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ABSTRACT Pedestrian trajectory prediction is fundamental to a wide range of scientific research work
and industrial applications. Most of the current advanced trajectory prediction methods incorporate context
information such as pedestrian neighbourhood, labelled static obstacles, and the background scene into the
trajectory prediction process. In contrast to these methods which require rich contexts, the method in our
paper focuses on predicting a pedestrian’s future trajectory using his/her observed part of the trajectory
only. Our method, which we refer to as LVTA, is a Location-Velocity-Temporal Attention LSTM model
where two temporal attention mechanisms are applied to the hidden state vectors from the location and
velocity LSTM layers. In addition, a location-velocity attention layer embedded inside a tweak module is
used to improve the predicted location and velocity coordinates before they are passed to the next time step.
Extensive experiments conducted on three large benchmark datasets and comparison with eleven existing
trajectory prediction methods demonstrate that LVTA achieves competitive prediction performance. Specif-
ically, LVTA attains 9.19 pixels Average Displacement Error (ADE) and 17.28 pixels Final Displacement
Error (FDE) for the Central Station dataset, and 0.46 metres ADE and 0.92 metres FDE for the ETH&UCY
datasets. Furthermore, evaluation on using LVTA to generate trajectories of different prediction lengths and
on new scenes without the need of retraining confirms that it has good generalizability.

INDEX TERMS Pedestrian trajectory prediction, long short-termmemory (LSTM), attentionmodels, human
movement analysis.

I. INTRODUCTION
Trajectory prediction is essential for a wide range of appli-
cations such as forecasting trajectories of vulnerable road
users in traffic environments [1] and location based ser-
vices [2], [3]. It is also an important component for Advan-
ced Driver Assistance Systems (ADAS) and autonomous
vehicles [4].

One way to predict pedestrians’ trajectories in a scene is to
model the physics of the human movement patterns. A classi-
cal paper is the social force model (SFM) [5] which uses two
different types of forces to capture these patterns: the attrac-
tive forces which pull people towards their destinations; and
the repulsive forces which keep people apart and away from
obstacles in the scene. In the last few years, there has been a
surge of interest in pedestrian trajectory prediction and vari-
ous new methods have been reported. Methods that were pro-
posed prior to 2015 follow the SFM method by exploring the
physical aspects of crowd movement; for instance, by min-
imizing collisions among pedestrians [6], by modelling the
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pedestrian dynamics in terms of interaction forces and poten-
tial energies of particles [7], by taking into account small
obstacles, like vending machines, dumpster, etc, in the scene
that influence the pedestrian trajectories [8], or by modelling
human motion using ensemble Kalman filtering [9]. With
the booming of data-driven deep learning networks, we see
a vast growth recently in the literature of pedestrian trajec-
tory prediction, focusing on the use of Convolutional Neu-
ral Networks (CNNs), Recurrent Neural Networks (RNNs),
and Long Short-Term Memory (LSTM) networks [10]–[21].
However, the concept of modelling human-human interaction
and human-scene relationship remains in these new methods
and has been implemented in the form of social pooling layers
or social pooling modules of the network [11], [22], [23].
Some of these new methods incorporate additional informa-
tion like the head poses of the pedestrians [17] or give a
more explicit treatment to the scene contexts such as static
obstacles [24], labelled entrance/exit regions [25], and even
the whole background scenes [12], [18].

While the methods mentioned above produce promising
prediction results, they require the neighbouring pedestrians
to be captured alongside each person of interest (POI) both
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spatially and temporally. Not only does this requirement
increase the computation time and storage space, a proper
neighbourhood size around the POI must be defined for
each scene in order for these methods to produce their best
performance. This further reduces the generalizability of
these methods, i.e., the methods cannot be directly applied
to scenes on which the methods were not trained. Obviously,
if scene information is not available, methods that require
scene information as input cannot be applied either.

Contrary to the methods outlined above, simpler yet
similarly effective methods have also been studied. One
example is the trajectory prediction method of Nikhil and
Morris [14]. To achieve real-time performance, their method
uses parallelizable convolutional layers and incorporates no
social or scene information. Another example is the method
of Schöller et al. [26] where the authors revisit and use
the simple constant velocity model to predict the relative
displacements between consecutive location points. In our
previous work [27], apart from the velocity information com-
puted directly from the input trajectories, our joint Location
Velocity Attention LSTM based network (LVA) also requires
no neighbourhood or scene information. For ADAS and
driverless vehicle applications where computation resources
are limited, these simpler methods are more preferrable.

In this paper, we extend our previous LVA method by
incorporating two attention mechanisms, which we refer to as
temporal attention, to appropriately weight the hidden state
vectors output by the location-LSTM and velocity-LSTM
layers of the network. We name our proposed trajectory
prediction method LVTA, where ‘T’ stands for the added
temporal attention mechanism. Our LVTA method has the
advantage that the prediction process only depends on the
trajectory of the POI. Neither scene information nor neigh-
bouring trajectories is required in LVTA. Instead, a tweak
module is used to fuse the location and velocity information
captured in the observed part of the POI’s trajectory. Because
of that, the architectures of both methods do not have pool-
ing layers or pooling modules as used in [11], [22], [23].
As shown in our previous work [27], LVA already has good
prediction performance, our extensive experiments confirm
that the inclusion of the temporal attention mechanisms sig-
nificantly improves the performance of LVTA and its gen-
eralizability. Specifically, our proposed LVTA outperforms
LVA when both methods are trained and tested on the same
scene (dataset). In addition, LVTA has better generalizability,
as demonstrated from its superior performance on forecasting
predictions on a new, unseen scene. For different prediction
lengths of trajectories, LVTA also consistently outperforms
LVA. Furthermore, compared to several recent trajectory pre-
diction methods, LVTA achieves state-of-the-art prediction
performance on two large benchmark datasets.

In summary, our research contributions are:
• Our proposed architecture has two LSTM layers to cap-
ture the embeddings of location and velocity coordinates
of trajectories. It does not rely on scene information and
has good generalizability.

• Our architecture has a module, which includes a
location-velocity attention layer, to tweak the outputs
from the LSTM layers. As demonstrated in our abla-
tion study, the tweak module helps to give significant
improvement to the prediction results.

• The temporal attention mechanism incorporated in our
LVTA method is inspired by the work in machine
translation. It captures the relationship of the hid-
den state vectors between the observed and predicted
parts of trajectories. Our experiments show that tem-
poral attention helps further improve the prediction
performance.

The rest of the paper is organized as follows. Section II
gives an overview of the relatedwork on trajectory prediction.
Section III details our LVTA architecture and the two main
attention mechanisms. Section IV begins with an outline of
the datasets and the metrics used in the experiments. Detailed
implementation, including hyperparameter tuning, ablation
study, generalizability study, and comparison with state-of-
the-art methods take up a large part of this section. Also
included in the section is the computation times of LVA and
LVTA. Finally, the paper is concluded in Section V.

II. RELATED WORK
In this section, we give a brief review of the literature on
pedestrian trajectory prediction, focusing especially on tech-
niques that we compare with our proposed method. A large
number of existing methods employ context information such
as human-human interaction (e.g., [11], [16], [20], [22], [28])
and/or human-space interaction (e.g., [12], [18], [21], [24],
[29], [30]). Similar to our work, there are also methods that
incorporate attention mechanisms. We therefore group exist-
ing methods into two broad categories, namely methods with
context and methods with attention, in the two subsections
below.

A. TRAJECTORY PREDICTION WITH CONTEXT
The Social LSTM model of Alahi et al. [11] is one of the
early trajectory prediction methods based on the sequence
generation model from Graves [31]. Their model combines
the behaviour of other people within a local neighbourhood of
the POI. Another piece of early work is the behaviour-CNN
method of Yi et al. [32], where the pedestrians’ walking paths
are encoded and predicted in the form of 3D displacement
volumes using a number of convolutional layers. As each
displacement volume contains all pedestrians at the same
time period, the behaviour-CNN is able to capture their influ-
ence to each other. Following the work of Alahi et al. [11],
and with the success of the Generative Adversarial Network
(GAN) [33] in other applications [34], [35], Gupta et al. [22]
propose the Social GAN model (abbreviated as SGAN)
to generate multiple trajectory predictions for each input
observed trajectory. Their network includes a pooling mod-
ule to expand the neighbourhood around each POI to cover
the whole scene so all the pedestrians can be considered
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in the training and prediction processes. This effectively
expands the local neighbourhood context to a global level.
The Social-Aware Generative Adversarial Imitation Learning
(SA-GAIL) method of Zou et al. [25] is another example
based on GAN. The authors combined a collision avoid-
ance regularization and the Social LSTM into the trajec-
tory prediction process. Also using the LSTM architecture,
the SR-LSTM method [20] handles pedestrians’ interaction
as a message passing process among them.

Incorporating scene context as well in the trajectory pre-
diction process often requires the coding of the scene features
as part of the network architecture; for example, apart from
encoding the neighbourhood information, Xue et al. [18] use
a deep CNN to encode scene context in their hierarchical
LSTM network; Liang et al. [21] use a pretrained scene
segmentation model to extract a number of semantic scene
classes and compute their scene CNN features using two
convolutional layers in their network. Similar to Liang et al.’s
work, SoPhie [30] also extracts semantic scene features
but it uses the raw features from the VGGnet-19 network
and projects them to a lower dimension. Like the SGAN
model [22], SoPhie uses GAN to generate multiple future
paths for each input trajectory.

B. TRAJECTORY PREDICTION INCLUDING ATTENTION
The effectiveness of attention mechanism was first demon-
strated by Bahdanau et al. [36] in the neural machine trans-
lation task. Luong et al. [37] later improved the machine
translation performance by designing different score func-
tions (e.g., the dot, general, and concat score functions) for
calculating the attention scores. Since then, attention based
deep learning models have been widely used in other tasks,
such as image captioning [38], video captioning [39], action
recognition [40], [41], person re-identification [42], [43], and
time series data classification [44], [45].

In the area of trajectory prediction, attention mechanisms
have been used for capturing the relative importances of
neighbours around a person [46] and for learning the embed-
ding information of a person’s own trajectory plus the con-
text information of surrounding neighbours [47]. Different
from the above two papers, Sadeghian et al. [48] focus
on the problem of a wider scope: one that involves both
pedestrians and vehicles. The authors use the term agent
to denote a human or a vehicle in a scene. An attention
mechanism was used in their network for input scene images
to highlight the important regions for each agent’s future path.
For the SoPhie method [30] mentioned above, two atten-
tion modules are used to deal with scene context and social
interactions.

Our LVTA differs from the methods reviewed above in that
it does not require neighbouring and scene information when
the method predicts the future trajectory of each POI. It uses
both temporal attention and location-velocity mechanisms on
the trajectory embeddings. This is different from the attention
mechanism used in [30], [46], [47].

III. METHODOLOGY
A. PROBLEM FORMULATION
We represent the trajectory of the ith pedestrian as a time
sequence of two dimensional coordinates (x it , y

i
t ), obtained

via a tracking method or manual labelling. The coordinates
can be in metres on the ground or in image pixel unit. The aim
of trajectory prediction is to use the observed locations of the
ith pedestrian, for all i, from time t = 1 to t = Tobs to predict
locations from t = Tobs + 1 to t = Tobs + Tpred, where Tobs
and Tpred denote, respectively, the lengths of the observed and
predicted trajectories. We represent these two segments of
each trajectory as Xi

obs =
[(
x i1, y

i
1

)
, · · · ,

(
x iTobs , y

i
Tobs

)]
and

Xi
pred =

[ (
x iTobs+1, y

i
Tobs+1

)
, · · · ,

(
x iTobs+Tpred , y

i
Tobs+Tpred

) ]
.

From the observed trajectory Xi
obs, the velocity informa-

tion Ui
obs =

[(
ui1, v

i
1

)
, · · · ,

(
uiTobs , v

i
Tobs

)]
is obtained from

the finite differences ofXi
obs over the time steps.We duplicate

the first velocity term
(
ui1, v

i
1

)
so that Ui

obs has the same
number of time steps as Xi

obs. The velocity information com-
puted above is equivalent to the relative coordinates used in
some implementation [49] in the literature. In this paper, our
interest is to generate the predicted trajectory Xi

pred based on
the combined location and velocity information

{
Xi
obs,U

i
obs

}
of the observed trajectory. To simplify the explanation in the
later subsections, the superscript i is dropped from hereon.

B. THE ARCHITECTURE OF LVTA
As shown in Figure 1, two separate LSTM layers are used
in the proposed LVTA architecture: a location LSTM layer
and a velocity LSTM layer. These two layers, each of which
is of hidden dimension Nh, process the embedding vectors
elt and evt of the location and velocity coordinates of the
observed trajectories in parallel. To simplify the visualiza-
tion, the embedding layers of embedding size Ne are omitted
in the figure. Thus, starting with the location and velocity
coordinates (xt , yt) and (ut , vt) at time t , we have a series
of equations listed below:

elt = φ
l
(
xt , yt ;Wl

e

)
, (1)

hlt+1 = LSTMl
(
hlt , e

l
t ;W

l
)
, (2)(

x̂t , ŷt
)>
= Wl

oh
l
t + blo, (3)

evt = φ
v (ut , vt ;Wv

e
)
, (4)

hvt+1 = LSTMv (hvt , evt ;Wv)
, (5)(

ût , v̂t
)>
= Wv

oh
v
t + bvo. (6)

In Eqs. (1)-(6), LSTMl(·) and LSTMv(·) represent the loca-
tion LSTM layer and velocity LSTM layer (the white and blue
boxes in Figure 1). Functions φl(·) and φv(·) are embedding
functions for the location and the velocity coordinates. The
W terms are the different weight matrices, e.g., Wl

e and Wv
e

denote the weight matrices of two embedding layers;Wl and
Wv denote the weight matrices of the two LSTM layers.
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FIGURE 1. Our proposed LVTA network. Two LSTM layers are used for the location and the velocity embeddings separately. For each LSTM layer,
a temporal attention mechanism is used to generate context vectors. In the prediction phase, the outputs from the location and velocity LSTM layers
are modified by a tweak module before they are passed to the next time step. To simplify the visualization, the embedding vectors el

t and ev
t , for all

t , are not shown.

Similarly, all the b terms denote the bias vectors and the h
terms denote the hidden states of LSTM layers.

The embedding layer and the two LSTM layers in the
network are designed to capture the latent representation of
trajectories and the complex pedestrian movement patterns
in the scene. The network also includes two attention mech-
anisms (red boxes in Figure 1) for the location and velocity
LSTM layers. The job of these attention mechanisms is to
combine the latent information captured in the observation
phase of each trajectory to yield better predicted trajectories
in the prediction phase.

In the observation phase (t = 1 to Tobs), (xt , yt) and (ut , vt)
are directly acquired from each observed trajectory. In the
prediction phase (t = Tobs+ 1 to Tobs+ Tpred), the inputs
at time step t come from the tweak module which operates
on the inputs and predicted outputs at time step t − 1. The
subsections below detail the attention mechanisms of the
LVTA architecture.

C. TEMPORAL ATTENTION
The temporal attention mechanism captures the relationships
between a time step of the prediction phase and different time
steps of the observed part of the input trajectory. In a nutshell,
it outputs a different weight for each of these relationships
based on the input that is passed to it. As a result, this extra
information in temporal attention is able to help producemore
accurate prediction and improve the robustness in predicting
trajectories of different lengths.

To simplify the description, the remaining part of this
subsection focuses only on the temporal attention mechanism
for the location LSTM layer. The mechanism for the velocity
LSTM layer is similar.
Following the use of context vectors in machine transla-

tion [36] and in trajectory prediction [47] to capture differ-
ent attentions at different time steps of the input sequence,
we introduce the context vector clt to the LVTA architec-
ture. For the trajectory observation phase, the hidden states
hl =

[
hl1, . . . ,h

l
Tobs

]
are computed from Eq. (2). During the

trajectory prediction phase (Tobs + 1 6 t 6 Tpred), Eq. (2)
becomes:

hlt+1 = LSTMl
(
hlt , c

l
t , e

l
t ;W

l
)
, (7)

where the context vector clt is defined in terms of all the
hidden states in the observation phase, i.e.,

clt =
Tobs∑
s=1

β ls,th
l
s. (8)

All the β ls,t terms in the equation above are the attention
weights between time step s 6 Tobs and time step t > Tobs
that need to be computed to yield a good estimate of each clt .
They are defined in terms of the hidden state vectors. In the
paper of Luong et al. [37], the authors describe three different
score functions to model the relationship between hls and hlt .
To get the value of β ls,t , we adopt their general score function
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FIGURE 2. Details of the tweak module shown in Figure 1. It has three
layers: a location-velocity attention layer, a softmax layer, and a tweak
layer.

given by fT below:

fT
(
hls,h

l
t

)
= hls

>
Wl

T h
l
t (9)

as we found it suitable in capturing the correlation between
different components of ht . Here, Wl

T ∈ R
Nh×Nh is a weight

matrix that needs to be trained. The softmax function is then
used to normalized all the β ls,t terms so that

∑Tobs
s=1 βs,t = 1,

i.e.,

β ls,t =
exp fT

(
hls,h

l
t−1

)∑Tobs
k=1 exp fT

(
hlt−1,h

l
k

) . (10)

The LVTA architecture thus has two extra weight matrices,
Wl

T and Wv
T, that require training in the training phase for

the location and velocity temporal attention mechanisms.

D. THE TWEAK MODULE
Our LVTA architecture differs from the conventional LSTM
sequence generation models such as the widely used Seq2Seq
model [50] and the Encoder-Decoder model [51]. In con-
ventional LSTM models, the output of the LSTM network
at the last time step is directly used as input for the next time
step in the decoder phase. In our proposed LVTA architecture,
each time step produces two outputs: location coordinates and
velocity coordinates. We can therefore use a tweak module
(yellow boxes in Figures 1 and 2) to refine them at time step
t before passing them on to time step t + 1.
Let (x̂t , ŷt ) and (ût , v̂t ) be the output location and velocity

coordinates predicted by the LSTMl and LSTMv layers at
time step t . Rather than using them as inputs for time t + 1,
they are passed to the tweak module. The role of the tweak
module is to feed (x̂t , ŷt ) and (ût , v̂t ) through a few layers to
yield better location and velocity coordinates (xt+1, yt+1) and
(ut+1, vt+1) for the next time step. The tweakmodule consists
of three layers (Figure 2):

• The location-velocity (LV) attention layer, denoted by
fLV, is implemented as a linear fully connected layer
with 4 input neurons and 2 output neurons. If a more
complex model is desired, the attention layer can be
easily replaced by, for instance, a multilayer perceptron.

• The output from the LV attention layer is then passed
through a softmax activation layer to yield two weight
parameters, αlt and α

v
t as follows:(

αlt , α
v
t

)
= softmax

(
fLV

(
x̂t , ŷt , ût , v̂t

))
. (11)

The softmax function is used so that αlt and α
v
t can be

treated as probability values, i.e., 0 6 αlt , α
v
t 6 1, and

αlt + α
v
t = 1.

• With αlt and α
v
t from Eq. (11) above and input location

coordinates (xt , yt ), the job of the final tweak layer is to
compute the input location and velocity coordinates for
time step t + 1 using the following equations:

xt+1 = αlt x̂t + α
v
t
(
xt + ût

)
, (12)

yt+1 = αlt ŷt + α
v
t
(
yt + v̂t

)
, (13)

ut+1 = xt+1 − xt , (14)

vt+1 = yt+1 − yt . (15)

The location-velocity attention mechanism implemented
in the tweak module described above allows the model to
learn αlt and α

v
t through the model training process, update

(xt , yt) and (ut , vt) at each time step, and keep track of the
relationship between the location and velocity information
along the way. Its realisation introduces only a small 4 × 2
weight matrix that requires training.

The results from Eqs. (12)-(15) are fed into the network at
time step t + 1. The procedure described above is repeated
until the time step t = Tpred is reached.
It should be noted that the two types of attention mecha-

nisms described so far differ in two respects:

1) The two temporal attention mechanisms (see the pre-
vious subsection) operate on the location hidden state
vectors and velocity hidden state vectors separately,
whereas the location-velocity attention layer inside the
tweak module (Figure 2) operates on the location and
velocity coordinates together.

2) The temporal attention mechanisms capture the rela-
tionship of the hidden state vectors between the obser-
vation phase and the prediction phase, whereas the
location-velocity attention layer captures the relation-
ship between the location and velocity coordinates at
the prediction phase only.

IV. EXPERIMENTS
A. DATASETS AND METRICS
1) CENTRAL STATION DATASET
This large publicly available dataset [52] contains over
10,000 trajectories extracted from a 33 minutes long
surveillance video. The scene resolution is 720 (width) ×
480 (height) in pixels. We preprocessed the dataset by nor-
malizing all the trajectory coordinates so that they are in
the [0, 1] range. We use 10-fold cross-validation to evaluate
the performance of our method. Each fold is in turn used
as the test set while the remaining folds are used as the

44580 VOLUME 8, 2020



H. Xue et al.: Location-Velocity-Temporal Attention LSTM Model for Pedestrian Trajectory Prediction

training set. The average performance from the 10 folds is
reported for this dataset.

2) ETH/UCY DATASET
The combined ETH [6] and UCY [53] dataset is another
widely used public dataset for evaluating trajectory prediction
methods. It contains a total of 5 scenes, which have over
1,000 trajectories altogether, known as ETH, HOTEL (both
are from ETH), UNIV, ZARA1, and ZARA2 (the last three
are from UCY). We followed the common leave-one-out
evaluation policy that has been used in [11], [20], [22], [30],
i.e., we trained on four scenes and tested on the remaining
scene. The labelled coordinates of each pedestrian are given
in metres. The prediction results of our method and its vari-
ants reported later in the paper are the performance on the test
set.

3) EDINBURGH DATASET
This dataset consists of trajectories of people walking around
the Informatics Forum at the University of Edinburgh [54].
It covers several months of observations, resulting in over
92,000 trajectories in total. Same as [47], 20,000 trajectories
and 5,000 trajectories were randomly sampled to form the
training set and the test set. The scene images are 640×480
pixels, where each pixel covers a 24.7mm × 24.7mm region
on the ground. This dataset was used specifically for eval-
uating the generalizability of the proposed architecture, i.e.,
we trained LVTA using the Central Station dataset and tested
its prediction performance on the test set of this dataset.

4) EVALUATION METRICS
Similar to the previous work [10], [11], [17], [18], [22], [25],
[27], [29], we use the average displacement error (ADE) [6]
and the final displacement error (FDE) [11] metrics to quan-
titatively evaluate the trajectory prediction performance of
each method. The former is the mean Euclidean distance
between all the points in the predicted and ground truth
trajectories averaged over all the trajectories. The latter is
the average Euclidean distance between their final points
(or the destination points).Where appropriate, we also use the
normADE, which is the ADE being normalized with respect
to the image size.

B. IMPLEMENTATION DETAILS
Our LVTA method and its variants were trained by the Adam
optimizer [55] with 0.001 learning rate for 500 epochs with a
mini batch size m = 128. The loss function L is given by:

L(Xgt,Xpred) =
1
m

m∑
i=1

‖Xi
gt − Xi

pred‖
2, (16)

where Xi
gt and Xi

pred denote the ground truth trajectory and
predicted trajectory of the ith pedestrian in the mini batch.
As the velocity term for each time step is not used for theADE
and FDE computation, it is not included in the loss function.

Our proposed LVTA and its variants were implemented1

using the Pytorch framework in Python and trained with an
NVIDIA GeForce GTX-1080 GPU. For some of the experi-
ments on the ETH/UCY dataset, we used an NVIDIA Titan
XP GPU.

1) HYPERPARAMETER TUNING
We focus on three hyperparameters that are crucial to the
performance of the proposed trajectory prediction method:
the dropout rate, the hidden dimension Nh of the LSTM
layers, and the embedding dimension Ne of the embedding
layers.

To investigate how these three hyperparameters influence
the performance of LVTA, all the combination of the follow-
ing hyperparameter values were evaluated:

• Nh: [ 32, 64, 128, 256 ]
• Ne: [ 64, 128, 256 ]
• dropout: [ 0.1, 0.2, 0.5 ]

resulting in 36 experiments in total. The above sets of val-
ues for the hidden dimension and embedding dimension are
chosen based on the values used in other trajectory prediction
methods in the literature, e.g., {Nh = 128,Ne = 64} is used
in [11] and {Nh = 256,Ne = 128} is used in [21].
For this hyperparameter tuning process, we randomly

selected from the Central Station dataset 80% and 10% of
the trajectories to form the training and validation sets. The
ADE and FDE for different combinations of hyperparameter
values on the validation set are shown in Figure 3. From left
to right, the dropout rate is 0.1, 0.2 and 0.5 for each column.
In each subfigure, a lighter background colour means a lower
error (i.e., better prediction performance). It can be seen
in Figure 3 that the prediction performance of LVTA becomes
worse when the hidden size Nh (same for the embedding
size Ne) is either too small or too large. These results are
expected as Nh and Ne determine the number of parameters
(weights of each layer in the network) that require training.
Large Nh and Ne values result in more parameters and may
lead to overfitting problems, whereas small Nh and Ne values
do not allow the algorithm to model the complex trajectory
patterns. For all the experiments reported in the rest of this
section, both the embedding size Ne and the hidden size Nh
were therefore set to 128 and the dropout rate was set to 0.5,
as this hyperparameter value combination (see Figure 3) has
the lowest ADE (9.17) and FDE (17.04) on the validation set.

Figure 4 illustrates the loss plot of the training set and
validation set for this optimal hyperparameter setting. The
figure shows how the mean squared error (MSE) varies as the
number of epochs increases. In the region of 300-500 epochs,
the training curve (blue) continues to drop but the decrease in
MSE is very small whereas the validation curve (red) fluctu-
ates slightly and comes to a plateau slowly. The two curves
are very close to each other, indicating that the network is well
behaved and that there is no overfitting issue. The MSE that

1Codes can be found: https://github.com/xuehaouwa/LVTA.
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FIGURE 3. ADE (top row) and FDE (bottom row) on the validation set of the Central Station dataset under
different hyperparameter combinations. From left to right, the dropout rate is 0.1, 0.2, and 0.5 for each column.

FIGURE 4. A loss plot showing the decrease of Mean Squared Error (MSE)
over the number of training epochs for the training and validation sets.
The optimal hyperparameter values used in the plot are: Ne = Nh = 128;
dropout rate = 0.5.

is minimized in the loss function (Eq. 16) is analogous to the
average displacement error (ADE) in trajectory prediction.

2) ABLATION STUDY
We evaluate the prediction performance of three variants of
our LVTA method:

a: THE VANILLA LV MODEL
This variant is the LVTA architecture with both the tweak
module and the temporal attention mechanism removed. It
can be considered as a modified vanilla LSTM model. The
difference between the traditional vanilla LSTM model and
the vanilla LV model is the input and output of the network.
For the vanilla LSTM, the input and output at each time
step are 2D location vectors of the trajectory in the form
(xt , yt); for the vanilla LV model, these are vectors of the
form (xt , yt , ut , vt), i.e., Xpred ∈ R

Tpred×4 and the predicted
trajectory is obtained by extracting the (xt , yt) coordinates
from the 4D vectors.

b: THE CONSTANT LOCATION-VELOCITY
ATTENTION MODEL (CLVA)
This variant of LVTA has the tweak module (Figure 2)
modified by removing both the location-velocity attention

layer (fLV) and the softmax layer. Rather than training the
network to learn fLV for the optimal values for αlt and α

v
t ,

the CLVA model has both αlt and α
v
t set to 0.5 for all the

time steps in the prediction phase, i.e., αlt = αvt = 0.5, for
Tobs + 1 6 t 6 Tobs + Tpred.

c: THE TEMPORAL ATTENTION MODEL (LVT)
This variant is the LVTA architecture with only the tweak
module removed. Thus, the location-velocity attention mech-
anism (see Figure 2) inside the tweak modeule is not included
either. LVT contains the two temporal attention mechanisms
shown in Figure 1.

d: THE LOCATION-VELOCITY ATTENTION MODEL (LVA)
This variant does not have the two temporal attention mech-
anisms. It is the same method originally proposed in our
previous work [27]. LVA contains the full tweak module,
i.e., including the location-velocity attention mechanism.

3) METHODS BEING COMPARED
We compare the performance of our LVTA method as well
as its four variants (vanilla LV, CLVA, LVT, and LVA)
against 12 methods listed below: Linear, Social Force Model
(SFM) [5], Linear Trajectory Avoidance (LTA) [6], Behaviour
CNN [32], Vanilla LSTM, SA-GAIL [25], Social-LSTM [11],
Attention-LSTM [47], SGAN [22], Nikhil and Morris [14],
Liang et al. [21], and SR-LSTM [20].
Depending on the dataset and availability of results, not all

methods were compared on all datasets.

C. RESULTS ON THE CENTRAL STATION DATASET
Table 1 shows the trajectory prediction results on the test
set of the Central Station dataset. We followed the setting
used in [25] and fixed Tobs = 9 and Tpred = 8. The results
show that the constant velocity method is only able to learn
relatively straight path trajectories and performs very poorly.
With the attractive forces (moving towards destinations) and
the repulsive forces (avoiding collision with other people or
obstacles) incorporated into the models, both the Social Force
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FIGURE 5. (a) - (j) Qualitative comparison of prediction results from vanilla LSTM, LVA, and LVTA. Colour codes: blue: input observed trajectories;
green: ground truth trajectories; yellow: prediction by vanilla LSTM; pink: prediction by LVA; red: prediction by LVTA. The background scene used in
each subfigure is the first frame of the prediction phase. Two failure cases are given in the last two subfigures ((i) & (j)).

TABLE 1. Prediction errors of different prediction methods on the Central
Station dataset.

method and the LTA method give more superior performance
than the constant velocity method. It is evident from Table 1
that the more recent deep learning based prediction methods
(the last 8 rows of the table) are way ahead of the former
3 prediction methods by a large margin. Comparing with
the Behaviour CNN method, even the vanilla LSTM gives
a smaller prediction error. The results on this dataset show
that, for time sequence data, LSTM based methods are more
suitable than CNN based methods.

The prediction results of vanilla LV, CLVA, LVT, LVA,
and LVTA are given in the last five rows of Table 1. Our
LVTA outperforms other baselines and the state-of-the-art
methods on all the three metrics. LVA takes the second place
after LVTA. Although the prediction result of CLVA is worse
than SA-GAIL, LVT, LVA, and LVTA, it performs better
than other baseline methods. The extra velocity information
being passed to vanilla LV demonstrates to be useful as
the prediction result from vanilla LV is slightly better than
that from vanilla LSTM. Compared to CLVA (having 2.09%
normalized ADE), the location-velocity attention layer in

the tweak module helps LVTA gain significant improvement
(at 1.55% normalized ADE) on the prediction results. If the
tweakmodule is completely removed from the network archi-
tecture as in the variant LVT, the performance is worst than
LVTA. This further confirms that the two temporal attention
mechanisms and the tweak module in the LVTA architecture
work well together and help to reduce the prediction errors.

Figure 5 shows a qualitative comparison of some prediction
results from the vanilla LSTM, LVA, and LVTA models. For
simple cases (Figure 5(a) and (b)) where the trajectories are
almost linear, all three methods generate trajectories very
close to the ground truth trajectories. With the inclusion of
the velocity LSTM layer, both LVA and LVTA are able to give
more precise predicted trajectories in the examples of turning
slightly (Figure 5(c)) and turning abruptly (Figures 5(d)-(f))
captured in the observation phase. Although LVA and vanilla
LSTMboth give reasonably good trajectory directions, LVTA
generates more accurate predicted trajectories that almost
overlap with the ground truth trajectories.

Extremely challenging cases are shown in Figure 5(g)
and (h). Unlike the turning cases in Figures 5(d)-(f), the turn-
ing occurs very late in the observed part (blue colour) of
each trajectory. Although not completely coinciding with
the ground truth trajectories, LVTA still manages to predict
the turning trend and generate plausible trajectories than the
vanilla LSTM and LVA methods. These challenging exam-
ples demonstrate the effectiveness in the prediction phase of
the temporal attention mechanism that is present in LVTA but
absent in LVA.

Two failure cases are shown in Figure 5(i) and (j). There are
two reasons for the failed predictions in these two examples.
First, the turning movements occur after the observation part
so, using the observed trajectories alone, all the threemethods
fail to predict these late changes of walking direction. Second,
both ground truth trajectories in the prediction phase are very
sharp U-turns (almost 180◦) that are very different from the
gentle turns shown in Figures 5(d)-(f) earlier where LVTA is
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TABLE 2. Prediction errors (in metres) of different prediction methods on the ETH/UCY dataset. The results marked with ∗ are taken from [22]. Top-1,
top-2, top-3 results are shown in blue, red, and green. The results from SR-LSTM [20] come from the best 20m × 20m neighbourhood region reported by
the authors.

still able to give plausible predictions. To improve the pre-
diction results for these cases, more training data having late
and sudden changes of walking direction would be required.
It may also help if higher order terms such as acceleration are
incorporated into the network architecture.

D. RESULTS ON THE ETH/UCY DATASET
For each test scene of this dataset, we first combined the
trajectories of all the training scenes. We then carried out
a normalization step by setting the origin at the centroid
of the trajectories and scaled them so that all the trajectory
coordinates are in the range [−1, 1]. The same normalization
parameters were applied to the test set. After performing
trajectory prediction on the test set, the inverse normalization
was applied to yield the ADE and FDE in metres.

We followed the setting used in [11], [20], [22], [30] and
fixed Tobs = 8 and Tpred = 12. Compared to the other two
datasets, the number of trajectories in this dataset is relatively
small. As in [20], we therefore augmented the training set by

• splitting long trajectories to form trajectories of length
Tobs + Tpred = 20 using a sliding time window of stride
size 1; and

• performing random rotation.

In addition, we also performed trajectory reversal and
swapped the x and y-coordinates (equivalent to 90◦ rota-
tion). Trajectory rotation is in general not used for data aug-
mentation as the augmented trajectories might not be valid
(e.g., the trajectories might represent pedestrians walking into
obstacles). However, since this dataset is about using training
trajectories captured from up to four different scenes to pre-
dict trajectories in the fifth scene, trajectories are not bound to
any scene context. It should be noted also that, for our LVTA
method and its variants, trajectory reversal does not provide
extra training information to the velocity LSTM layer as the
velocity coordinates of a reversed trajectory are simply the
negated version of the original trajectory; however, reversed
trajectories do provide extra information to the training of the
location LSTM layers of these models.

Table 2 shows the prediction performance of our LVTA
versus two baseline methods (Linear and Vanilla LSTM) and
five state-of-the-art methods on the five scenes. On each
row, the top three performing methods are highlighted

in blue, red, and green. The last row of the table shows the
average performance over the five scenes. Although both the
SGANmethod [22] and Liang et al.’s method [21] can gener-
ate multiple trajectory predictions through their GAN based
architectures and have better prediction results, for fair com-
parison, we only include their single prediction performances
in the table. On the other hand, SoPhie [30] is not included
in the comparison in Table 2 because its single prediction
results are not reported by the authors. For the SR-LSTM
method [20], multiple results with different configurations
have been reported in [20] and the authors’ best prediction
results are shown in the table.

Unlike the traditional CNN architecture which focuses
on the spatial information only, the CNN based prediction
method of Nikhil andMorris [14] uses parallelizable convolu-
tional layers to handle temporal dependencies. Their method
appears to give prediction results that are comparable with
other LSTM based methods.

For the ETH scene, our LVTA method outperforms all
other methods with a 0.57m ADE and 1.10m FDE, leading
a comfortable margin from the runner-up SR-LSTM. For the
other four scenes, our LVTA’s ADEs and FDEs are among the
top three methods. On average, LVTA takes the first spot on
FDE at 0.92m and the second spot on ADE at 0.46m, which
is only 0.01m behind the winner SR-LSTM.

It should be noted that the training and test trajectories of
all the five scenes in the ETH/UCY dataset cover roughly
a 24m × 24m region. The SR-LSTM model incorporates
a 20m × 20m neighbourhood region and a pedestrian-wise
attention layer to model the influence from other pedestrians.
This large neighbourhood region used in SR-LSTM is almost
the entire scene. This means that much computational work
is needed in SR-LSTM to store the hidden states of other
pedestrians. Compared to SR-LSTM, LVTA is computation-
ally more efficient as only the POI information is required to
predict its trajectory. Furthermore, when the neighbourhood
region shrinks to 4m × 4m, the average prediction errors of
SR-LSTM increase to 0.49m for ADE and 1.06m for FDE
(These results are reported in Table 2 of [20]). If we use these
errors in our Table 2 instead, our average ADE will move to
the first place, ahead of SR-LSTM.

Some prediction results from the ETH/UCY datasets are
illustrated in Figure 6. The image coordinates of the overlaid
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FIGURE 6. Illustration of predicted trajectories on the ETH and HOTEL
scenes of the ETH/UCY dataset. Colour codes: blue: input observed
trajectories; green: ground truth trajectories; pink: prediction by LVTA.

trajectories are converted from the homography matrix pro-
vided for each scene in the dataset. The figure shows that
LVTA can generate plausible trajectories for different cases
such as stopping and slowing down.

E. GENERALIZABILITY STUDY
1) PREDICTING TRAJECTORIES OF DIFFERENT
PREDICTION HORIZONS
To distinguish prediction lengths of trajectories in the training
and testing stages, we adopt the term prediction horizon [23],
denoted by Tph from hereon, to mean the prediction length
in the testing stage. The objective of the experiments in this
section is to evaluate how well the LVTA architecture can
be generalized to produce trajectories of different prediction
horizons.

For the LVA and LVTA models that have been trained
to predict n time steps, i.e., Tpred = n, we represent them
as LVA-n and LVTA-n. Once a network is trained, it can
be used to predict trajectories of any Tph value. With two
settings

{
Tobs = 9,Tpred = 8

}
and

{
Tobs = 9,Tpred = 16

}
on

the training set of the Central Station dataset, we trained four
separate models: LVA-8, LVTA-8, LVA-16, and LVTA-16.
Their performance on predicting trajectories of various pre-
diction horizon values were then compared on the test set.

Prior to the training stage, trajectories of a suitable length
need to be extracted from the training set. For LVA-16, tra-
jectories must be at least Tobs+ 16 = 9+ 16 = 25 time steps
long; for LVA-8, they only need to have at least Tobs + 8 =
9 + 8 = 17 time steps. In total, only 9,328 trajectories
could be used to train LVA-16; however, 14,739 trajectories
were available to train LVA-8. Thus, while one might expect
that a network that is trained to predict trajectories of a
longer prediction length should perform better than one that
is trained to predict trajectories of a shorter prediction length,
it is not always the case as the former network is exposed to
fewer, and therefore less diverse, trajectories.

Figure 7 shows the ADEs and FDEs of the predicted
trajectories from the four models mentioned above on the
test set for 5 different Tph values: 8, 10, 12, 14, and 16.
As expected, both the ADE and FDE increase with increas-
ing Tph. Comparing LVA-8 with LVA-16, it shows that it
is not always an advantage to train a network with large
Tpred when Tph is small, e.g., LVA-16 performs worse

FIGURE 7. The ADE and FDE of prediction results from our LVA and LVTA
methods for different prediction horizons (Tph). Dash lines represent
models that are trained with Tpred = 16 and solid lines are models
trained with Tpred = 8. Results of using LVA and LVTA are shown in blue
and red respectively.

than LVA-8 when Tph = 8. Only when Tph increases to
16 that LVA-16 slightly outperforms LVA-8. However, when
comparing LVTA-8 against LVTA-16, we do not see the
same pattern. For small Tph values (e.g., when Tph = 8),
LVTA-8 outperforms LVTA-16 as expected. Furthermore,
LVTA-8 is able to maintain its superior performance even
when Tph > 12. This demonstrates the effectiveness of the
extra temporal attention mechanism in the architecture.

Some example trajectories generated by LVTA-8 and
LVTA-16 for the Central Station test set are shown as red and
pink trajectories in Figure 8. The ground truth trajectories for
the prediction phase and the input observed trajectories are
given in green and blue. The first row has prediction horizon
Tph = 8 and the second row has Tph = 16. It can be seen
from the figure that LVTA-16 performs better than LVTA-8 in
some occasional turning cases when Tph = 16. However,
at the beginning of the prediction phase, the location coor-
dinates predicted by LVTA-8 are more accurate. On average,
LVTA-8 has smaller ADE and FDE than LVTA-16 for all the
Tph values in our experiments (Figure 7).

2) TRANSFERRING TO OTHER SCENES
Recall that the Edinburgh dataset has more training trajecto-
ries than the Central Station dataset (see Section IV-A). So it
will be more advantageous to train a prediction model on the
Edinburgh dataset and test it on the same dataset. The aim
of the experiments conducted in this subsection is to show
the generalizability of the LVTA architecture on transferring
what is learned from a scene to another scene. It should be
noted that, except for ZARA1 and ZARA2, the experiments
on the ETH/UCYdataset described in the previous subsection
are also tests on the generalizability as the training scenes
and the test scene are different. Since existing methods report
their performance on the Edinburgh dataset in metres, to be
consistent with them, we use the pixel to metre relationship
described in Section IV-A to convert the ADE and FDE values
from pixels to metres.

Without any retraining, the four models, namely LVA-8,
LVA-16, LVTA-8, and LVTA-16, that have been trained
on the Central Station dataset (in pixels) described in
Section IV-C are directly used to predict trajectories in the
test set of the Edinburgh dataset. To be consistent with the test
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FIGURE 8. Prediction results of different prediction horizons: Tph = 8 frames (first row) and Tph = 16 frames (second row) on the
Central Station test set. Colour codes: blue: input observed trajectories; green: ground truth trajectories; red: LVTA-8; pink: LVTA-16. The
background scene in each subfigure is the first frame of the prediction phase.

TABLE 3. Error performance (in metres) of different prediction methods
on the Edinburgh dataset.

results from other methods reported in [47], Tobs and Tph were
both set to 20. In Table 3, a method having a tick under the
transfer column denotes that it has been trained on the Central
Station training set instead of the Edinburgh training set.
The prediction results show that LVTA-8 and LVTA-16 have
similar performance as Attention-LSTM while both LVTA-8
and LVTA-16 outperform the LVA counterparts. Even not
being trained on trajectories from the same scene, LVTA-8
outperforms all the other techniques on the ADE.

To further investigate the generalizability of LVA and
LVTA, we test the two pretrained models above on the Edin-
burgh test set with the Tobs value ranging from 7 to 21 and
Tph ranging from 6 to 18. It is clear in Figure 9 that the
ADEs and FDEs of both LVTA-8 and LVTA-16 are lower
than those of LVA-8 and LVA-16. There are some other key
results that can be observed from the figure also. Firstly, along
each row (i.e., when Tph is fixed), the cell for Tobs = 9 has
the lowest ADE and FDE. This is not unexpected as these
models were originally trained with Tobs = 9. Secondly,
as one moves away from the Tobs = 9 column, the ADEs and
FDEs of the two LVTA models increase at a slower rate than
those of the LVA counterparts. This can be observed from
the more drastic change of colour along the columns of the
two LVA tables. Thirdly, if one compares the right bottom
regions (where both Tobs and Tph are large) of the ADE and
FDE tables for LVA-8 and LVA-16, then one should notice

that, for the cells corresponding to the same Tobs and Tph
values, LVA-8 has smaller ADEs than LVA-16 but it has larger
FDEs than LVA-16. These results indicate that, toward the
end of the trajectories, the predicted locations from LVA-8
deviate more from the ground truth than those predicted by
LVA-16. However, with the help of the extra temporal atten-
tion in LVTA, no similar results are observed between the
large (Tobs,Tph) regions of LVTA-8 and LVTA-16. The above
experiments confirm that the improvement in prediction of
LVTA over LVA is significant. They also demonstrate the
advantage of incorporating the temporal attention mechanism
into the network architecture.

Figure 10 shows some examples of predicted trajectories
from LVTA-8 and LVTA-16 on the Edinburgh dataset. On the
top row, Tobs = 9 and Tph = 8; on the bottom row, Tobs =
Tph = 20. As expected, when the two LVTAmodels generate
trajectories with a smaller prediction horizon (top row), they
perform better than cases where the prediction horizon is
quite large (bottom row). Although the trajectories generated
by the two models still follow the directions of the ground
truth trajectories closely, deviations of the end points of the
predicted and ground truth trajectories are noticeable in the
last three cases in the bottom row of the figure.

F. COMPUTATION TIME
To analyze the computation time of LVA and LVTA,
the vanilla LSTM prediction method is used as the base-
line for comparison as it is the basic LSTM trajectory pre-
diction method. All the methods were implemented under
the same coding environment (Pytorch version 0.3.1 and
Python version 3.6) and trained on the same desktop having
a GTX-1080 GPU on the Central Station dataset. The results
of the training time of these three methods are summarised
in Table 4. The training time of LVA is more than twice
the time of the vanilla LSTM. This is due to two LSTM
layers (velocity layer and location layer) being used in LVA,
compared to only one LSTM layer in the vanilla LSTM
method. The location-velocity attention mechanism is also
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FIGURE 9. ADEs (top row) and FDEs (bottom row) of LVA-8, LVA-16, LVTA-8, and LVTA-16 under different observed lengths (Tobs) and different
prediction horizons (Tph) on the Edinburgh test set. All the models were trained on the Central Station training set. The lighter is the colour of a cell,
the better is the performance.

FIGURE 10. Prediction results on the Edinburgh dataset. Colour codes: blue: input observed trajectories; green: ground truth
trajectories; pink: LVTA-8; red: LVTA-16. Top row: Tobs = 9, Tph = 8; bottom row: Tobs = 20, Tph = 20.

TABLE 4. Computation time and performance comparison.

responsible for the extra training time in LVA. Similar to
LVA, LVTA also requires more than twice the training time of
the vanilla LSTM. Compared to LVA, the additional training
time required by LVTAmainly comes from the extra temporal
attention mechanism.

The last two columns of Table 4 denote the reduction in
ADE and FDE of LVA and LVTA compared to the baseline
vanilla LSTM. The percentage values in these columns are
computed as follows. Let εvan be the ADE (similarly for the
FDE) of the vanilla LSTM method and ε be the ADE of

LVA (similarly for LVTA). The error reduction is defined as
(εvan − ε)/εvan × 100%. The Table shows a clear positive
correlation between the training time and the improvement
in trajectory prediction of the three methods, with LVTA
achieving the smallest ADE and FDE.

V. CONCLUSION
We have presented a pedestrian trajectory prediction method
that comprises a location LSTM layer, a velocity LSTM
layer, and a tweak module which incorporates a joint
location-velocity attention layer. Temporal attention mecha-
nisms are used in the two LSTM layers. Experimental results
demonstrate effectiveness of the temporal attention mecha-
nism in our LVTAmethod, giving significant improvement to
the prediction results than our previous LVA method. Com-
pared to existing pedestrian trajectory prediction methods,
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our LVTA method outperforms several methods on the Cen-
tral Station and Edinburgh datasets and performs competi-
tively against recent state-of-the-art methods on the complex
ETH/UCY dataset. Furthermore, our method is a simpler
method in that it does not require scene context information
or trajectories of neighbouring pedestrians in the scene.

We have also thoroughly evaluated the generalizability of
LVTA in terms of using different observed lengths and predic-
tion lengths as well as applying a pretrained LVTA model to
predict trajectories from a different scene. The results of these
evaluations show that LVTA can yield good prediction results
in such circumstances, even when the prediction length is
different from that in the pretrained model. Compared to
our previous LVA method, LVTA demonstrates even better
generalizability.

In our proposed LVTA method, the two temporal attention
mechanisms and location-velocity (LV) attention mechanism
are separately handled: the temporal mechanisms manipulate
the hidden states from the LSTMs to create context vec-
tors, whereas the LV attention mechanism is a bit obscure
and hidden inside the tweak module. One possible future
extension is to jointly consider these two types of attentions
by making some changes to the network structure of the
prediction model. This may help improve the prediction per-
formance further. Our other future research directions include
incorporating LVTA into a trajectory analysis system that
analyzes pedestrian trajectories for abnormal movement pat-
tern detection, trajectory clustering, and trajectory counting
for surveillance applications.
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