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ABSTRACT As the need for on-device machine learning is increasing recently, embedded devices tend to be
equipped with heterogeneous processors that include a multi-core CPU, a GPU, and/or a DNN accelerator
called a Neural Processing Unit (NPU). In the scheduling of multiple deep learning (DL) applications in
such embedded devices, there are several technical challenges. First, a task can be mapped onto a single
core or any number of available cores. So we need to consider various possible configurations of CPU cores.
Second, embedded devices usually apply Dynamic Voltage and Frequency Scaling (DVFS) to reduce energy
consumption at run-time. We need to consider the effect of DVFS in the profiling of task execution times.
Third, to avoid overheat condition, it is recommended to limit the core utilization. Lastly, some cores will
be shut-down at run-time if core utilization is not high enough, in case the hot-plugging option is turned
on. In this paper, we propose a scheduling technique based on Genetic Algorithm to run DL applications on
heterogeneous processors, considering all those issues. First, we aim to optimize the throughput of a single
deep learning application. Next, we aim to find the Pareto optimal scheduling of multiple DL applications in
terms of the response time of eachDL application and overall energy consumption under the given throughput
constraints of DL applications. The proposed technique is verified with real DL networks running on two
embedded devices, Galaxy S9 and HiKey970.

INDEX TERMS Deep learning scheduling, genetic algorithm, heterogeneous processor, mobile device.

I. INTRODUCTION
As deep learning (DL) is making significant progress in
almost all areas of machine learning, more applications based
on DL will be seen in our daily life. To avoid any concern of
privacy and network condition, running the DL applications
directly in a mobile embedded device instead of resorting
to the cloud system will be more popular. In order to cope
with the high computing demand of DL applications under
a limited power budget, an embedded device is becoming
more heterogeneous, equipped with multi-core CPU, GPU,
and other accelerators such as Neural Processing Unit (NPU)
and/or Digital Signal Processors (DSP) array. In addition,
there is a growing need to run multiple DL applications
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concurrently in the emerging embedded systems such as self-
driving cars and smartphones. In those systems, it is necessary
to schedule multiple DL applications on the shared heteroge-
neous processing elements, which is a challenging problem
tackled in this paper.

A DL application is usually developed with DL frame-
works and libraries such as TensorFlow [1], Caffe2 [2],
PyTorch [2], ARM Compute Library (ACL) [3], and so
on. The current practice of running a DL application in an
embedded system is to run the DL framework itself, and
the DL framework usually uses a single processing element
(PE) to run the application. For instance, ACL that can be
used to run a DL application in a Galaxy S9 smartphone
assumes that the application is run on the multi-core CPU or a
Mali GPU, not both. It is expected that we can improve the
performance of the smartphone for DL applications if we can
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use heterogeneous PEs cooperatively. In particular, we aim
to increase the throughput performance and minimize energy
consumption by using both CPU and GPU in embedded
devices for a single DL application. In addition, we find the
Pareto optimal mapping of multiple concurrent DL appli-
cations onto heterogeneous processors (PEs) in terms of a
response time of each DL application and overall energy
consumption under the given throughput constraints of DL
applications.

A DL inference algorithm is usually specified with an
acyclic task graph where a node represents a computation
task, called layer 1, and an arc represents the dependency
between two end nodes. Since a task or a layer contains mas-
sively parallel computation inside, a task can be mapped to
multiple processing cores to exploit data-level parallelism of
a task or intra-layer parallelism. On the other hand, multiple
tasks that have no dependency on each other can run in paral-
lel to exploit task-level parallelism of the algorithm or inter-
layer parallelism.

If the computation workload of each task does not vary
at run-time, we can perform static scheduling of a DL
application onto the available PEs, considering both task-
level and data-level parallelism. In this paper, we propose a
scheduling framework for DL applications that covers from
profiling on real embedded devices to verifying the sched-
uler results on the devices. We use a Genetic Algorithm
(GA)-based scheduling technique for the effective schedul-
ing of DL applications onto heterogeneous PEs, exploring
both data-parallelism and task-parallelism to find Pareto-
optimal schedules in terms of real-time performance and
energy consumption. In the parallel scheduling of multiple
DL applications with different throughput constraints, a crit-
ical issue is to check the schedulability of mapped tasks
on each processor. We have to consider not only the task
dependency between tasks in the same application but also the
interference among tasks that belong to different applications
when processor sharing is allowed.

There are several issues to be considered in the scheduling
of a DL application on an embedded device. First, the device
usually runs a Dynamic Voltage Frequency Scaling (DVFS)
governor to dynamically change the frequency of a PE, based
on the utilization. It means that the task execution time may
vary at run-time dynamically due to the DVFS policy adopted
in the device. Second, a multi-core CPU can be configured
in various ways. For instance, a 4-core CPU can be con-
figured as a single PE with 4 cores at one extreme, or it
can be configured as 4 PEs with a single core at the other
extreme. It should be determined which configuration is the
best. Third, an embedded device typically has a restriction
on the CPU utilization below a certain threshold in order
not to overheat the system. If the chip becomes hotter than
a given temperature threshold, it reduces the frequency to
the minimum and cools down the chip. Considering such the

1We use the terms, task and layer, interchangeably throughout this paper.

thermal management policy, the schedule that can avoid this
unexpected behavior should be selected.

While parallel scheduling of task graphs has been exten-
sively researched so far, there is no previous work that con-
siders the aforementioned practical issues to the best of our
knowledge. The proposedmethodology is verified by running
2 widely used Convolutional Neural Networks (CNNs) on a
Galaxy S9 smartphone [4] and a HiKey970 board [5]. For the
experimentation, we implemented a DL inference engine that
can utilize heterogeneous PEs using a low-level library of the
ACL, which is another contribution of this work.

We summarize our contributions as follows:

• We propose a scheduling framework that maps (sub-)
layers of a CNN on heterogeneous PEs such as CPU,
GPU, and NPU, taking into account several practical
issues in the embedded devices.

• This is the first work to schedule multiple DL appli-
cations on heterogeneous PEs with processor sharing,
considering both inter-layer parallelism and intra-layer
parallelism.

• The proposed methodology is verified by running CNNs
on two different embedded devices: a Galaxy S9 smart-
phone and a Hikey970 board.

The remainder of this paper is organized as follows. The
related work on on-device deep learning frameworks and
scheduling techniques on heterogeneous PEs are discussed
in Section II. The hardware platform and system model used
in this work are described in section III. In section IV,
we describe the overall flow and how to profile execution
time and communication time of each layer on different PEs.
After the scheduling technique for a single application is
explained in section V, section VI describes how to extend
our scheduling framework to multi-application scheduling.
Section VII verifies our scheduling method by comparing the
scheduling results with the results obtained from the actual
implementation. Section VIII concludes this paper.

II. RELATED WORK
A. ON-DEVICE DEEP LEARNING FRAMEWORK
There are many recent studies for executing DL applications
on embedded devices. While they mostly consider a single
DL application, we also consider the scheduling of multiple
applications that share the processors. CNNDroid [6] is a
library that accelerates a DNN by dividing layers into GPU
and CPU. It simplymaps the convolution and fully-connected
layers to GPU and the other layers to CPU. RSTensorflow [7]
is a framework for users to use heterogeneous processors
such as CPU and GPU easily. It uses RenderScript [8] to
manually parallelize the computation workloads in a layer,
such as matrix multiplication and convolution, across CPU
cores and GPUs.

Mirhoseini et al. [9] proposed a hierarchical DNN model
for the efficient placement of a neural network graph onto
hardware devices. TheGrouper groups graph operations, and
the Placer maps them to the devices. Even if they also try to
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utilize not only GPUs but also CPUs in the system, unlike
our approach, they do not consider the various configurations
with multi-cores in a CPU, nor the pipelining scenario: only
task-parallelism with parallel edges is considered.
µLayer [10] is the latest work to accelerate a DNN on

heterogeneous processors on Samsung Galaxy Note 5 and
Galaxy A5. It aims to exploit only data-level parallelism of
each layer using the heterogeneous PEs, unlike ours which
also exploits task-level parallelism. Since all PEs need to
be synchronized and data communication between PEs is
necessary at the end of each layer, the communication and
synchronization overhead is significant. Also, it did not
consider a DVFS policy and CPU utilization constraints of
the smartphone. Nonetheless, experimentation with the real
smartphone is laudable since practical issues need to be
resolved like this work.

DeepX [11] considers data-level parallelism in the map-
ping and scheduling of DL applications on heterogeneous
multi-processor platforms. DeepX performs layer-wise parti-
tioning first and divides theworkload of a layer into a group of
unit blocks that are defined as the computation requirements
to update a single output node in a layer. The authors propose
an Integer Linear Programming (ILP) formulation to find a
trade-off between energy consumption and latency by allo-
cating the unit blocks to PEs layer by layer. While they show
the experimental results of layer-wise partitioning onto the
heterogeneous PEs, no performance comparison is reported
between the simple layer-wise partitioning and the ILP-based
block-level partitioning. Their work differs from ours in that
they do not consider task-level parallelism and their objective
function does not consider throughput constraint.

B. SCHEDULING MULTIPLE APPLICATIONS ON
HETEROGENEOUS PROCESSORS
We schedule multiple applications on heterogeneous proces-
sors with processor sharing, exploiting data parallelism inside
a task as well as task-level parallelism. This section presents
some related work on scheduling techniques.

1) SCHEDULING TECHNIQUES ON
HETEROGENEOUS PROCESSORS
Since scheduling acyclic task graphs on a heterogeneous sys-
tem is awell-knownNP-hard problem, several heuristics have
been proposed to solve this problem. Topcuoglu et al. [12]
proposed a Heterogeneous Earliest Finish Time (HEFT) algo-
rithm and a Critical Path On a Processor (CPOP) algorithm,
which both reduce task finish time in a greedy manner. HEFT
uses the concept of rank, which calculates the execution time
of a critical path from one task to the last task, to prioritize
each task, and schedule tasks by mapping them to the pro-
cessor in a way that minimizes the finish time. CPOP, on the
other hand, reduces the overall latency of the application by
first mapping all tasks in the critical path to one fastest proces-
sor. When HEFT and CPOP schedule tasks on heterogeneous
PEs, the rank of a task is determined by the average execution
time on all processors. On the other hand, the Predict Earliest

Finish Time (PEFT) algorithm proposed by Arabnejad and
Barbosa [13] uses the Optimistic Cost Table (OCT), which
has different task execution times for each processor. These
heuristics are concerned about the scheduling of a single task
graph. Roy et al. [14] proposed an Integer Linear Program-
ming (ILP) algorithm to find the optimal schedule result in
terms of a makespan, or response time, of an application.
This work differs from other works in that it finds the optimal
schedule.While this work considers only one application, our
method can schedule multiple applications. Also, our method
maximizes throughput when scheduling a single application,
while other studies aim to reduce the makespan.

Zhao and Sakellariou [15] have addressed the scheduling
problem of multiple applications. Their solution is to simply
merge multiple applications into one large task graph. Hence
it does not allow applications to have different periods and
random starting offsets. Xie et al. [16] proposed two static
heuristic algorithms, F_MHEFT and D_MHEFT, which are
global scheduling algorithms that schedule multiple appli-
cations with mixed criticality levels on heterogeneous PEs.
They present two scheduling algorithms; F_MHEFT aims
to improve the system performance based on the fairness
policy while D_MHEFT aims to meet the deadline of high-
criticality applications. D_MHEFT is similar to our method
in that it schedules the target applications with deadlines of
tasks in mind. However, we schedule multiple applications
with different periods and starting offsets, and also consider
the worst interference by other application tasks. To apply
D_MHEFT to multiple applications with different periods
and starting offsets, it would have to simulate all possible
cases.

2) SCHEDULABILITY WHEN SCHEDULING
MULTIPLE APPLICATIONS
When we schedule multiple applications onto a multiproces-
sor system, a popular solution is to partition the processors to
the applications spatially and/or temporarily. In other words,
each PE is assigned exclusively to a single application. Then,
each application can run on the assigned set of processors
exclusively without worrying about schedulability. If we
allow a processor to be shared among multiple task graphs,
however, any parallel scheduling should check if the mapped
tasks are schedulable on each processor.

There are two approaches to tackle this scheduling prob-
lem. One is to transform the task graph into a set of inde-
pendent tasks that have different starting offsets and relative
deadlines [17]. In this approach, the starting offsets and
deadlines should be conservatively assigned, considering the
dependency between tasks. After transformation, the conven-
tional schedulability analysis method for independent tasks is
applied.

The second approach is to compute the time range in which
each task should be scheduled to guarantee the satisfaction
of the deadline and to check if the possible interference
from the other applications is smaller than the range [18].
Since the former approach, transformation approach, checks
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schedulability pessimistically [18], we choose the latter
approach, schedule-based approach.

3) SCHEDULING TECHNIQUES CONSIDERING DATA
PARALLELISM INSIDE A TASK
Even though there exist numerous scheduling techniques
that have been proposed for homogeneous or heterogeneous
multi-core systems, they mostly assumed that a task is run on
a processor, and seldom considered data parallelism inside
a task. Some recent studies considered data parallelism of
tasks as well as task parallelism. Liu et al. [19] proposed
heuristic algorithms to minimize the scheduling length of a
task graph with data-parallel tasks. Yang et al. [20] proposed
an evolutionary algorithm to schedule a task graph, consider-
ing task parallelism, data parallelism, and pipelining, with an
objective to maximize the throughput performance. The same
authors proposed an ILP based technique for minimizing the
total processor cost while satisfying the time constraints.

The previous works are usually based on a static model of
a hardware platform. They do not consider the characteristics
of the actual hardware platform on which the scheduling
algorithm will run. Thus it is simply assumed that the exe-
cution time of a task on each PE is given and the processor
configuration is also fixed. On the other hand, we integrate
the characteristics of the hardware platform into problem
formulation by profiling each task considering various pro-
cessor configurations. Thismakes our approach distinguished
from the existent ones. Moreover, the scheduling results are
verified with actual implementations, which has not been
carried out in most of the previous works.

III. HARDWARE PLATFORM AND SYSTEM MODEL
Since the proposed framework is applied to embedded
devices, we first explain the characteristics of hardware
platforms used in this work: Galaxy S9 smartphone and
HiKey970 board. Galaxy S9 is a heterogeneous system that
consists of a Mali-G72 MP18 GPU and big.LITTLE CPUs
with a quad-coreM3CPU running at 2.7GHz and a quad-core
Cortex-A55 CPU at 1.79GHz. HiKey970 is also a heteroge-
neous system that consists of a Mali-G72 MP12 GPU and
big.LITTLE CPUs with a quad-core A73 running at 2.36GHz
and a quad-core Cortex-A53 at 1.8GHz. Besides, it has an
NPU that can accelerate DL applications. We believe that our
approach can be applied to other hardware platforms since it
uses a black boxmodel for each processing element (PE) with
the profiled execution time and communication time at the
task level without assuming a specific hardware architecture.

Since reducing the energy consumption is critical inmobile
embedded devices, Galaxy S9 adopts an aggressive DVFS
policy, called schedutil, that lowers the frequency and the
voltage level of CPU cores if the average utilization of cores
is below a pre-specified threshold. No DVFS policy is used
in HiKey970. Galaxy S9 even shutdowns some cores dynam-
ically using a CPU hot-plug feature supported by Linux.
Since the overheating induces unexpected slow-down of an
application, the maximum CPU core utilization is usually set

FIGURE 1. Five different CPU core configurations considering inter-layer
parallelism and intra-layer parallelism.

to avoid such an unpleasant situation.We profileDL networks
considering DVFS and hot-plug, and propose a mapping
technique that can limit CPU utilization.

For software implementation of DL applications on ARM
processors, ARM provides an open source software develop-
ment kit, called ARM NN [21]. Unfortunately, it does not
support Galaxy S9. Moreover, it does not support the par-
allel execution of a DL network on a heterogeneous system.
Thus partitioned DL applications need to be written manually
using ACL [3] that contains OpenCL implementation of DL
operations for GPUs and NEON 2 implementation for CPU.
APIs for utilizing the NPU are more limited. Even though
HiKey970 has an NPU inside, the software development
environment is not open to the public so that the NPU could
not be used to verify our schedule results in section VII.

Most deep learning libraries and previous works consider
a multi-core CPU as a single processor and exploit the data-
parallelism of the mapped layer using multi-threading. For
instance, ACL executes a convolution layer either on a multi-
core CPU or a GPU exploiting the data-parallelism in the
layer to reduce overall inference time. In contrast, we model
the quad-core CPU as a set of logical processing elements
since multiple layers may run concurrently on different cores
in the CPU. Figure 1 illustrates five different configurations
that we can choose with four CPU cores. Each figure in
Figure 1 shows that four CPU cores can be utilized differently
with different combinations of inter-layer and intra-layer
parallelism degree that is indicated by numbers below the
figures. The degree of inter-layer parallelism indicates how
many layers are executed concurrently, and the degree of
intra-layer parallelism is given as a tuple that represents how
many cores are assigned to the layers running concurrently.
For example, Figure 1 (b) illustrates the case in which the
degree of inter-layer parallelism is 2 and that of intra-layer
parallelism is (3, 1), meaning that two layers are mapped on
the CPU of which one layer is executed by 3 cores while the
other layer by 1 core.

IV. PROPOSED SCHEDULING FRAMEWORK
AND PROFILING
Figure 2 displays the overview of the proposed scheduling
framework of deep learning (DL) applications on an embed-
ded device. While the proposed methodology is applied to
two specific embedded devices in this work, it is applicable
to other embedded devices. Before a scheduling decision is

2NEON is a SIMD architecture extension for ARM Cortex-A processors.
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FIGURE 2. The proposed deep learning (DL) applications scheduling flow
(The numbers in the small circles indicate the order of the scheduling
flow.).

made, it should be known how much time is taken to execute
a task on each processing element (PE) and the communi-
cation overhead between two dependent tasks, which would
vary if they are mapped to different PEs. Such profiles are
obtained by running the DL application on each PE in the
preprocessing step.

With the profiled task information, we perform static
scheduling of DL applications on the heterogeneous pro-
cessors in the given hardware platform to optimize a given
objective function under the constraint on the CPUutilization.
For a single DL application, the objective is to increase the
throughput and to minimize energy consumption. The output
of the framework is a set of Pareto optimal schedules, which
includes mapping information of layers onto PEs.

When scheduling multiple DL applications, we assume
that the period of each application is given as the throughput
constraint. While we can use other objectives, the scheduling
objective assumed in this paper is to minimize the response
time of each application and the total energy consumption of
the system. The deadline is set to be the same as the period.
The framework finds a set of Pareto optimal schedules that
meet the deadline of each application. Before we explain
the proposed scheduling techniques in subsequent sections,
we elaborate on the profiling and performance estimation
technique in this section.

A. TASK PROFILING AND ESTIMATION
Profiling is performed with an in-house deep learning frame-
work [22] that generates an OpenCL code for the Mali GPU
andmulti-threadedNEON code for themulti-core ARMCPU
in the device using ACL. By adding a time-stamping code
at each task (or layer) boundary, the elapsed time between
any two points of interest can be measured. For the GPU,

TABLE 1. An example of profiling (network: SqueezeNet).

the kernel time can be measured by using OpenCL profiling
APIs.

The GPU execution time is easy to obtain since OpenCL
utilizes all GPU cores, and the task execution time does not
vary in a DL application. On the other hand, CPU profiling
of a task is tricky, with many issues that should be taken into
account. First, the five different CPU configurations should
be considered as discussed in Figure 1: a task should be
profiled with a varying number of cores from 1 to 4, as shown
in Table 1. For profiling with the different number of CPU
cores, a Linux command taskset is used to assign specific
CPU cores to a process.

Second, the CPU execution time should be adjusted since
the embedded device may run a Dynamic Voltage Frequency
Scaling (DVFS) governor that changes the CPU frequency
depending on the utilization. Moreover, the Linux kernel may
turn on and off a CPU core at run-time, supporting the CPU
hot-plug feature. For example, if a task is executed on a single
core and no other applications or processes are running on
the other cores, Galaxy S9 would turn off the other cores
to reduce the energy consumption and increase the CPU
frequency up to the maximum of 2.7 GHz. If a task is mapped
to all four cores, on the other hand, the DVFS governor would
lower the CPU frequency to 1.79GHz to reduce the heat and
power consumption. With two cores assigned, a task is run
at the frequency of 2.31GHz. Since other processes may be
running while the target DL applications are running, it is
safe to assume that all CPU cores will be busy in reality.
Thus the profiled CPU execution time is calibrated based
on the observed CPU frequency, assuming that all cores are
busy even though a task is not mapped onto four cores. For
instance, the execution time profiled on a PE with two CPU
cores has to be increased by 2.31

1.79 . This simple interpolation is
based on the assumption that computation time will increase
inversely proportional to the CPU frequency, which is a
source of error between our profiling results and the actual
measurements.

More detailed profiling of convolution layers is performed
to examine the cause of varying speedup ratio. Table 2 shows
the measured execution time of four kernels involved in each
convolution layer for c1, c9, and c14. Note that a convolution
operation is computed by GEMM (general matrix multiplica-
tion) after converting the input image to a suitable matrix. If a
target device has four cores, the ACL creates three threads in
addition to the main thread. The main thread first distributes
the workload to the threads and computes the remaining
workload. Then, it synchronizes with other threads waiting
for them to be joined. In the table, Sync Overhead is this
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TABLE 2. Intra-Layer parallelism analysis.

waiting time including the conditional wait API overhead.
In c1 and c9, the synchronization overhead is small compared
to the computation time. In c14, however, the overhead is
comparable to or even larger than the computation time.
It makes the CPU cores idle and hinders the performance
improvement of c14 when intra-layer parallelism is four,
as shown in Table 1.

It is noteworthy that, in some layers,Col2Im time is greater
than the GEMM time. This is because the memory access
pattern of Col2Im has very poor locality: the kernel mainly
consists of memory operations, but the stride of the write
operations is the 2-D output tensor size (width× height), and
the size per access is only 4 Bytes.

B. COMMUNICATION OVERHEAD PROFILING
AND ESTIMATION
Communication overhead between two tasks should be con-
sidered in making a scheduling decision. In ACL, the input
and output tensor buffers of each layer (or task) should be
defined statically. If two adjacent tasks are mapped onto the
same PE, the output tensor buffer of a task can be shared with
the input tensor buffer of its successor task, resulting in no
communication overhead between them. If they are mapped
onto different PEs, however, a buffer cannot be shared, but
separate buffers are required for each tensor in order to run
tasks in a pipelined fashion. Likewise, the two adjacent tasks
that are mapped to different logical PEs among four cores in
a CPU cannot share a tensor buffer. Data should be copied
between separate buffers using memcpy. For the communi-
cation between CPU and GPU, map and unmap OpenCL
APIs are used. The map API is used to access the data in the
GPU memory address space from the CPU, while the unmap
releases the mapping so that the mapped data can then be
computed by the GPU.

Thus communication overhead is estimated differently
depending on the types of communicating PEs. Communi-
cation time between different CPU PEs is equal to memcpy
time, and the time fromGPU to CPU is set to (map+memcpy)
time since the OpenCL maps GPU memory to the host and
then copies the data to CPU. The time from CPU to GPU is
set to (map+memcpy+unmap) time since it has to map GPU

FIGURE 3. Task-clustering mapping of an application.

memory to the host (CPU) in order to send data to GPU and
then unmap it for the next layer’s GPU processing.

To measure the overhead of those APIs, we made a micro-
bench and ran it 1000 times, from which the averaged over-
head was obtained. By changing the data size in the APIs,
the overhead of memcpy on Galaxy S9 is approximated as
1.06×10−2×(DataSize)2+2.75×10−1×(DataSize)+1.70,
unmap as 9.97 × (DataSize) + 526.39, and map as 21.75 ×
(DataSize)+ 569.25.

C. NPU PROFILING AND ESTIMATION
Accurate profiling on an NPU could not be made since the
API for executing a layer on an NPU is not available, which
makes direct profiling impossible. Instead, performance esti-
mation on the NPU in HiKey970 is made indirectly by assum-
ing that the NPU is about 6.5 times faster than that of the
quad-core CPU based on the performance comparison reports
in [23], [24]. Also, the communication time between CPU
and NPU is assumed to be the same as the time between CPU
and GPU. For energy consumption, a similar estimation is
made with the comparison reported in [23], [24] since it is
not possible to measure the power consumption of a task on
each PE. As a result, the power consumption of CPU, GPU,
and NPU is assumed to be 3.5W, 4W, and 2W, respectively.

V. SCHEDULING OF A SINGLE DEEP
LEARNING (DL) APPLICATION
A. BASELINE TASK-CLUSTERING SCHEDULER
As a baseline schedulingmethod, we partition the DNN into a
set of sub-networks, map them onto processors, and run them
in a pipelined fashion. The intuition for this is to minimize the
communication overhead, also keeping the code complexity
low. The mapping problem is defined as the task-clustering
problem in which the input, a DL application, is partitioned
into a number of PEs. A processing element(PE) is assigned
a single task-cluster only. One exception is allowed for a
logical PE of CPU, as illustrated in Figure 3 (a) where the
CPU is assigned two task-clusters: the first cluster and the
last cluster. If we attach the scheduler of the second iteration
and move the cluster of one period, however, the schedule
becomes as shown in Figure 3 (b) so that the restriction still
holds. We implement this scheduler using ILP to find the best
solution in this restricted solution space.
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Let L = {L1, L2, . . . , Ln} be a set of layers, or tasks, in a
DL application sorted in the topology order, and PE= {PE1,
PE2, . . . , PEm} be a set of logical PEs in the device.3 E

j
i is the

computation time of Li on PEj and T
j,k
i is the communication

time taken when transferring Li’s output from PEj to PEk .
There are three sets of constraints in the ILP formulation.

First, a task is mapped onto only one PE.WhenM j
i is a binary

decision variable that indicates whether Li is mapped to PEj,
the following constraint, expressed by Eq. (1), makes each
task mapped onto only one PE. Let pred(Li) and succ(Li)
be the set of preceding and succeeding layers of layer Li,
respectively.

∀Li ∈ L,
m∑
j=1

M j
i = 1 (1)

The second set of constraints is related to task-clustering
mapping. We introduce two additional binary variables, depji
andPipeji. The former indicates whether any predecessor of Li
is mapped on the PEj. The Pipe

j
i variable indicates whether

a cluster or pipeline stage starts from layer Li on PEj. The
definitions of depji and Pipeji are presented in Eq. (2) and
Eq. (3), respectively:

depji =

{
1, ∃Lk ∈ pred(Li), M

j
k = 1

0, otherwise
(2)

Pipeji =

{
M j
i , i = 1

M j
i ∧ ¬dep

j
i, otherwise

(3)

With these two variables, Eq. (4) tells that only one pipeline
stage is allowed for each PE, except the PE onto which the
first and last stages are mapped.

∀PEj ∈ PE,
n∑
i=1

Pipeji − (M j
n ∧M

j
1) = 1 (4)

Lastly, we need to specify dependency constraints. Let
Start(Li) be the start time of a task or layer Li, End(Li) be the
end time of Li, and m(Li) be the index of the PE onto which
layer Li is mapped. Then, the following two constraints of
Eq. (5) and Eq. (6) enforce all dependencies between tasks to
be satisfied.

∀Li ∈ L, ∀Lj ∈ succ(Li),

Start(Lj) ≥ End(Li)+ T
m(Li),m(Lj)
i (5)

∀Li ∈ L, ∀Lj /∈ succ(Li), j > i,

Start(Lj) ≥ End(Li)− ((1−M
m(Lj)
i )×∞) (6)

Note that we aim to maximize the throughput of a DL
application, which is determined by the longest cluster in
the pipelined execution. Thus we define the cluster execution
time, CT (PEj), as follows:

CT (PEj) =
n∑
i=1

M j
i × (E ji +

∑
Lk∈succ(Li)

T j,m(Lk )i ) (7)

3n is the number of layers in the DL application, and m is the number of
PEs in the device.

FIGURE 4. Overview of the proposed GA scheduler.

FIGURE 5. GA chromosome structure with PE configuration (1, 1, 1, 1).

Then the objective function is to minimize the longest cluster
execution time, which is presented as follows:

minimize( max
PEj∈PE

(CT (PEj)) (8)

B. PROPOSED GA-BASED SCHEDULER
Genetic algorithm (GA) is a widely used meta-heuristic
inspired by evolutionary processes in nature, where a solution
of the problem is encoded as a chromosome, and the fitter
survives to the next generation, populating new chromosomes
with operations such as crossover and mutation on their chro-
mosomes. The proposed scheduling algorithm is displayed
in Figure 4. The overall flow and population generation pro-
cedure is not much different from the standard GA algorithm.

Figure 5 shows an example of a chromosome configured to
solve the problem using the proposed GA scheduler. A chro-
mosome consists of an array, where each element represents a
layer, and the number in the array indicates the PE onto which
the layer is mapped. For example, the chromosome shown
in Figure 5 indicates that the first layer is mapped on PE 0
(CPU PE) and the third layer is mapped on PE 4 (GPU PE),
and so on. Since encoding varies depending on the configu-
ration of the multi-core CPU, we iterate this encoding with
different number of PEs (i.e., different maximum number in
the array) for each possible configuration.

The objective of the proposed scheduling is to maximize
throughput and to minimize energy consumption. The CPU
utilization should not be higher than some threshold to avoid
overheating. Thus we define the fitness function with the
following three terms and let GA find the solutions with
the minimal fitness value. The first term is the inverse of the
throughput that is obtained by Eq. (9) [25].

Throughput(graph) = lim
n→∞

n
time to finish n iterations

(9)

The second term is the total energy consumption, which is
computed by multiplying the execution time of the mapped
tasks on each PE and the power consumption of the PE. The
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FIGURE 6. Comparison of the GA-based method and the ILP-based
method (Device: Galaxy S9 / Unit: µs).

third term is the penalty in case the CPU utilization is greater
than a given utilization constraint.

C. EXPERIMENTAL RESULTS
The proposed scheduler is implemented with DEAP [26]
and SPEA2 [27] is used as the selection algorithm, which
is known to perform well for multi-objective problems.
MobileNet v1 [28], MobileNet v2 [29], SqueezeNet [30],
and DenseNet-40 (k = 32) [31] are selected as benchmark
applications in this work.

1) THROUGHPUT PERFORMANCE
We first set the optimization criteria of single application
scheduling to be the throughput performance ignoring energy
consumption. Figure 6 shows the scheduling results of the
GA-based scheduler and the ILP-based task-clustering sched-
uler. The x-axis represents the CPU configurations that deter-
mine how to exploit intra- and inter-layer parallelism on a
CPU. The y-axis represents the average inference time of
a single input image in µs. The throughput performance
is the reciprocal of the average inference time. Since the
typical CPU utilization limit to avoid overheating is within
the range of [40%, 70%], we set the constraint within the
range and compare the result with the one without any con-
straint (100%). Note that the CPU utilization is the average
utilization across the whole CPU cores.

FIGURE 7. Scheduling results from Hikey 970 (Unit: µs).

FIGURE 8. Scheduling results from two different methods.

From Figure 6, we make three observations. First,
as the CPU utilization constraint gets tighter, the inference
time increases and the throughput decreases, as expected.
In Figure 6(g), the inference time does not decrease with
larger CPU utilization constraint, which is indicating that the
GPU execution is the performance bottleneck.

Second, the throughput performance is the best with
(1,1,1,1) PE configuration in most cases, which implies
that exploiting inter-layer parallelism is more beneficial
than exploiting intra-layer parallelism. From this obser-
vation, we decided to use (1,1,1,1) PE configuration for
scheduling multiple applications, as will be explained in the
later section. Figure 7 shows that (1,1,1,1) configuration
also gives the best throughput performance for HiKey970.
There is one exception in the proposed GA-based schedul-
ing result: the inference time of (2,1,1) PE configuration,
indicated by a red arrow, is smaller than (1,1,1,1) configu-
ration when the utilization constraint is 100% as shown in
Figure 7(d).

The third observation is that the GA-based scheduling
outperforms the task-clustering scheduling in almost all
cases. It is because the partitioning restriction imposed on
the task-clustering method prunes the solution space too
much. To understand the difference between the two meth-
ods, Figure 8 compares the results of scheduling methods
for a single problem instance (SqueezeNet with (3,1) CPU
configuration under 60% CPU utilization constraint). The
figure shows that the GA-based method can better utilize the
CPU cores than the task-clustering method.
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FIGURE 9. Multi-objective scheduling results.

FIGURE 10. Multiple application scheduling example.

2) MULTI-OBJECTIVE SCHEDULING
As shown in Figure 9, the proposed GA scheduler generates
Pareto optimal solutions in terms of throughput and energy
consumption. Each Pareto optimal solution is associated with
a different scheduling result. Thus a user can find the best
trade-off from the results.

VI. SCHEDULING MULTIPLE DL APPLICATIONS
A. SCHEDULABILITY ANALYSIS
Since the schedule of an application affects the other appli-
cations, schedulability analysis can be performed only after
the mapping and scheduling decisions made. On the other
hand, we need to consider the schedulability when mak-
ing the mapping and scheduling decisions. The proposed
GA-based scheduler solves this cyclic-dependency naturally
in an iterative fashion.

Suppose that we map two applications on three heteroge-
neous processors as shown in Figure 10 andAppA has a higher
priority thanAppB.4 Figure 10(c) shows a scheduling example

4A lower number means a higher priority.

of AppA and AppB. The green box in Figure 10(c) illustrates
that task B3 in application AppB is delayed by the tasks A2
and A3 of application AppA which has higher priority. As we
do not know the relative offset of AppA to AppB, we have to
consider the worst-case scenario of interference from AppA
in calculating the delay of task B3. In addition, task B5 on
another PE is delayed due to the dependency with task B3 as
shown in the red box in Figure 10(c).

There are two methods to check the schedulability of mul-
tiple task graphs. One is to convert each task graph into a
set of independent real-time tasks with relative deadlines and
starting offsets. Dependency between tasks is expressed by
the relative starting offsets of the tasks. The other method is
the schedule-based analysis method proposed in [18].

The schedule-based analysis is based on the scheduling
results of each application. For this analysis, the maximum
resource demand (MRD) and maximum allowable interfer-
ence (MAI) are computed. The former, MRD, means the
maximum duration for which a high priority application
can delay lower priority applications, while the latter (MAI)
means the maximum duration for which a task can be delayed
by higher priority tasks. MRD can be obtained by using
the demand bound function (DBF) that returns the maxi-
mum processor execution time during a time interval given
as an argument [32]. MAI is derived from the mobility
concept of behavioral synthesis by subtracting the As-Soon-
As-Possible (ASAP) schedule offset from the As-Late-As-
Possible (ALAP) schedule offset [33].

For each task Ti, let Pi be the period of the task Ti, M(Ti)
be the processor onto which Ti is mapped, and H(Ti) be
the application set whose priority is higher than Ti. Also,
let dbfpe(A, t) be the demand bound value of the tasks in
an application A which are mapped onto pe during time
interval t. Then, the application is schedulable if each task
Ti satisfies the following equation: Eq. (10).5

MAITi −
∑

hp∈H (Ti)

dbfM (Ti)(hp,Pi) ≥ 0 (10)

Since we assume non-preemptive scheduling as GPU
and NPU cannot support preemptive scheduling, we mod-
ify Eq. (10) such that it considers the maximum possible
interference by a lower priority task. If we denote a set of
applications whose priority is lower than Ti as L(Ti) and the
computation time of task lp as Clp, then the final equation
becomes Eq. (11).

MAITi −
∑

hp∈H (Ti)

dbfM (Ti)(hp,Pi)− max
lp∈L(Ti)

(Clp) ≥ 0 (11)

B. GA-BASED SCHEDULER
The scheduler shown in Figure 4 is applied to the scheduling
of multiple applications with a similar chromosome structure.
For the scheduling of multiple DL applications, the fitness

5In the general case, after subtracting the interference of one higher prior-
ity application from the MAI, the MAI value should be updated iteratively,
but this equation does not include that part for simplicity.

43988 VOLUME 8, 2020



D. Kang et al.: Scheduling of Deep Learning Applications Onto Heterogeneous Processors in an Embedded Device

FIGURE 11. Pareto-optimal solutions in terms of relative response time
when scheduling SqueezeNet(SQ), MobileNet v1(MBv1), and MobileNet
v2(MBv2) .

function is redefined since the objective and the constraints
are changed. We set multiple objectives, minimizing the
response time of each application, and minimizing the total
energy consumption. Thus the fitness function has as many
terms as the number of applications, each of which is the
response time of the corresponding DL application, plus the
term for the total energy. If the response time of an application
is greater than the throughput constraint of the application,
a large penalty is added to the term so that it cannot be
selected.

C. EXPERIMENTAL RESULTS
The same configurations are used as in Section V-C except
that the three CNNs are scheduled together and the objectives
are different: tominimize response times of three applications
and total energy consumption of the device. The CPU config-
uration is fixed to (1,1,1,1), as this configuration has resulted
in better solutions for a single DL application in most cases.

Figure 11 and Figure 12 show the scheduling result of
three benchmark CNNs with different periods; SqueezeNet,
MobileNet v1, and MobileNet v2. Each application has peri-
ods of 33, 40, and 50 ms, respectively. In this experiment,
the highest priority is assigned to SqueezeNet while the low-
est one to MobileNet v2.

Figure 11 shows 288 Pareto-optimal solutions in terms of
the relative response times of the three applications. We do
not include energy information on this chart for a simple
illustration. The grayscale indicates the response time of
MobileNet v2: the darker is the color, the smaller is the
response time. The x-axis indicates the relative response time
of SqueezeNet to the fastest response time of SqueezeNet
on the device. The minimum response times of SqueezeNet,
MobileNet v1, and MobileNet v2 are 10.3 ms, 13.7 ms, and
16.9ms, respectively. The y-axis and z-axis represent the rela-
tive response time ofMobileNet v1 andMobileNet v2 respec-
tively. We could observe that the application with the higher
priority has the smaller response time, as expected: the min-
imal relative response times of SqueezeNet, MobileNet V1,
and MobileNet v2 are 1, 1, and 1.43, respectively.

FIGURE 12. Pareto-optimal solutions in terms of energy when scheduling
SqueezeNet(SQ), MobileNet v1(MBv1), and MobileNet v2(MBv2).

Figure 12 shows the change in energy consumption as
the response time of two different application changes.
The darker color indicates less energy consumption.
In Figure 12(a), we can observe that the energy consumption
is lowwhen the response times of SqueezeNet andMobileNet
v1 are 1 and 1.8, respectively.

VII. VERIFICATION WITH REAL HARDWARE PLATFORMS
Based on the scheduling results of a single DL application,
we parallelize two benchmark networks, MobileNet v1 and
MobileNet v2, on two hardware platforms: Galaxy S9 and
HiKey970. Since there is no existent software framework to
generate the parallelized code, we extended our own deep
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TABLE 3. Verification results on two hardware platforms.

learning software framework [22]. For pipelined execution,
we make a separate thread for each logical PE in CPU and
implement double buffering for the tensor of which the source
layer and the destination layer are mapped onto different PEs.
And we use the conditional wait API for synchronization.

Due to the limitation imposed by ACL, however, we could
not implement all PE configurations of the multi-core CPU,
and we could not verify the scheduling of multiple DL appli-
cations. The current ACL implementation does not allow
more than one task to use multi-threading for data-parallel
execution simultaneously. For example, (2,2) configuration
is not allowed since it would have two tasks, each of which
in turn would create two threads. In (1,1,1,1) configuration,
we disable the threading option for data-parallelism. Conse-
quently, we could verify the scheduling results of a single DL
application for the following two cases:

• (C1): With ACL scheduler disabled, scheduling with (1,
1, 1, 1) PE configuration

• (C2): With ACL scheduler enabled, scheduling with a
quad-core CPU: (4) configuration

In this experiment, the scheduling objective is to max-
imize the throughput under no CPU utilization constraint,
and comparison is made in terms of the processing time for
1000 images. Since we can change the DVFS governor and
GPU frequency of HiKey970, unlike Galaxy S9, we chose the
performance CPU governor and 767MHz GPU frequency for
HiKey970. Neural Processing Unit (NPU) is not used even
though HiKey970 has it.

Table 3 shows the verification results. It can be observed
that the performance difference of the parallelizedMobileNet
v1 between the scheduling result and the measured one
is less than 7% on both hardware platforms for two PE
configurations. For MobileNet v2, the performance gap is
relatively larger, particularly on HiKey970 for (C1) config-
uration. The main reason is that we underestimate the com-
munication cost between processors in HiKey970. We found
that Galaxy S9 uses only two CPU cores instead of four
for (C2) configuration with MobileNet v2, turning off two
CPU cores as the CPU utilization becomes lower than the
given threshold that is not known to us. Thus we re-run the
GA-based scheduler with profiling results with two CPU
cores for the layers. Then, we could obtain no performance
difference as shown with parentheses in the last row of
Table 3.

VIII. CONCLUSION
In this paper, we propose a scheduling framework of deep
learning (DL) applications for embedded devices with hetero-
geneous processors. We exploit both task-level and data-level
parallelism in the scheduling of a DL application. In particu-
lar, we propose to consider five different PE configurations
for a multi-core CPU to exploit both types of parallelism
in various ways. We also consider the DVFS policy and
the CPU utilization constraints to avoid thermal throttling in
the profiling of tasks on each processing element. We use a
GA-based method for scheduling a single DL application.
The GA-based scheduler is also applied to the scheduling
of multiple DL applications. We modify the schedule-based
schedulability analysis to apply to non-preemptive tasks.

We verified the proposed scheduling methods by compar-
ing the results with the measured ones in two real hardware
platforms: Galaxy S9 and HiKey970. By considering several
practical issues in the real implementation, we could achieve
quite accurate estimation, with the error smaller than 7%
except for one case. The primary source of error is the inac-
curacy of task and communication profiling. Nonetheless,
we believe the comparison with the actual implementation is
a meaningful contribution.
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