗


(
∂f
∂x

)2
∂2f
∂x∂y

∂2f
∂x∂y

(
∂f
∂y

)2

=[ ST11 ST12ST21 ST22

]

(5)

where⊗ is the convolution operator, and the Gaussian kernel
function Gσ (x, y) is written as:

Gσ (x, y) =
1

2πσ 2 e
−
x2+y2

2σ2 (6)

The Gaussian kernel function can be considered as a win-
dow of ST to perceive the locally structural information and
σ determines the size of the window. The σ is empirically
set to 4. We have investigated the two eigenvalues of local
matrix ST , and found that the large one can depict the
thick and rough edges while ignoring the small and trivial
details [26], but the small one mainly locates corners and
has little contribution to the strong and thick edges. Hence,
here we simply utilize the large eigenvalues of structure
tensor (STLE) to depict the edge characters of horizon line
and ship target boundary in IR image, and the STLE map
λlarge can be expressed as:

λlarge(x, y)

= N
[
1
2

(
ST11 + ST22+

√
(ST11 − ST22)2 + 4ST12ST21

)]
(7)

where N (•) is the normalization function normalized into the
range [0,1] by usingmaximum andminimum values. Because
the STLE map can indicate the predominate direction and
the coherence degree of the gradient strength, the horizon
line and ship target boundary can be enhanced while the
trivial clutters and noise can be suppressed, as Fig. 2(b1-b5)
illustrates. After the calculation of STLE map, a simple but
effective edge detector namely binary STLE (BSTLE) is
designed, and the BSTLE can be derived as:

BSTLE(x, y) =

{
1, λlarge(x, y) ≥ τ
0, otherwise

(8)

here the adaptive threshold τ is determined as:

τ = λlarge + ε × std(λlarge) (9)

where λlarge and std(λlarge) are the mean value and standard
deviation of the STLE map λlarge, respectively. ε is an exper-
imentally selected constant and it can be chosen as 0.5 for
most maritime scenarios.

To illustrate the efficiency and robustness of the BSTLE to
delineate the thick and rough edge characters of the horizon
line and ship target boundary, we conducted experiments on

the five selected representative IR ship images with complex
maritime scene clutters. The classical edge detectors, such
as Canny detector [13], [14], Laplacian of Gaussian (LoG)
operator [6], and adaptive Canny detector [31] are chosen
as the compared methods, because they were commonly
used as the edge descriptors for the horizon line and ship
boundary. Fig. 2 shows the comparison results of different
edge detectors on five representative IR ship images. The
first IR image of Fig. 2 is a bright ship target disturbed by
intricate land clutters but with weak coastline, and its image
size is 640× 480. The second IR image is a bright ship target
corrupted by strong long-tail waves and heavyGaussian noise
(standard deviation is 20) in sea-sky background, and its
image size is 640 × 480. The third IR image is the bright
ship target interfered by the bright sea clutter region whose
gray-level intensity is close to the ship target and Gaussian
noise (standard deviation is 8), and its image size is 720×480.
The fourth IR image is a huge and dark ship target with
uneven intensities submerged in heavy sea clutters, and its
image size is 1450 × 1107. The fifth IR image is a large
and dark ship target with extremely uneven intensities, half
of which is buried in inhomogeneous sea background, and its
image size is 1024×775. Their aspect ratios are all shown as
4:3 in this paper for better display.

As can be seen from Fig. 2, the edge detection results of
Canny detector and LoG operator both leave a large amount
of false edges and eventually cannot detect the real edges of
horizon line and ship target contour on all five IR ship images.
They extract image edges by observing the changes of the
first or second-order directional derivatives around each pixel
neighborhood, but cannot consider the local image structure,
thus being susceptible to trivial details. Because the IR ship
image itself has a lot of noise and sea clutter, the Canny
detector and LoG operator will detect these tiny and trivial
edges, which eventually leads to the true thick and rough
edges not being well characterized. By integrating the his-
togram equalization algorithm, the adaptive Canny detector
is much better than above two algorithms and can roughly
detect the edges of the ship target on Fig. 2 (a1) and (a3)-(a5).
However, due to the use of histogram equalization algorithm,
the weak thick and rough edges will be suppressed, and the
adaptive Canny detector cannot detect the weak horizon line,
as shown in Fig. 2(f1). Moreover, the adaptive Canny detector
cannot well detect the ship target boundary when the image
is corrupted by heavy noise and sea clutters, as shown in
Fig. 2(f2)-(f5). As can be seen from Fig. 2(c), compared with
Canny detector, LoG operator and adaptive Canny detector,
the edge detection results of the BSTLE are better than those
of the other three detectors, which can completely delineate
all horizon lines and ship hull boundaries and has lower
false edge residues. This robustness is attributed to the fact
that the BSTLE can perceive local structure information by
utilizing Gaussian kernel function in structure tensor, and
can depict thick and rough edges while ignoring the trivial
details by projecting this information into the map of large
eigenvalues.

VOLUME 8, 2020 44803



Y. Li et al.: Automatic IR Ship Target Segmentation Based on Structure Tensor and Maximum Histogram Entropy

FIGURE 3. Illustration of Hough transform for horizon line extraction.
(a) Parameters of a straight line in x-y coordinate system in the image
domain; (b) Sine parametric curves of a straight line in θ-ρ coordinate
system.

B. AUTOMATIC HORIZON LINE DETECTION (AHLD)
Horizon line is a very important scene context information
for maritime target detection and segmentation [3], [14], [32],
because it can provide the region division clue to remove the
disturbance of sky/land region clutters (like clouds, buildings,
cars and islands) and validate the real ship targets. For this
reason, an automatic horizon line detection (AHLD) method
based on BSTLE and Hough transform is proposed in the
first step of segmentation to remove sky/land region clutters
and reduce the search space for ship targets. As shown in
Fig. 2(c1) and (c2), the thick and rough edge characters
of horizon line can be well delineated by BSTLE, and the
horizon line is approximately regarded as the longest thick
straight line in the BSTLE map. Therefore, as Fig. 3(a) illus-
trates, the horizon line in BSTLE map can be briefly written
as:

y = kx + b =
(
−
sin θ
cos θ

)
x +

ρ

cos θ
(10)

where k is the slope, b is the intercept of horizon line; θ is the
angle between the horizon line’s normal and y-axis, ρ is the
distance between origin and horizon line. Firstly, each edge
pixel with coordinates (x, y) in BSTLE map is transformed
into a Sine parametric curve in the Hough space (θ , ρ) using
the projection [3], [33]:

H (θ, ρ) =
Width∑
x=1

Height∑
y=1

(1− δ(BSTLE(x, y)))

×δ(x sin θ + y cos θ − ρ) (11)

where δ(•) represents the Dirac delta function and
BSTLE(x, y) is the computed edge map. Width and Height
represent the width and height of the IR image. This is
analogous to computing the 2D curve intersection counting
accumulators of (θ, ρ), as Fig. 3(b) shows. Accumulator cells
in the θ-ρ plane corresponding to few largest values H (θ, ρ)
determine the parameters of the several straight lines that pass
through the most edge points. Because the horizon line can be
well characterized in the BSTLEmap and presents the longest
thick straight line, we select the largest number H∗(θ∗, ρ∗) in

the line set after Hough transform to determine the potential
horizon line in the image.

Unfortunately, although Hough transform can reliably
locate the longest line (i.e. the potential horizon line) in each
BSTLE map, for practical maritime scenes, since the pitch
angle between the infrared imaging platform and the sea
level is variable, the existence of horizon line is unknown.
To cope with problem, a standard metric γ to judge whether
the horizon line exists or not is suggested as:

γ =
H∗ × cos θ∗

Width
(12)

where H∗ and θ∗ denote the edge point number and angle
computed by Hough transform of the potential horizon line,
respectively. Therefore, the standard metric γ (γ ∈ (0, 2))
fully considers the length, slope and edge thickness of the
detected line in the BSTLE map to determine whether it
is the horizon line. Based on the statistics and observation
of 90 different IR maritime scene images, the standard metric
is empirically set as γ = 0.7 in our experiments. This
means if the standard metric γ of the detected line is no
less than 0.7, then the detected line is considered as the real
horizon line, and meanwhile the pixel intensity of the region
above the horizon line (sky or land region) will be set to 0,
while the region below the horizon (sea region) will be totally
preserved. Otherwise, the horizon line does not exist in the
IR ship image, and the detected line will not be outputted,
so the whole image will be regarded as the sea region and
directly output to the next segmentation step. The whole
of the proposed automatic horizon line detection (AHLD)
algorithm for sky or land region clutters removal in IR ship
image based on STLE and Hough transform is summarized
in Algorithm 1.

The standard metrics γ of the detected line for
Fig. 2(a1-a5) are 1.2718, 1.3395, 0.3437, 0.4098 and 0.4419,
respectively. Therefore, through the calculation of the pro-
posed AHLD method, the results of the final detected
horizon line and the removal of the sky/land region for
Fig. 2(a1) and (a2) are shown in Fig. 4. No horizon line is
detected for Fig. 2(a3)-(a5), so the original IR ship images
are entirely output to the next processing step.

V. ADAPTIVE MAXIMUM HISTOGRAM ENTROPY FOR
SHIP TARGET BRIGHTNESS PERCEPTION
AND SEGMENTATION
As can be seen from Fig. 2 and Fig. 4, the sky/land
region clutters can be removed completely by the proposed
AHLD, leaving only sea region. After the removal operation,
the ship target segmentation in the sea region can be simply
treated as two-class (ship target class and sea background
class) gray-level classification problem, where the ship target
belong to one set of gray levels and the sea background to the
others [3]. Recall that the Property 2 of IR images, the main
body of ship target is much smaller than sea background,
and they have different gray-level intensity features. In other
words, the much larger proportion of sea background pixels is
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Algorithm 1 Proposed automatic horizon line detec-
tion (AHLD) algorithm.

Input:The original IR ship image f .
Output:Obtain the IR image of only the sea region (includ-
ing ship target and sea background).
1: Compute the structure tensor (ST) of IR ship image f

according to (2)-(6).
2: Calculate the large eigenvalues of structure ten-

sor (STLE) map by using (7).
3: Achieve the binary STLE (BSTLE) map according to

(8) and (9).
4: Search the longest straight line on BSTLE map by

Hough transform as the potential horizon line according
to (10) and (11).

5: Compute the standard metric γ of the potential horizon
line by using (12).

6: If the standard metric γ is larger than 0.7 do
The horizon line exists and the sky/land regions are

removed.
Else

The horizon line absents and the whole original IR
image f are remained.
End if

FIGURE 4. The results of the detected horizon line and the sky/land
region removal by the proposed AHLD method. (a) The longest
straight-line extraction in BSTLE map. (b) The corresponding horizon line
detection in the IR ship image. (c) The sky/land region removal by the
proposed AHLD method.

present in the IR ship image and dominates the gray-level his-
togram of image. Thus, the gray-level histogram distribution
of IR ship target and sea background would be unimodal or
close to unimodal. That is, the secondary peak (corresponding
to ship target) is either very small, or submerged within
the main peak (corresponding to sea background). Currently,
most studies focus on bright IR ship target segmentation,
where the background is the comparatively dark sea surface
and the ship targets are the relatively brighter regions, and the
sketch of unimodal threshold for bright ship target is shown in
Fig. 5(a) [22], [25]. However, in real cases, dark ship targets
whose infrared radiation is lower than surroundings also exist
in the backlighting IR images [15], [26], [34]. Analogous to
Fig. 5(a), the sketch of unimodal threshold for dark ship target
can be deduced as Fig. 5(b).

FIGURE 5. The sketches for unimodal threshold of gray-level histogram of
IR ship target and sea background. (a) The sketch of unimodal threshold
for bright ship target [22], [24]. (b) The sketch of unimodal threshold for
dark ship target.

References [35]–[37] indicated that for unimodal his-
togram of image, the Kapur’s maximum histogram
entropy (MHE) method [38] can successfully find the rea-
sonable threshold value that locates at the bottom valley of
the single peak histogram distribution. Inspired by this vision,
in view of the fact that the gray-level histogram distribution of
IR ship target and sea background would also be unimodal or
close to unimodal as analyzed in the above part, we adopt
MHE [38] to accurately perceive the brightness (relative
bright or dark) of ship target, and adaptively segment the
ship target from sea background. Concisely, let p(j) be the
probability of each gray-level j of the region (i.e. sea region)
below the horizon of the IR ship image after the sky/land
region removal operation. Then, the information entropy of
gray-level histogram of two classes (might be ship target class
and sea background class) can be written as:
Hd (I )==−

I∑
j=Imin

[
p(j)
p(D)

ln
(
p(j)
p(D)

)]
, Dark class

Hb(I )=−
Imax∑
j=I

[
p(j)

1− p(D)
ln
(

p(j)
1− p(D)

)]
, Bright class

(13)

where Hd (•) and Hb(•) are the information entropy of
gray-level histogram of dark class and bright class, p(D) =∑I

j=Imin
p(j) is the probability distribution of the dark class,

and I ∈ [Imin, Imax] denotes a threshold that should be deter-
mined to divide these two classes. According to themaximum
entropy principle [38], the optimal threshold Thr to divide
them is satisfied to:

Thr = arg max
I∈[Imin,Imax]

[Hd (I )+ Hb(I )] (14)

After the calculation of the MHE, the IR image is divided
into bright class and dark class by the computed opti-
mal threshold Thr . In the real-world IR maritime scenes,
the global-contrast brightness (bright or dark) of ship target
is unknown, so the adaptive ship target segmentation for both
bright and dark ones in IR image remains to be worthy of
further investigation. As Fig. 5 demonstrates, because the
much larger proportion of sea background pixels dominates
the histogram, the average intensity value of the IR ship image
after the sky/land region removal operation will be located
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Algorithm 2 Presented adaptive maximum histogram
entropy (AMHE) algorithm.

Input:The IR ship image f after sky/land region removal.
Output: Obtain the coarse segmentation result of IR ship
target.
1: Plot the gray-level histogram of the region (i.e. sea

region) below the horizon of the IR ship image after
the sky/land region removal operation, and count the
probability p(j) of each gray-level j of the sea region.

2: Find the optimal threshold Thr to divide the IR ship
image into dark class and bright class using (13)
and (14).

3: Calculate the average intensity value meanI of the sea
region of IR ship image with (15).

4: Compare the computed optimal threshold Thr and aver-
age intensity value meanI to accurately perceive the
main body brightness (bright or dark) of ship target.

5: Segment the bright or dark IR ship target from sea
background according to (16).

near the peak frequency Fpeak in the gray-level histogram,
and the average intensity value meanI is:

meanI =
1

NSea

Width∑
x=1

Height∑
y=kx+b

f (x, y) (15)

where NSea denotes the cardinality of the sea region pixel
data, and (x, y) ∈ R[1:Width,kx+b+1:Height] represents the sea
region after the sky/land region removal operation. Note that
here y starts with 1 if the horizon line absents. According
to the shape property of the unimodal gray-level histogram
shown in Fig. 5, we conclude that the computed optimal
threshold Thr is usually located at the right-side (left-side)
of the average intensity value meanI when the main body
of IR ship target is relatively bright (dark) compared with
the sea background. Based on this conclusion, the adaptive
maximum histogram entropy (AMHE) for automatically seg-
menting IR ship target from sea background is presented, and
can be defined as:

AMHE(x, y)=

1,
if (f (x, y) > Thr & Thr ≥ meanI )
‖ (f (x, y) < Thr & Thr < meanI )

0, otherwise

(16)

where (x, y) ∈ R[1:Width,kx+b+1:Height]. Thr ≥ meanI indi-
cates that the sea background (much larger proportion) is
the dark class, and the bright class f (x, y) > Thr will be
regarded as the ship target. Similarly, if Thr < meanI ,
it indicates that sea background (much larger proportion)
is the bright class, and the dark class f (x, y) < Thr will
be regarded as the ship target. The whole of the presented
adaptive maximum histogram entropy (AMHE) method for
adaptively segmenting bright or dark IR ship target from sea
background is summarized in Algorithm 2.
Fig. 6 shows the IR ship target segmentation results of the

presented AMHE. As can be seen from Fig. 6(b), without loss

FIGURE 6. Segmentation results of the proposed AMHE. (a) The IR ship
images only include ship target and sea background after the AHLD
operation. (b) The gray-level histograms of (a), and the mean value
(marked by red line) and computed threshold (marked by green line) can
adaptively indicate the main body brightness of ship target. (c) The ship
target segmentation results of the proposed AMHE.

of generality of the shape of unimodal gray-level histogram,
the gray-level histograms of ship target and sea background
obey the analyzed unimodal distribution model. Thereby,
the presented AMHE method can accurately perceive the
brightness (bright or dark) of ship target, and automatically
segment the ship target from the sea background, as Fig. 6(c)
illustrates. However, the segmentation results of AMHE are
relatively coarse. Although most of clutters with uneven
intensity can be eliminated after the sky/land region removal
operation, the sea region may also have some intensity inho-
mogeneity parts whose gray-level intensity is close to the
ship target. Accordingly, as shown in Fig. 6(c1) and (c3), the
AMHE can separate the IR ship targets from sea background,
but it introduces some background clutters into the results,
and generates under-segmentation phenomena. Furthermore,
the AMHE is also affected by noise and fluctuating sea
clutters, as Fig. 6(c2), (c4) and (c5) shows. More seriously,
for large IR ship targets with uneven intensities, although
the AMHE can detect the brightness and segment the main
body of ship target, the parts of the ship target with opposite
or indistinctive intensities will be mistakenly divided into
background andmissed, as shown in Fig. 6(c4) and especially
Fig. 6(c5). These are because the AMHE only takes the
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gray-level intensity distribution property of IR ship target
and sea background into the consideration, which may lead
to under-segmentation or over-segmentation phenomena in
different degrees. To overcome these problems, the boundary
information of ship target is reasonably incorporated into the
next refinement step of IR ship target segmentation.

VI. TWO-STEP REFINEMENT FOR IR SHIP
TARGET SEGMENTATION
A. MHE GUIDED GRAY-LEVEL MORPHOLOGICAL
RECONSTRUCTION
The IR ship images are usually affected by heavy sea clutters,
high noise levels and uneven intensities, which increases
the difficulty of real boundary extraction of ship target,
as shown in Fig. 2. Therefore, an effective filter process-
ing is necessary to mitigate those disturbances and improve
the boundary characteristics of ship target. In our previ-
ous work [26], we have suggested that the closing-based
(opening-based) gray-level morphological reconstruction
(GMR) operation [39], [40] can be efficiently used for
pre-processing bright (dark) IR ship image to suppress heavy
sea clutters and noise components and enhance the contour
feature of ship target. However, if the brightness (bright or
dark) of the ship target relative to the background is unknown
in advance, the classical GMR-based pre-processing proce-
dure cannot be adaptively selected to filter the IR ship image.
Fortunately, as analyzed in above Section V, the main body
brightness of ship target can be accurately perceived accord-
ing to the comparison of the optimal threshold Thr computed
by MHE and average intensity value meanI. Therefore, com-
bining their advantages to adaptively smooth bright or dark
IR ship image, the MHE guided gray-level morphological
reconstruction (EGMR) filter is designed as follows:

EGMR(x, y) =
{
CGMR[f (x, y)], if Thr ≥ meanI
OGMR[f (x, y)], else Thr < meanI

(17)

where (x, y) ∈ R[1:Width,kx+b+1:Height]. CGMR(•) and
OGMR(•) denote the closing- and opening-based GMR oper-
ators, respectively. Here Thr ≥ meanI (Thr < meanI ) indi-
cates that the main body of ship target is bright (dark) relative
to the sea background, then the EGMR filter can adaptively
select CGMR (OGMR) to smooth the sea region of IR ship
image. We compute the STLE map and BSTLE edge map in
the sea region after EGMR filtering to obtain the boundary
information of ship target, and the recomputed STLE and
BSTLE are respectively named as rSTLE and rBSTLE.

Fig. 7 shows the ship target boundary information cor-
rected by the EGMR filter. Comparing Fig. 7(b) with (a),
the EGMR can adaptively smooth bright or dark IR ship
images, filter heavy noise components as shown in Fig. 7(b2)
and (b3) and suppress intricate sea clutters as shown
in Fig. 7(b4) and (b5) while preserving the main body bright-
ness and intensity of ship targets. The heavier the noise level
and sea clutter are, themore obvious the filtering efficiency of
EGMR is. More importantly, the EGMRfilter can remove the
inner parts of the ship target with strong opposite intensities

FIGURE 7. The ship target boundary information corrected by the EGMR
filter. (a) The original IR ship images. (b) The EGMR filtered IR ship
images. (c) The 3-D mesh plots for the STLE map. (d) The 3-D mesh plots
for the rSTLE map. (e) The edge maps computed by the designed rBSTLE.

and drive the brightness and intensity of these parts to bemore
consistent with the gray scale of the main body, as shown
in Fig. 7(b4) and (b5). As can be seen from Fig. 2(c) and
Fig. 7(c), the STLE map of original IR ship image can
generally depict the hull boundaries. However, there are still
noise clutters that cannot be ignored, and the local abrupt
boundary caused by the ship interior with strong opposite
intensity suddenly becomes very large thus inhibiting the real
boundary of ship target, which eventually leads to the failure
of the idea of using the boundary information to improve the
IR ship target segmentation. Because the EGMR can suppress
strong noise clutters and make the interior of ship targets with
extremely opposite intensity tend to be consistent, the rSTLE
map of the EGMR filtered IR images is more robust to heavy
noise clutters and can enhance the real hull boundaries of
extremely uneven ship target, as Fig. 7(d) illustrates. Finally,
by comparing Fig. 7(e) with Fig. 2(c), the rBSTLE edge
map of the EGMR filtered IR ship images can completely
delineate the boundaries of ship target with much less false
edges and noise. Therefore, the rSTLE map and rBSTLE
edge map corrected by the EGMR filter can greatly highlight
the real boundary information of ship target and effectively
suppress false alarms and noise, so as to make it more reliable
to refine the IR ship target segmentation by exploiting the
boundary information.

B. SHIP FOREGROUND MAP (SFM)
Inspired by the Property 3 of IR ship images, the boundary
of ship target is more conspicuous than its surroundings
and sea background, and the boundary information of IR
ship target can be explicitly delineated by the rSTLE map
and rBSTLE edge map on the EGMR filtered IR image.
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Based on these positive factors, the boundary information
is reasonably incorporated into the refinement step of the
IR ship target segmentation. It is noteworthy that the image
patch-based processing approach has been proved its suc-
cess for local image information measure [41]–[44]. In this
paper, we also adopt the patch-based approach to locate the
regions-of-interest (ROI) of ship target in the rBSTLE edge
map for refining the ship target segmentation and reducing
computing costs. Firstly, a group of image patches with an
image-adaptive window size S×S is generated by sliding the
window from left and top to right and down in the rBSTLE
edge map after sky/land region removal operation, and the
step length is S

/
2. The image-adaptive window size is chosen

as S = 0.05×Width of the IR image. Thus, the group of image
patches is expressed as:

P = [p1,p2, . . . ,pi, . . . ,pTN ] ∈ R[1:Width,kx+b+1:Height] (18)

where pi is the matrix of the i-th image patch, TN is the total
number of image patches. Looking back at Fig. 7(e), the edge
pixel number of ship target is much larger than that of sea
background in the rBSTLE map. To suppress the residual
trivial clutters and check the real boundary patches of ship
target in the group of image patches, the rBSTLE-based edge
image patches selection method is proposed:

pi(x ′, y′) =

{
1, Ei ≥ ξ
0, otherwise

(19)

where Ei denotes the edge strength (i.e. total number of edge
pixel in the i-th image patch), (x ′, y′) represents the pixel
location in the local patch. The ξ is the empirically threshold
of the edge strength, and to select more boundary patches of
ship target we use a relatively small value ξ = 0.05 × S2 in
this paper. By the definition of the image patches selection
method, if the edge strength Ei of the patch pi is larger than
the threshold ξ , the patch can be regarded as the boundary
patch of ship target and all matrix elements of pi are replaced
by 1, otherwise by 0.

Then, the selected patches are all-ones matrixes for cluster-
ing a new selected group PSel ⊆ P, and they are orderly pro-
jected into a 2-D array of all-zeros (its size is the same as the
original IR ship image) to obtain the regions-of-interest (ROI)
map of ship target, which is derived by:

ROIst (x, y) =

{
1, ∀(x, y) ∈ PSel
0, otherwise

(20)

That means if the location (x, y) belongs to any patch of
the new selected group PSel , the pixel value is set to 1.
To further eliminate the interference of sea clutter regions
whose gray-level intensity is approximate to the ship target
and address the under-segmentation problem of the presented
ACHME method, the ship foreground map (SFM) is com-
puted by performing pixel-based logical-AND operator on
the AMHE map and the ROI map of ship target:

SFM (x, y) = AMHE(x, y) AND ROIst (x, y) (21)

Algorithm 3 Developed ship foreground map (SFM) algo-
rithm.
Input:The segmentation result map of the AMHE, the IR
ship image f after sky/land region removal.
Output:Acquire the ship foreground map (SFM).
1: Smooth the sea region of IR ship image f by the

designed EGMR filter according to (17).
2: Calculate the rSTLE map and rBSTLE map in the sea

region after EGMR filtering with (2-9).
3: Group a set of patches in the rBSTLE edge map by

sliding window step-by-step:
P = [p1,p2, . . . ,pi, . . . ,pN ]
∈ R[x=1:Width,y=kx+b:Height]

4: For patch index i = 1:TN do
If the edge strengthEi of the patch pi is larger than the

threshold ξ , the patch will be selected as the boundary
patch of ship target according to (19);

Cluster the selected patch pi as the new selected
group PSel ⊆ P;
End for.

5: Project the selected patches into the 2-D array of
all-zeros to obtain the regions-of-interest (ROI) map of
ship target according to (20).

6: Perform logical-AND operator on the AMHE map and
the ROI map of ship targets with (21).

The whole of the developed ship foreground map (SFM)
method for efficiently locating ship target region and
solving the under-segmentation problem is summarized in
Algorithm 3.

Fig. 8 gives the computation process of the developed
SFM. It can be seen from Fig. 8(a) and (b) that the IR
ship targets can be accurately masked by the selected image
patches according to the rBSTLE-based edge image patches
selection method. Hence, the ROI of ship targets can be reli-
ably located via projecting the group of selected patches on a
2-D array of all-zeroswith the same size as the original image,
as Fig. 8(c) illustrates. Finally, as presented in Fig. 8(d),
the developed SFM can efficiently remove the interference
of sea clutter regions whose gray-level intensity is approx-
imate to the ship target and solve the under-segmentation
problem, especially for Fig. 8(d1) and (d3). This is because
the SFM properly integrates gray-level intensity information
and boundary information constraint to extract the ship tar-
gets from the sea background and can largely eliminate the
redundant complex background clutters. However, although
the SFM can accurately segment the main body of ship tar-
gets from sea background, it still cannot alleviate the phe-
nomena of over-segmentation, as Fig. 8(d2), (d4) and (d5)
demonstrates. To cope with over-segmentation of IR ship
target, a modified Watershed transform is further constructed
in the next part by fully taking the advantages of maxi-
mum histogram entropy and large eigenvalues of structure
tensor.
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FIGURE 8. The computation process of ship foreground map (SFM).
(a) The red boxes in the rBSTLE edge maps have outlined the finally
selected image patches. (b) The red boxes on the EGMR filtered IR ship
images have marked the selected patches. (c) The obtained ROI map of
ship target. (d) The results of the developed SFM.

C. STRUCTURE TENSOR AND MAXIMUM HISTOGRAM
ENTROPY MODIFIED WATERSHED TRANSFORM (TEWT)
The marker-controlled gradient based Watershed transform
(MGWT) strategy can incorporate the advantages of both
region-based (pixel similarity) and edge-based (pixel discon-
tinuity) techniques to helpfully reduce the over-segmentation
problem and is practical for the quick and effective
post-processing of large size image [45]–[47]. The marker
extraction and boundary representation are two key issues
for MGWT methods, which directly determine the effects of
its segmentation. If the extraction of marks is unreasonable
or the indistinctive boundary cannot be depicted well, the
segmentation effect ofMGWTwill decrease sharply.With the
consideration that the object boundaries cannot pass through
the marker image in the MGWT method, the boundary infor-
mation is rectified according to the marker image to get
the final boundary information of ship target that is more
appropriate to the reality. Depending on this point, we use the
SFM eroded with three-pixel disk-shaped structuring element
SFMero as the internal marker coincided with objects of inter-
est, and utilize the complement of the ROI map of ship target
ROIst as the external marker associated with background.
The marker image can be easily extracted by performing
logical-OR operator on the internal marker and the external
marker:

IMarker (x, y) = SFMero(x, y) OR ROIst (x, y) (22)

FIGURE 9. The final IR ship segmentation results. (a) The extracted
marker images. (b) The obtained FRBI of ship targets as the watershed
lines. (c) The watershed regions are labeled by different colors. (d) The
final ship target segmentation results after the ETWT processing.

By the definition of the extracted marker image IMarker ,
the background (i.e. the external marker part) will be clipped
out and the main body of ship target (i.e. the internal marker
part) will be labeled as seed regions for the catchment basins
of Watershed transform, as Fig. 9(a) shows. Recall that the
rSTLE map is robust to heavy noise clutters and can com-
pletely depict the real hull boundaries of extremely uneven
ship target without introducing spurious edges. Therefore,
the rSTLE map can be further imposed to the minima by the
extracted marker image to obtain the final rectified boundary
information (FRBI) of ship target:

FRBI (x, y) =

{
rSTLE(x, y), Imarker (x, y) = 0
−Inf , otherwise

(23)

where −Inf denotes the negative infinity −∞ for punching
the holes in each regional minimum. Hence, the FRBI of
ship target can be constructed as the watershed ridgelines
for Watershed transform, as Fig 9(b) illustrates. The FRBI
fully integrates the both advantages of maximum histogram
entropy and large eigenvalues of structure tensor, and can
be efficiently exploited to modify the Vincent’s Watershed
transform [48] for totally segmenting ship target. Suppose
that the FRBI of ship target as the watershed line is the dam,
and that the catchment basins are entirely flooded by letting
water rise through the punched holes until the last state is
reached when only the top of the dam is visible above the
waterline. The last state corresponds to the desired segmenta-
tion result of Watershed transform, and the pixels are labeled
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FIGURE 10. Representative IR ship images of the test dataset.

Algorithm 4 The structure tensor and maximum histogram
entropy modified Watershed transform (TEWT).

Input:The SFM, the ROI map of ship target, and the
rSTLE map.
Output:Obtain the final IR ship target segmentation result.
1: Extract the marker image IMarker by performing

logical-OR operator on the eroded SFM and the com-
plement of the ROI map with (22).

2: Impose the rSTLEmap into the minima by the extracted
marker image IMarker to obtain the final rectified bound-
ary information FRBI of ship target, according to (23).

3: Construct the structure tensor and maximum histogram
entropy modified Watershed transform TEWT derived
from (24) to extract the whole IR ship target.

into different watershed regions, as Fig 9(c) demonstrates.
Finally, a new Watershed algorithm named as the structure
tensor and maximum histogram entropy modified Watershed
transform (TEWT) for IR ship target segmentation is con-
structed, and can be simply written as:

TEWT (x, y)=

{
1, Labeling [Watershed (FRBI (x, y))] > 1
0, Labeling [Watershed (FRBI (x, y))] = 1

(24)

where Watershed(•) represents the Vincent’s Watershed
transform [48], Labeling(•) denotes the labeling method
sorted according to the pixel number of each region. The pix-
els labeled 1 belong to the biggest watershed region, the pixels
labeled 2 belong to the second biggest watershed region, and
so on. It can be seen from Fig 9(c), since the FRBI of ship
target as an effective barrier for the water flow, the biggest
watershed region corresponding to the background marked
by orange color can be entirely isolated, and the other water-
shed regions marked by randomly shuffled colors would
belong to ship target. Therefore, we assign the pixels labeled
1 as the background, and merge the pixels labeled greater
than 1 as the ship target. The whole of the constructed
structure tensor and maximum histogram entropy modified
Watershed transform (TEWT) for efficiently addressing the
over-segmentation problem is summarized in Algorithm 4.

Fig. 9 shows the final IR ship segmentation results after the
ETWT processing. As shown in Fig. 9(a), the marker images
is accurately extracted by performing logical-OR operator on
the eroded SFM and the complement of the ROI map. The
rSTLE map is further imposed to the minima by the extracted
marker image to obtain the FRBI of ship targets, as Fig. 9(b)
shows. Since the FRBI of ship targets as an effective barrier
for the water flow, the biggest watershed region correspond-
ing to the background marked by orange color can be entirely
isolated and the other watershed regions would belong to ship
target, as Fig. 9(c) shows. Finally, by fully integrating the
both advantages of maximum histogram entropy and large
eigenvalues of structure tensor, the IR ship targets can be
almost completely segmented after the constructed TEWT
post-processing, and there is scarcely residual clutter in the
final segmentation results, as illustrated in Fig. 9(d).

VII. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, a series of experiments on IR ship images
under various maritime scenes are conducted to validate the
accuracy and effectiveness of the proposed automatic IR
ship target segmentation algorithm. Furthermore, some clas-
sical algorithms and state-of-the-art algorithms are selected
for performance comparison. These experiments are per-
formed in Matlab 2016a on the computer with 3.2 Ghz Intel
i5-6500 CPU and 16 Gb random access memory.

A. TEST DATASET
The test dataset is composed of 200 IR ship images, which
are collected from diverse sources, including the maritime
detection, classification and tracking (MarDCT) dataset [49],
the PETS2016 dataset [50], the Al Salam Boccaccio 98
images (ASB98i) [51], and our own captured dataset (OCD).
Fig. 10 shows 14 representative IR ship images of the test
dataset used for visual performance evaluation, and each
image represents a typical maritime scenario in IR ship
detection applications. These IR ship images are labeled
as Img.1∼14. Fig. 10(a) describes an obscure ship target
disturbed by intricate land clutters but with weak coastline.
Fig. 10(b) is a bright ship target corrupted by strong long-tail
waves and heavy Gaussian noise in sea-sky background.
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TABLE 1. Detail information of the test IR ship images.

Fig. 10(c) is the bright ship target interfered by the bright
sea clutter regions whose gray-level intensity is close to the
ship target and Gaussian noise. Fig. 10(d) is a huge and dark
ship target with uneven intensities submerged in heavy sea
clutters. Fig. 10(e) and (f) describe a large and dark ship target
with extremely uneven intensities, half of which is buried
in inhomogeneous sea background. Fig. 10(g) depicts four
synthesized ship targets with different sizes appearing near
the sea-sky-line. Fig. 10(h) displays two bright ship targets
located in a relatively mild sea and sky background. Fig. 10(i)
is a low-contrast and fast-moving ship target surrounded by
tail wave interference. Fig. 10(j) shows two bright ship targets
interfered by bright sea clutter regions, cars and land clut-
ters. Fig. 10(k) is a bright ship target under a heterogeneous
background with sea, sky and islands. Fig. 10(l) shows a
bright uneven ship target appeared in a mild sea background.
Fig. 10(m) and (n) describe an extremely ambiguous ship
target almost completely embedded in the sea background.
Table 1 lists the detail information about the test IR ship
images. Accordingly, the test images are variable in scene
type, clutter type, target type, target size, target quantity, and
image size. Testing on this dataset proves that the algorithm
is suitable for different ship targets in many IR maritime
scenarios.

B. RESULTS OF INFRARED SHIP SEGMENTATION
1) PARAMETER SETTINGS
As above Section IV analysis, the standard metric γ fully
considers the length, slope and edge thickness of the detected
line to determine whether it is the horizon line, and γ of IR
ship images with horizon line is almost much larger than that
of IR ship images without horizon line. Accordingly, in the
experiment, we randomly selected 45 IR ship images with
horizon line and 45 ship images without horizon line, and
computed their standard metric γ one by one. The computed
γ of the selected IR ship images are shown in Fig. 11.

FIGURE 11. The standard metrics γ of IR ship images and the
experimentally selected distinctive threshold γ∗.

The red point line denotes the γ of the images with horizon
line, and the green point line denotes the γ of the images
without horizon line. As can be seen from Fig. 11, because
the standard metrics γ of IR images with or without horizon
line have a distinctive discrimination, the OTSU method [52]
is utilized to find the optimal distinctive threshold:

γ ∗ = OTSU (γ ) (25)

where γ = [γ1, γ2, . . . , γj, . . . , γ90] is the group of standard
metrics of IR ship images, and j denotes the image index.
Then, the computed distinctive threshold γ ∗ = 0.7020 can be
used to clearly discriminate the existences of horizon line in
IR ship images, as drawn by the purple line in Fig. 11. There-
fore, the distinctive threshold is empirically set γ ∗ = 0.7 in
our experiments to reliably judge whether the horizon line
exists.

Table 2 lists the standard metric γ of the potential hori-
zon line of each test IR image. The standard metrics γ of
Imgs.1, 2, 7-11, and 14 are much larger than the distinctive
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TABLE 2. Standard metrics of the potential horizon line in test IR images.

FIGURE 12. Results of the final detected horizon line by the proposed
AHLD method.

threshold γ ∗ = 0.7, and their corresponding results of
detected horizon line by the proposed AHLD method are
shown in Fig. 4 and Fig. 12, meanwhile the γ of Imgs.3-6, 12,
and 13 are much smaller than the distinctive threshold.
Accordingly, the existence of horizon line in each IR ship
image can be accurately judged by the suggested standard
metric and distinctive threshold, and the sky or land region
clutters can be reliably removed by the proposed AHLD
method.

2) VISUAL COMPARISON TO IR SHIP TARGET
SEGMENTATION BASELINE METHODS
In this part, three classical ship target segmentation methods
and five state-of-the-art ship target segmentation methods
are introduced in the comparison experiments to evalu-
ate the performance of the proposed IR ship target seg-
mentation method. The weighted entropy induced Markov
random field (WEMRF) [7], the 2-D maximum entropy
(2DME) [11], [12], and the mean shift segmentation
(MSS) [21] are chosen as the representative classical ship
target segmentation methods. The fuzzy correlation based
graph cut scheme (FCGCS) [16], the entropy energy driven
Chan–Vese model (ECVM) [20], the multi-feature integra-
tion (MFI) [22], the Markov random filed constraint spa-
tial fuzzy c-means method (MRF-SFCM) [1], [24], and the
morphological reconstruction based multi-feature analysis
(MRMFA) [26] are selected as the representative state-of-the-
art methods. Because those methods have been well studied,
they can be used for assessing the performance of the new IR
ship target segmentation method. The detailed parameter set-
tings of the compared algorithms are summarized in Table 3.

Fig. 13 shows the IR ship target segmentation results
of different methods for Fig. 10. The original IR ship
images with different ship targets in different backgrounds

are shown in Fig. 13(a), the initial curves (manually set)
of the ECVM method are indicated in Fig. 13(b), and the
ground-truth segmentation images (manually labeled) are
listed in Fig. 13(l). The WEMRF method firstly calculates
the initial segmentation by utilizing variance weighted infor-
mation entropy (WIE) to locate the ROI, and then separates
the ship targets from the background by using the Gaussian
MRF with the iterated condition mode (ICM). The WIE
can roughly locate the ship target region and boundary, and
the MRF is commonly used for background modeling via
capturing the spatial constraints among pixels, hence the
method can extract the ship targets with high local contrast,
as presented in Fig. 13(c1), (c3), (c11) and (c12). However,
due to the characteristics of low SNR, low SCR and com-
plex background of the IR ship images, the MRF-based
model is easily classify some of the background into the
foreground, so theWEMRFwill produce under-segmentation
phenomena, as shown in Fig. 13(c1)–(c14). The 2DME is
a threshold processing method based on 2-D histogram
analysis of the image. When the pixel intensity percentage
between the ship target and the background is relatively
obvious, the method can find the optimal threshold by
the 2D maximum entropy for segmenting the ship tar-
gets, as shown in Fig. 13(d4), (d6) and (d12). However,
the method only considers the gray-level intensity distri-
bution and is sensitive to the pixel percentage of ship
target and background. Therefore, it can be seen from
Fig. 13(d1)–(d3), (d5), (d7)–(d11) and (d13) that the method
will generate under- or over-segmentation results for the com-
plex and heterogeneous backgrounds. The MSS is a feature-
space analysis algorithm based on graph region merging, so
it can efficiently extract the regions of ship targets against a
homogenous background, as shown in Fig. 13(e3) and (e12).
Nevertheless, the MSS does not work well for the envi-
ronmental maritime conditions with multiple background
types, as Fig. 13(e1), (e2) and (e7)–(e11) shows. More seri-
ously, the MSS method cannot segment the ship targets
with low contrast or too large, because they will be merged
into the background during the region merging process,
as Fig. 13(e4)–(e6), (e9), (e13) and (e14) illustrates.

The FCGCS method uses the maximum 2-parition fuzzy
correlation model to compress the dark pixels interval and
enhance the bright pixel region for achieving segmentation
threshold, and implements the graph cut to optimize the
segmentation result, so this method can segment the relatively
bright ship target even with low contrast, as displayed in
Fig. 13(f9) and (f12)–(f14). Unfortunately, since the FCGCS
only takes the intensity information of IR ship image into
consideration, the background clutter which has the simi-
lar gray level as the ship target still cannot be suppressed,
as Fig. 13(f1)–(f8), (f10) and (f11) displays. It should be
noted that because the 2DME, MSS, and FCGCS meth-
ods cannot perceive the brightness of ship target, they all
fail to extract the dark ship target from the brighter mar-
itime background for Fig. 13(a4)–(a6). The ECVM extracts
ship targets through seeking the closed contours by the
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TABLE 3. Parameter settings of the compared methods.

local entropy energy driven curve evolution and iterative
convex optimization, and it can successfully segment ship
targets with topology structure information, as presented
in Fig. 13(g1), (g3) and (g12)–(g14). Whereas, because sea
clutter will destroy the topology structure of ship targets
and the islands may also have strong contour informa-
tion, the segmentation results of ECVM method will be
greatly affected, as Fig. 13(g2) and (g4)–(g11) demonstrates.
In addition, the method must manually set the initial contour
placement, as indicated in Fig. 13(b), and is vulnerable to the
maximum iterations, as listed in Table 3. The MFI method
reasonably uses two approaches including iterative global
thresholding and ship shape constraints to segment ship tar-
gets, hence the MFI presents better performance than the
above four classical methods for ship targets with even inten-
sity, as shown in Fig. 13(h2), (h3), (h7)–(h11) and (h13). The
MFI is based on the assumption that the ship target region is
even andmuch brighter than the background, so it cannot suc-
cessfully segment the whole ship targets with uneven inten-
sity, as Fig. 13(h12) and (h14) shows, and almost completely
discards the real dark ship targets buried in a brighter sea
background, as Fig. 13(h4)–(h6) shows. In the MRF-SFCM
method, the Gaussian filter and top-hat transform are firstly
used to smooth background, and then the MRF constrained
fuzzy c-means clustering is applied for ship target seg-
mentation. It uses nonlocal spatial information and spatial
contour shape information to improve the performance of
FCM and gets satisfactory results in most cases, as depicted
in Fig. 13(i1), (i3), (i7), (i8), and (i10)–(i13). However, due
to the interferences of noise, sea clutter and tail waves,
the contour of the ship target is ambiguous, resulting
in insufficient or excessive segmentation, as presented
in Fig. 13(i2), (i9) and (i14). Moreover, as the top-hat trans-
formwill overwhelm the dark ship target, those pixels belong-
ing to the ship target will be regarded as background and

will not be extracted, as shown in Fig. 13(i4)–(i6). The
MRMFA integrates multiple features after GMR operation,
including intensity, local contrast, contour, and shape fea-
tures, and the effect is excellent for both bright and dark
ship targets with uniform intensity and obvious local contrast,
as depicted in Fig. 13(j1), (j3), (j7), and (j9)–(j11). However,
because the method also regards the ship targets as uni-
form regions under the sea background in IR images due
to long imaging distance, the method obtains poor perfor-
mance for segmenting the whole ship target with uneven
intensities in near-distance IR imaging, as presented in
Fig. 13(j2), (j4)–(j6), (j8), and (j12)–(j14).

Nevertheless, from Fig. 13(k1)–(k14), it can be seen that
the proposed method can precisely segment all the ship tar-
gets with lowest false alarms and is more robust than other
compared eight methods, especially for the ship targets with
unknown brightness, and uneven intensity. This robustness is
attributed to the reasonable integration of good performances
of structure tensor and maximum histogram entropy accord-
ing to the intrinsic IR imaging characteristics between ship
target and background clutter. Firstly, based on the scene
context clue, the AHLD is proposed to efficiently judge the
existence of horizon line and remove sky/land region clutters.
Then, in view of the intensity distribution of the ship target
and the sea background would be unimodal, the AMHE
is presented to accurately perceive the brightness (dark or
bright) of ship target, and coarsely segment the bright or
dark ship target from sea background. Finally, considering
the ship target boundary information, the SFM is devel-
oped to eliminate residual clutter regions whose gray-level
intensity is approximate to the ship target and address the
under-segmentation. Additionally, via fully integrating the
both advantages of maximum histogram entropy and large
eigenvalues of structure tensor, a new modified Watershed
algorithm namely TEWT is constructed to completely extract
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FIGURE 13. Segmentation results of different methods for the Figure 11. (a) The original IR ship images; (b) The initial curve
(manually set) of the ECVM; (c)The segmentation results of WEMRF; (d) The segmentation results of 2DME; (e) The segmentation
results of MSS; (f) The segmentation results of FCGCS; (g1-9) The segmentation results of ECVM; (h) The segmentation results of MFI;
(i) The segmentation results of MRF-SFCM; (j) The segmentation results of MRMFA; (k) The segmentation results of the proposed
method; (l) The ground-truth segmentation images (manually labeled).
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FIGURE 13. (Continued.) Segmentation results of different methods for the Figure 11. (a) The original IR ship images; (b) The initial
curve (manually set) of the ECVM; (c)The segmentation results of WEMRF; (d) The segmentation results of 2DME; (e) The
segmentation results of MSS; (f) The segmentation results of FCGCS; (g1-9) The segmentation results of ECVM; (h) The segmentation
results of MFI; (i) The segmentation results of MRF-SFCM; (j) The segmentation results of MRMFA; (k) The segmentation results of
the proposed method; (l) The ground-truth segmentation images (manually labeled).
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FIGURE 13. (Continued.) Segmentation results of different methods for the Figure 11. (a) The original IR ship images; (b) The initial curve
(manually set) of the ECVM; (c)The segmentation results of WEMRF; (d) The segmentation results of 2DME; (e) The segmentation results of
MSS; (f) The segmentation results of FCGCS; (g1-9) The segmentation results of ECVM; (h) The segmentation results of MFI; (i) The
segmentation results of MRF-SFCM; (j) The segmentation results of MRMFA; (k) The segmentation results of the proposed method; (l) The
ground-truth segmentation images (manually labeled).

the entire ship target. By combining above approaches and
their advantages, the proposed method can effectively sup-
press the intricate background, and deal with the effects of
the unknown brightness, uneven intensity, low contrast and
variable size of ship target.

3) QUANTITATIVE COMPARISON TO IR SHIP TARGET
SEGMENTATION BASELINE METHODS
To further evaluate the performance of IR ship target seg-
mentation methods in the experiments, the misclassifica-
tion error (ME) [1], [22] and the relative foreground area
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TABLE 4. The segmentation performance of different methods for various IR ship images.

error (RAE) [1], [22] are utilized as quantitative evaluation
metrics. The ME denotes the percentage of pixels that are
wrongly classified, that is, the background misclassified as
foreground and the foreground misclassified as background.
The RAE represents the segmented target area accuracy
between the segmented image and the ground-truth image
(manually labeled). Hence, the smaller ME and RAE imply
the better results, and defined as:

ME = 1−
|BO ∩ BT | + |FO ∩ FT |

|BO| + |FO|
(26)

RAE =

{
AO−AT
AO

, AT < AO
AT−AO
AT

, AT ≥ AO
(27)

where BO and FO are the background pixels and ship target
pixels in the ground-truth image (manually labeled), respec-
tively. BT and FT are the background pixels and ship target

pixels of segmented image, respectively. |•| represents the
cardinality of a set. AO is the area of true target (manually
labeled), and AT is the area of segmented ship target. The
ME and RAE values of different methods for various images
are listed in Table 4, and the average ME and RAE values of
each method on test dataset are listed in the second and third
row of Table 5, respectively. Table 4 and Table 5 show that
the proposed method obtains smaller average values for ME
and RAE on all 14 IR ship images and test dataset than other
compared eight methods, which implies that the proposed
method has fewer misclassified pixels, and the ship target
segmented by the proposed method is the closest to the ideal
segmentation result in all methods. Consequently, the exper-
imental results verify that the proposed method not only has
better IR ship target segmentation capability compared with
other classical and state-of-the-art methods, but also can work
stably for different complex maritime scenarios.
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TABLE 5. Quantitative evaluation of each method on test dataset.

FIGURE 14. Running times of different methods for various IR ship
images.

In order to analyze the time complexity of the proposed
method, we counted the running times of different methods
for various IR ship images, as shown in Fig. 14, and computed
the average running time of each method on test dataset,
as listed in the fourth row of Table 5. For better visual scale
comparison, the vertical coordinate in Fig. 14 is the running
time represented by logarithmic coordinate. It can be seen that
the proposedmethod costsmore time than 2DMEmethod, but
it is faster than other compared state-of-the-art methods. The
reason is that the proposed method is based on the structure
tensor, the maximum histogram entropy, and the new Water-
shed transform constructed by the ROI, which require less
computation time. Therefore, through parallel computation
and well-designed hardware, it can be easily implemented
to real-time applications. To conclude, the proposed method
not only outperforms the state-of-the-art methods in IR ship
target segmentation but also is computationally economical.

VIII. CONCLUSION
In this paper, a new ship target segmentation method based on
structure tensor andMHE is presented according to the intrin-
sic IR imaging properties between ship target and background
clutter. The proposed method can automatically segment the
ship target from diverse background clutters. By transforming
the IR image into the STLE map, the horizon line and ship
target boundary can be explicitly depicted. According to the
scene context clue of IR ship images, the AHLD is proposed
to judge whether the horizon line exists and locate the hori-
zon line, so the sky or land region clutters can be reliably
removed. Based on the intensity distribution of ship target
and sea background, the AMHE is presented to accurately
perceive the brightness (dark or bright) of ship target, thus the
bright or dark IR ship target can be automatically segmented

from sea background. The EGMRfilter is designed to smooth
heavy noise and fluctuating sea clutters while driving the
brightness and intensity of ship target to be more consistent,
so the ship target boundary information can be more reliably
exploited to refine the IR ship target segmentation. Consid-
ering the ship target boundary information, the ROI of ship
target can be accurately located by using edge strength-based
image patch selection method, thus the SFM can be devel-
oped to solve the under-segmentation. Finally, the modified
Watershed algorithm namely TEWT is constructed by fully
integrating the advantages of the structure tensor and MHE,
so the entire ship target can be completely extracted. Exten-
sive experiments verify that the proposed algorithm has better
IR ship segmentation performance than compared state-of-
the-art methods, including WEMRF, 2DME, MSS, FCGCS,
CVM, MFI, MRF-SFCM, and MRMFA. The experimental
results also demonstrate that the proposed method can work
stably for ship target with unknown brightness, uneven inten-
sities, low contrast, variable quantities, sizes, and shapes with
reasonable computational burden.
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