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ABSTRACT In general, grid map based path planning algorithms are employed in the robotics arena. The
algorithm uses a grid map to represent environmental information, standardized. Compared with feature
maps and topological maps, the algorithm realizes the construction of environmental maps in a more direct
way, and has the characteristics of fast, simple and efficient.The integration and prediction of terrain is
an unavoidable problem and the traditional raster map prediction method is based on the research of the
terrain data itself, and lacks dynamic supplement for the path planning process. When the environmental
data changes, the classification algorithm can only be re-executed, and the past data is completely discarded.
Since the planned path is unlikely to change, the terrain tends to be stable. To solve this problem, this paper
proposes a concept of C(circular)-terrain band following path nodes and terrain construction and prediction
methods. The C-Terrain method first obtains an ordered set of passing points at the initial moment, based
on the complete path planning. Then an ordered sequence of influence function values is obtained, which
depends on the selection of the terrain band and the adjustment of related parameters. Finally, regression
methods such as machine learning are used to complete the prediction of the path and location terrain, and
the unknown path and terrain are predicted. The experimental results prove the accuracy and practical value

of the C-T method.

INDEX TERMS Quadruped robot, path planning, grid map, C-terrain.

I. INTRODUCTION

For quadruped robots, the ability to identify terrain is the key
to improving motion efficiency in complex environments. For
a conventional wheeled robot or crawler robot, depending
on the vision system it is equipped with, the sliding can be
prevented and the passable area can be selected [1], [2].

For quadruped robots, in order to improve the stability of
their movements, different gaits must be chosen, depending
on the terrain. Under different gait, the robot implements dif-
ferent motion control strategies to improve the environment
adaptability of the robot. For example, when the robot is in
a sandy environment, since the leg joints of the robot are
prone to sinking, the strategy of landing and lifting the robot
needs to be appropriately changed to reduce the influence of
the subsidence on the stability of the robot and improve the
stability of the robot.
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When the robot is running on a ground with a small friction
coefficient, it is necessary to detect, prevent and compensate
the sliding of the robot in time. When the robot walks on
the gravel ground, the height of the lifting leg of the robot
must be adjusted to prevent the robot from falling. Therefore,
improving the ability of the robot to recognize the terrain is
the key to terrain classification. And the appropriate terrain
features need to be extracted, while more efficient terrain
classification algorithms need to be selected. This paper
focuses on the terrain classification method of robot vision
system based on raster map.

In the traditional terrain classification method, there is
generally an extraction method based on terrain image color
features or image texture features. For the method of image
color feature extraction, the local distribution of colors in the
image cannot be described. Since the same image has differ-
ent texture material information, under different lighting and
visual conditions. Therefore, the classification method has
better classification accuracy and reliability based on image
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texture. In the past 30 years, the extraction method based on
image texture features has been successfully applied [3], [4].

In the current terrain classification method, the svm
method or the neural network method is generally adopted.
In the svm method, the initial parameters have a great influ-
ence on the performance of the network. The terrain classifi-
cation method using neural network is accompanied by low
computational efficiency and slow convergence speed, which
limits the application of this method.

In this paper, the concept of terrain band is proposed
and integrated for grid map, and a fast and accurate ter-
rain classification and prediction method is proposed as
shown in Figure 1. The terrain classification method pro-
posed in this paper can follow the path nodes. When the local
shape changes, the algorithm uses incremental operations
to improve computational efficiency and reacts the overall
terrain of the path in new forms, while unknown terrain can
be predicted.

A* Algorithm

 Laser
Actual Terrain - Terrain Data

Prediction
Accuracy
EBG KD,

FIGURE 1. Terrain prediction based on C-terrain path.

Il. MAP CLASSIFICATION METHOD AND TERRAIN BAND
In the field of robotics, compared with feature maps and
topological maps, raster maps enable the construction of envi-
ronmental maps in a more direct way, with fast, simple and
efficient features [5]. When faced with robot path planning
problems, it is inevitable to classify the raster maps to make
it easier and more accurate to judge the passability of the grid
nodes.

Based on topographic data, the traditional raster map clas-
sification method is used for mining analysis. The algorithm
lacks dynamic supplement for the path planning process.

When the environmental data changes, the traditional ter-
rain classification method can only re-execute the algorithm
operation, and completely abandon the historical data during
the operation. However, in the actual process, the planned
path is unlikely to change stepwise, and the terrain itself is
usually relatively stable [6], [7]. In response to this problem,
this paper proposes the concept of terrain bands following
path nodes.

The terrain band can reflect the passability of the path.
Based on this concept, the terrain classification method pro-
posed in this paper is based on the completed path planning,
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and classifies the terrain for the existing path. This ensures
that when the environment map changes rapidly, the algo-
rithm can provide more accurate terrain information for more
important path points because the path offset is not large.

Moravecc [8] proposed to discretize the height direction
based on the plane grid to realize the three-dimensional grid
map. Carsten et al. [9] used a similar raster map in the study of
their path planning algorithms. Fong, Gutmann, LiuHhuajun
Patrick Pfaff et al. based on a two-dimensional grid map,
the maximum height or average height of the terrain in each
grid is stored to construct an elevation map, an extended
elevation map or a layered map [10]-[12]. This not only can
achieve the performance of the three-dimensional raster map,
but also reduce the amount of raster map data.

A* algorithm is a common grid map path planning method,
which was proposed by Nilsson in 1980. It can search the
optimal path to target point by contrast evaluation function.
The core of it is to add heuristic search part based on Dijkstra
algorithm. Its evaluation function is

f () = g(n) + h(n) €))

f(n) is the evaluation function, g(n) represents the path cost
from the initial point n to any node. A(n) said heuristic evalu-
ation price, from the node n to the target point.
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FIGURE 2. Equipotential line in grid map.

As shown in Figure 2, for each grid, the value of g(n) is
marked in the lower left corner, the value of i(n) is marked
in the lower right corner, and the value of f(n) is marked in
the upper left corner. Green node is the starting node, red
is the target node, and yellow point is the pathway node.
Bold lines indicate contour lines, obtained by TOF cameras
or laser sensors. The equipotential line in the traditional map
or the medium potential surface of the force field can quickly
and effectively complete the classification of the topographic
points. At the same time, by comparing the equipotential lines
and equipotential surfaces of any two points, the topography
difference can be quickly calculated. These concepts are
essentially the discretization of linear maps, which coincides
with the original intention of grid map design.

Based on this concept, the equipotential surface is intro-
duced into the grid map, and in order to accurately reflect
the passability information of the path, the terrain strip is
followed by the path node. This form of terrain representa-
tion can follow the path nodes and reflect the surrounding
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equipotential surface information, which is the terrain band
proposed in this paper.

Based on the classification method of the terrain band,
the terrain data corresponds to the path point. When the
local shape changes, it is easy to find the influence of the
change point on the path. The algorithm can intuitively indi-
cate the difficulty of passing the terrain of different plan-
ning paths. This terrain classification method for the overall
path provides a new passability assessment criterion for path
planning.

IIl. C-TERRAIN SELECTION

The terrain classification method proposed in this paper is
based on the terrain band. Traditional raster maps are stored
in the form of data columns, but the C-terrain method stores
the raster map as a data strip C(n) that follows the path node.

C(n) = {F(m,), F(my), ..., F(m,)} @)

where {m,} is the set of path nodes obtained by the A*
algorithm at the initial moment, m; is the starting point, and
my, is the target point. F(m) is the influence function value of
the terrain band corresponding to node m. And this benefits
from the terrain band and the different selection methods
of the terrain band determine the different focuses of the
constructed map.

There are many ways to choose the terrain band. Different
selection methods can more accurately reflect the shape or
undulation of the surrounding terrain. The concept of equipo-
tential surface is borrowed to make the terrain band more
accurately reflect the terrain shape. This selection method
is in line with the physical meaning of the terrain band.
An arbitrary point contained in a terrain band has the same
height difference as the corresponding passing node. The
height value of the node is obtained by a TOF camera or
a laser sensor. Or the algorithm selects the nodes contained
in the terrain band in a circular (rectangular) manner. This
method focuses on reflecting the terrain undulation around
the nodes. Because the shape of the terrain band is fixed,
the algorithm is simple and fast, which is also beneficial to be
combined with path planning. The height value of the passing
point is regarded as the ground potential, which is used as a
reference by the algorithm.

Two different selection methods are now compared. When
planning the path of the grid map, the A* algorithm and
its derivative algorithm are used to form the initial path,
that is, the initial path node set {m,}. Select path points
mg,m;,my, ... in order of path, for any path point. Then the
gradient base E of the terrain band and the gradient coeffi-
cientsaw =0, 1,2 ... were set to divide the terrain nodes into
distinct categories. E is manually selected based on the height
information obtained by a TOF camera or laser sensor.

when o = 0, only the current grid is considered.

when o« = 1, all grids have a gradient difference E,
compared to the current node.

when o = 2, all grids have a gradient difference 2E.
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FIGURE 3. C-terrain band with equal height difference.
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FIGURE 4. C-terrain band with equal distance difference.

The breadth coverage factor of terrain B is set to
p=0,1,2,

B = 0 indicates only the current grid is considered.

B = 1 indicates the 8 grids around the current node.

B = 2 indicates the 24 grids.

B is added to the algorithm as an adjustable global param-
eter, and all nodes use the same f-value. A higher S-value
can reflect the characteristics of the terrain band more widely.
At the same time, too high S-value is easy to cause over-
fitting, and it will also increase the amount of calculations

VOLUME 8, 2020



Z. Li et al.: Grid Map Construction and Terrain Prediction for Quadruped Robot Based on C-Terrain Path

IEEE Access

needlessly. In general, the value of 8 is preferably between
2 and 4, which is also related to the selection of the point
cloud when the grid map is constructed and the zoom ratio
when the Quadruped Robot is equivalent to a mass point.

When «, $ takes 3 or other values, the result can be calcu-
lated by analogy. Regardless of the terrain selection method
used, the follow-up of the path points can be implemented,
using the calculation results of the influence function. How-
ever, the terrain bands acquired by the first method are usually
irregular patterns. In the process of path planning based on
raster maps, moving entities such as robots are often equiv-
alent to nodes by proportional scaling. For different terrain
such as sand, brick, and steps, the size and height of the map
will change, and the value of E must change accordingly. The
fixed E value cannot effectively classify different kinds of
terrain nodes. At the same time, considering that the grid map
will be frequently zoomed in the path planning and practical
application process, this paper takes the second terrain band
selection method. This is one of the reasons for replacing
circles with rectangles.

IV. INFLUENCE FUNCTION AND C-TERRAIN PATH
CONSTRUCTION

Since the second terrain band selection method is selected,
the influence function needs to reflect the mean value of the
ground potential difference of the surrounding nodes. The
distance average can use Manhattan distance, or Euclidean
distance, or even cosine distance.

Different distance measurement methods are applied,
which has a great impact on the final result. In general, raster
map data collections have many features. But if the Euclidean
distances between any two nodes are equal, there is no way
to compare them by Euclidean distance.

If the Manhattan distance is used, the algorithm will have
higher stability. However, if some of the feature values in the
terrain data set are large, the distance relationship between
other feature points will be masked. Finally, the cosine dis-
tance is suitable for use when the feature vector is large. But
it discards valuable information such as vector length, and it
has a larger amount of computation.

When the Euler distance is used, the terrain strip is selected
to be selected, which is more realistic. But many path plan-
ning algorithms use Manhattan distance. To ensure consis-
tency between the data, set the influence function as follows,

F(m;) = D fmy,my) ZG(ml)% "
U )T

n(m,) represents the nodes amount on the certain circle,
|dm; — dmy| represents the elevation difference between the
two points, dx,dy represents the Manhattan distance, and
G(m,) represents the influence coefficient of the path node
type to which m1 belongs. When § > 2, the influence factor
of dmy drops rapidly. Its impact will be ignored in order to
simplify the calculation.
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FIGURE 5. Inflection point and equipotential line.

The value of G is related to the position of |m| in the set
of path points.

G(my) >1, meC
G(mt) = ]’ my € {mO»mn} (4)

G(m,) < 1, else

where C is the set of all inflection points of the path. As shown
in Figure 5, when the current node is an inflection point
(red point), the node point will keep a higher G value to
provide a more sensitive topographic response, compared to
when it belongs to a straight line. The G-value of the inflec-
tion point is set higher to distinguish it from the passing point
of the straight portion. Increasing the value of the influence
function artificially is to set obvious characteristics of the data
sequence in order to predict the inflection point of the path in
the unknown terrain.

In the process of map construction, the algorithm first
completes the path planning at the initial moment by A* and
its derivative algorithm at the initial moment. After the initial
path node set is obtained, the algorithm selects the terrain
band. For the nodes in the set, the influence function is used to
obtain the terrain passing coefficient of each node, and finally
the passing coefficient set of the terrain band is obtained,
which follows the initial path node.

The following compares the traditional method with the
representation of the following path points. For traditional
methods, if the first method is adopted, nodes with similar
elevations in the terrain data will be divided into several sets.
Essentially it is to increase the raster map equipotential line.
In the path planning process, although it is possible to use
the equipotential line to achieve the prediction of the passing
difficulty, the algorithm cannot quickly and effectively eval-
uate the overall passing difficulty of the current path, and the
storage space cannot be optimized.

If the terrain of all nodes is fully considered, the amount
of calculation will be large, with accurate terrain information.
In this algorithm, the time coefficient is introduced to achieve
the algorithm within the specified time limit. At the same
time, new passability assessment criteria are provided.

The terrain-based algorithm focuses on the overall terrain
of the path, and these nodes are all passable regions in
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the initial sense. The value of the topographical coefficient
reflects the cost of adoption. Based on this coefficient and
the barrier performance of the robot, the raster map can be
classified.

V. TERRAIN PREDICTION BASED ON C-TERRAIN PATH
Unknown terrain can be predicted using known terrain infor-
mation. In order to simplify the calculation, the terrain strips
corresponding to the nodes are selected in reverse order and
form a set, from the end of the path. The selection of nodes
is related to the number of inflection points and the length
of the internodes. Then the nonlinear regression fitting curve
is performed. Since a finite number of adjacent nodes are
selected, the graph is close to the parabolic shape, so it
can be predicted by the quadratic curve model of nonlinear
regression. Establish a predictive mode nonlinear regression
quadratic curve model as,

i = B + Boxi + B3xP+ € Q)
let xi2 =x,
yi = B1 + Boxi + Bax; + € (©6)

The matrix form of the above formula is ¥ = XB+ €. The
least squares method is then used for parameter estimation,
and the residual is set to E between the observed value and
the model estimate. then E = Y — ¥ , Y= XB, According to
the least square method, E'E = (Y —Y) (Y —Y), the following
formula is obtained

E'E = (Y — XBY (Y — XB) @)

From the extremum principle and the matrix derivation

method, we derive the B and make it equal to zero.

dE'E (Y — XB)(Y —XB) d(Y'Y—-2Y'XB+B'X'XB)
B dB - dB

®)

In summary, the estimated value of the regression coefficient

vector B is, B = (X’X)~1(X’Y). The most commonly used
tests in quadratic regression are the R test and the F test,

i —9)° R?
R:/l—%, F=rfom-32 O

Now predict the terrain information of the unknown area
according to the prediction model, according to the above

formula X'X, X'Y, B = (X'X) (X'Y) and,

A

i = B+ Boxi + Pax? (10)

_ Zyiz - /‘31 doVi— 32 DXy — /§3 in/)’i
Yyi—ny?

52

S is the estimated standard error.

R= |1

(1)
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Considering the actual operation process, it is necessary
to obtain the suboptimal solution in a limited time, so the
time factor ¢ is introduced and the number of inflection points
and the internode length are considered. And the prediction
time is limited to a limited time T to prevent the response
time of the algorithm from being too long, so as to maintain
the efficiency of the algorithm. On the one hand, because the
algorithm sets B, G,k and other global parameters that need
to be adjusted manually and the size of the input terrain data
is different, inappropriate parameter values will often cause
the algorithm to consume a lot of time. On the other hand,
sub-optimal solutions obtained by setting time parameter
limits are often more suitable for practical problems.

There are many ways to adjust the algorithm operation
time. This article uses increasing w to change the weight of
h(n) in the heuristic part of the A* algorithm. This will change
the judgment of the path calculation planning method for the
node’s passability and the cost of passing, thereby changing
the set of nodes that change the path. Usually smaller p will
have longer time consuming and more accurate and compli-
cated path results, while larger 1 corresponds to shorter time
consuming and flat path.

fm) = gn) + - h(n) 13)

The constraints of the node are as follows. |[N(n) —
Nmn — 1)) > Q, any two adjacent nodes may not
be too close, otherwise one of them will be discarded.
IN(g) — N(0)| < €R, the finite number of nodes are selected
in reverse order, and the expansion factor ¢ is introduced.
The value is decremented from 1 until the operation time is
within T. When Ny max = 0, 1, the inflection points number of
the path is O or 1, all path nodes are included in the research
content. Otherwise Nymax > 2, the node before the second
inflection point is included in the study.

Although the non-linear regression prediction method can
obtain topographic prediction information, it has limitations
on the data characteristics of the sample. This paper uses
the python-based SKlearn module to perform regression pro-
cessing on terrain data. Using Sklearn’s regression module
algorithm, vector regression (SVR), ridge regression, Lasso
regression, elastic network (Elastic Net), minimum angle
regression (LARS), Bayesian regression, and various robust
regression algorithms can be implemented. All algorithms
use the Boston House Price dataset, where the independent
variables are numeric. K-Nearest Neighbors (or KNN) deter-
mines K similar instances for new data instances and uses the
mean or median as the predicted values, which is suitable for
the prediction of terrain bands in this paper.

The number of nearest algorithm samples can be a custom
constant or follow the density of the data points. It should
be noted that, unlike the Manhattan distance used in this
paper, the measure of the distance is the Minkowski distance,
so the corresponding conversion is required. The definition
of Minkowski distance is as follows. When p = 2, it is the
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FIGURE 6. Simulation environment with Webots and Matlab.

Euclidean distance, and p = 1 means the Manhattan distance.

n
M = (Zi=1 |Xi N y1|p)1/p

P = (X],XZ,XS,...,XH), Q = ()’1,)’2a)’3,~»~,yn) € Rn (14)

The Minkowski distance provides a parameter p to quickly
switch between Euclidean distance, Manhattan distance, etc.
Different distance standards can be applied to the C-T algo-
rithm. Considering the compatibility with the A* algorithm,
Manhattan distance is used as the standard.

The Neighbors-based method is called a non-generalizing
machine learning method because the algorithm simply
“remembers”’ all training data and converts it into a fast index
structure such as a sphere tree or a KD tree. The Knn algo-
rithm has successfully solved classification and regression
problems including handwritten digits and satellite imagery.
As a non-parametric method, it is suitable for classification
problems with irregular boundaries. It should be noted that
instead of using the knn algorithm for data classification, the
nearest neighbor idea is used for regression prediction.

Different k values correspond to different prediction accu-
racy and time consumption. The knn terrain classification
algorithm has a coincidence with the idea of the terrain band,
and the selection of the k-value is similar to the bandwidth
of the terrain band. The knn algorithm does not have actual
physical meaning, and the terrain algorithm is easy to acquire
and separate terrain data. It is one of the future research
contents to compare the classification of terrain with the idea
of terrain with the most advanced thought.

VI. SIMULATION AND EXPERIMENT

In order to evaluate the performance of the related algorithms
mentioned in this paper, the algorithm was tested in Webots,
Matlab and Python platform respectively. The simulation
environment is shown in the Figure 6. The simulation in
Matlab is convenient for theoretically testing the accuracy and
feasibility of the algorithm. And the simulation in Webots
involves system errors such as multi-sensor fusion and atti-
tude response delay, which is closer to the actual situation of
the quadruped robot platform.

In order to test the planning efficiency based on terrain
terrain classification, this section compares the number of
required rasters and the total number of grids between the
original method and the terrain-based terrain classification
method, in the same terrain environment.
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TABLE 1. Path length and time cost based on A* and C-terrain.

TOTAL LENGTH/M TIME COST/S

Num

A¥* C-T A¥* C-T
1 20.97 20.95 76.55 82.04
2 15.87 15.82 57.97 60.94
3 17.19 17.04 59.85 63.27
4 20.27 20.17 61.63 63.56
5 17.82 17.97 60.45 62.58
6 11.17 10.80 48.24 51.74
7 18.73 18.15 58.58 60.05
8 18.75 18.39 59.77 60.84
9 15.41 14.92 56.65 57.42
10 13.57 12.91 52.69 54.03

TABLE 2. Total number of grids searched by A* and C-t.

AMOUNT OF GRIDS

Num A*/C-T
A* C-T

1 32405 4767 6.80
2 30710 3718 8.26
3 34001 3477 9.78
4 45839 7805 5.87
5 39813 4930 8.08
6 35892 3725 9.64
7 23372 3699 6.32
8 27200 3292 8.26
9 18140 2954 6.14
10 32403 3711 8.73

When the local shape changes dynamically, the terrain-
based classification method is easy to find the influence of
the changing nodes on the path, because the terrain data
corresponds to the path points.

As shown in Figure 7 above, the blue data indicates the
total length of the planned path of the A* algorithm, the time
consumption and the number of traversed grids. The red data
represents the length of the C-terrain algorithm planning path,
the time consumption and the amount of traversal grids. The
comparative analysis shows that although the path length of
A* is almost the same as that of the C-terrain, the number
of traversal grids of C-terrain algorithm is obviously smaller
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FIGURE 7. Effectiveness comparison between A* and C-t.
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FIGURE 8. KNN prediction based on different k value.

than that of A* algorithm, and the extra time consumption
is not significant. If we consider only traversing the grid
number, the C-terrain algorithm has more than 6 times the
search efficiency of the A* algorithm.

The change of the environment map information can be
considered as a window shift. The algorithm first compares
the current time and the set of path nodes with the previous
time, and obtains it through the path planning algorithm. Then
discard the nodes that are not in the window and add new
nodes, in the order of the nodes. On the basis of the new set
of path nodes, the construction of the terrain set is completed.

As can be seen from the Figure 8, the selection of k-value
has a great influence on the knn regression prediction algo-
rithm. When the appropriate k-value is chosen, the results of
the two algorithms are similar.

The terrain prediction platform was built and simulated
for prediction in the Python platform. Comparing the results
with the nonlinear regression method, the knn regression
algorithm of machine learning has lower requirements on
the characteristics of the data set. Although it takes longer,
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FIGURE 9. The Prediction Accuracy based on C-terrain with python.

FIGURE 10. Scalf Il platform and visual system.

TABLE 3. Prediction accuracy based on nonlinear regression and KNN
regression.

e KNN REGRESSION

QUADRATIC CUBIC k=1 K=15 k=30
1 0.79 0.83 0.86 0.92 0.87
2 0.75 0.76 0.91 0.93 0.79
3 0.85 0.86 0.87 0.94 0.81
4 0.81 0.80 0.86 0.90 0.83
5 0.68 0.72 0.88 0.91 0.86
6 0.71 0.81 0.91 0.96 0.87
7 0.82 0.86 0.94 0.95 0.91
8 0.84 0.87 0.87 0.94 0.93
9 0.81 0.79 0.85 0.94 0.87
10 0.74 0.86 0.90 0.89 0.90

the algorithm usually obtains reasonable predictions of ter-
rain results as long as sufficient training samples are provided.
Simulations results from Figure 9 show that the algorithm
already has enough precision when dealing with relevant map
information.

The actual test was performed on the Scalfll platform as
shown in Figure 10. The platform uses a VLP-16 3D laser
scanner, a GT1910c monocular camera and a SR4500 TOF
camera to form its vision system. Scalfll was driven and
tested ten times in the environment of stone steps, sand, brick,
grass, etc. Each group collected 50,000 frames of data, and
each frame was a point cloud composed of 25344 data points.
The first 45,000 frames are used for training, and the last
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5,000 frames are used as actual data to compare with predic-
tion results and calculate prediction accuracy. It can be known
from Table 3 that the KNN regression method has higher
stability and maintains higher accuracy while the prediction
accuracy does not fluctuate much, compared with the non-
linear regression method. The appropriate K value has a deci-
sive effect on the prediction accuracy under some conditions.
In general, the experimental results are basically consistent
with the simulation results under the Python platform.

VIi. CONCLUSION AND PROSPECT

Based on the concept of equidistant terrain, this paper pro-
poses a method to judge the topographic features of grid
nodes based on the characteristics of C-terrain. On this basis,
the terrain band is combined with the initial path to form
a sequenced set of terrains following the path point. Com-
pared with the original raster terrain processing algorithm,
the C-terrain based algorithm is more suitable for actual oper-
ation and has more hilarious assimilation processing ability
for complex terrain. At the same time, the method of logistic
regression and KNN machine learning is used to realize the
prediction of unknown terrain. The experiment proves the
advantages of C-terrain based map construction method and
the accuracy of terrain prediction. This article involves a num-
ber of global parameters, 8, E, G,p.k, etc. Algorithm perfor-
mance comparison under different parameter configurations
is one of the future research directions. Compared with the
traditional algorithm, the proposed C-terrain based algorithm
has higher processing performance and stability, especially
in the process of processing dynamic terrain information.
And the new processing result is optimized based on the
initial result, which greatly shortens the time consumption
and improves the computational efficiency of the algorithm
as a whole.

Obstacle avoidance is an inevitable problem, wherever
path planning issues are involved. Obstacle avoidance based
on the C-Terrain method is one of the future research focuses.
The related evaluation function of each path node in the
paper can only reflect the surrounding terrain’s passability,
and the rough terrain corresponds to the lower tolerance of
obstacle terrain. In order to avoid obstacles in the path based
on the C-Terrain method, we consider adding a parameter p to
reflect the direction of the obstacles. After p forms a sequence
according to the C-T method, the p can be predicted, and the
path can be shifted according to the fluctuation of p-value to
avoid obstacles.

The desired algorithm needs to have efficient computa-
tional efficiency in complex environments. The algorithm
can obtain as accurate terrain information as possible within
the allowed time. For dynamic maps, this paper proposes
C-terrain based classification and prediction algorithm, and
Euler distance is used to measure grid maps. The incremental
terrain processing idea of the algorithm and the method of
reducing the computational complexity and increasing the
integrity by following the nodes can be applied to other
forms of terrain prediction. The next step is to expand the
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application of the algorithm under other forms of maps. When
the local shape information is more complex and the high
frequency changes, its dynamic adaptability will face chal-
lenges. The next step will be to increase the adaptability of
the high frequency map to make it more responsive to actual
operational requirements.
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