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ABSTRACT In this study, a highly precise time domain solution of electromagnetic fields for a canonical
structure is derived. Our reference solution is extremely useful for researchers, engineers, and developers
to evaluate the accuracy of their computational results using commercial software or their self-developed
codes. Rigorous solutions of a cylinder or sphere, which consists of a homogeneous medium, are derived in
the complex frequency domain; they are numerically transformed into the time domain using fast inversion
of Laplace transform. In addition, the field distribution at the desired specific observation time can be easily
obtained. Furthermore, the numerical accuracy of the computational electromagnetic solvers is evaluated.

INDEX TERMS Reference solutions, time domain solver, fast inverse Laplace transform, finite-difference
time-domain, nonlocal effects.

I. INTRODUCTION
Time domain analysis of electromagnetic fields is indispens-
able for various applications, such as designing computer
chips, antennas, optics devices, analysis of propagation for
wireless communication, and medical equipment [1]–[10].
Many commercial software packages based on time domain
solvers have recently become available, which are powerful
tools for industrial design and modeling. However, evaluat-
ing the reliability and accuracy of the computational results
remains difficult because rigorous solutions of time domain
responses are very limited [11].

A highly precise time domain solution of electromagnetic
fields for a canonical structure is derived in this study. Specifi-
cally, our reference solution can obtain the field distributions
for a desired specific observation time, as shown in Fig. 1.
There are no limits for time step size, and it is suitable
for evaluating time domain analysis methods, such as the
finite-difference time-domain (FDTD)method [4], [12], [13].
The objective of this study is to propose an evaluation
method for the reliability of time domain electromagnetic
solver. By comparing with our obtained results at specific
observation time, end users or developers can easily evaluate
the accuracy of their computational results using commercial
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FIGURE 1. Example of our reference solution. Electromagnetic field
distribution at the desired specific observation time can be obtained
easily and efficiently, which is suitable for evaluating time domain solvers.

software or self-developed codes. The degree of accuracy
for solving canonical problems are important for represent-
ing the accuracy of the analysis method. Our precise time
domain electromagnetic responses can be obtained using the
following procedure: rigorous solutions or highly accurate
numerical results of electromagnetic waves are computed

44318 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-1129-8792
https://orcid.org/0000-0002-0025-409X
https://orcid.org/0000-0002-7431-8121


S. Masuda et al.: Reference Solutions for Time Domain Electromagnetic Solvers

in the complex frequency domain. The waves in the com-
plex frequency domain are numerically transformed into
time domain using fast inversion of Laplace transform
(FILT) [14], [15]. The instantaneous value is easily and
efficiently obtained. Furthermore, it is an error-controllable
method, and the number of digits of accuracy for our refer-
ence solution can be strictly evaluated to select the approxi-
mate parameter properly.

In the formulation section, an example of electromag-
netic fields in the complex frequency domain is determined
and shown here. The scatterer is assumed to be a metal-
lic nanocylinder. The hydrodynamic Drude model, which
considers nonlocal effects, describes the characteristics of
a metal for the wavelength light band [16], [17]. Although
the problems are canonical and the shapes are limited, their
solution can be obtained mathematically. Evaluation of the
computational accuracy of the time domain solver, i.e., the
FDTD method, is demonstrated in this study through com-
parison with our reference solutions. Further, the accuracy of
time domain response estimated at a specific observation time
is shown.

For generic purposes, the reference solutions for a perfect
electric conducting cylinder, dielectric cylinder, and metallic
nanosphere are derived and discussed in the appendix.

II. FORMULATION
A. FAST INVERSE LAPLACE TRANSFORM
To obtain the time domain solutions, the electromagnetic field
in the complex frequency domain is transformed using FILT.
In our algorithm, the sampling complex frequency can be
easily decided, and the reference solution at a single moment
in time is accurately obtained. To accomplish this, the expo-
nential function in the Bromwich integral is replaced with
the cosine in the hyperbolic function [14]. By substituting
this approximated function into the integrand and using the
residue theorem, the approximated time domain function
fec(t , α) can be evaluated using the following equation:

f (t) ≈ fec (t, α) =
eα

t

∞∑
n=1

Fn (1)

where

Fn = (−1)n Im [F (sn)] (2)

sn =
α + j (n− 0.5) π

t
(3)

and F(s) is the image function of the original time domain
function f (t). In this study, it can be obtained by analytical
solution. Generally, an image function can be computed by
complex frequency domain solvers. The sampling complex
frequencies for the inverse Laplace transform are determined
by Eq. (3). By truncating the infinite series, the final expres-
sion can be obtained as,

fec (t, a) =
eα

t

k∑
n=1

Fn (4)

FIGURE 2. Geometry and coordinate system of the cylinder. The scatterer
consists of general homogeneous media with permittivity ε(s) and
radius a. E(i) and H(i ): incident waves, θi : angle of incidence.

where k is the truncation number. Here, the accuracy of fec
can be controlled by an approximation parameter α [14], [15].
The instantaneous field distribution at an observation time t
can be accurately and efficiently solved using the summation
in Eq. (4).

B. ELECTROMAGNETIC FIELDS FOR A CYLINDER IN THE
COMPLEX FREQUENCY DOMAIN
The scatterer is assumed to be a cylinder of radius a, and to be
uniform along the z-axis and consisting of general homoge-
neous media with permittivity ε(s), as shown in Fig. 2. Here,
H(i) and E(i) are the incident incoming waves. The incident
wave is a plane wave (in this case, the H-wave), and the
magnetic field has only the z-component and is incident at
angle θi. In this section, the time dependence is characterized
by exp(st); here, s is the complex frequency given by σ + jω,
where σ is a real number and ω is the real frequency.

For electromagnetic waves in the complex frequency
domain for a metallic cylinder, the general solution of wave
equations in the complex frequency domain as the cylindrical
coordinate can be expressed as,

Hz (r, θ) = (CIn (s0r)+DKn (s0r))
(
Aejnθ+Be−jnθ

)
(5)

where r is the distance of the observation point, θ is the
observation angle, s0:=s

√
ε0µ0, In(·) refers to the modified

Bessel functions of the first kind, Kn(·) denotes the modified
Bessel functions of the second kind, and A, B, C, and D are
unknown coefficients. All the fields can be expanded in terms
of the cylindrical vector wave functions, which satisfy Eq. (5),
as given below:

Mn(sr, θ) = ∇ × azZn(sr)ejnθ (6a)

Nn(sr, θ) =
1
s
∇×Mn(sr, θ) (6b)

Ln(sr, θ) = ∇Zn(sr)ejnθ (6c)

where Zn(·) represents the modified Bessel functions. For the
incident fields and the field inside a cylinder, In(·) is used; for
the scatter field, Kn(·) is used.
For the magnetic fields, the scattered outgoing wave

H(s) and the internal wave inside the cylinder H(T ) can be
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expanded to an infinite series using Eq. (6b). The equations
for these waves are given below.

H(i)(s) =
H0(s)
s0

∞∑
n=−∞

Nn(s0r, θi − θ ) (7a)

H(s)(s) =
H0(s)
s0

∞∑
n=−∞

AnNn(s0r, θi − θ ) (7b)

H(T )(s) =
H0(s)
s0

∞∑
n=−∞

BnNn(sT r, θi − θ ) (7c)

where H0(s) is expressed as the waveform of the incident
wave in the complex frequency domain, An is the coefficient
of the scattering wave, Bn is the coefficient of the inter-
nal wave, and sT :=s0

√
εTµr , εT is the transverse dielectric

function.
The electric field can be derived fromMaxwell’s equations.

The internal electric fields of a cylinder are divided into
transverse field E(T ) and longitudinal field E(L), as follows.

E(i)(s) =
(−1)H0(s)

s0

∞∑
n=−∞

Mn(s0r, θi − θ ) (8a)

E(s) (s) =
(−1)H0(s)

s0

∞∑
n=−∞

AnMn(s0r, θi − θ ) (8b)

E(T ) (s) =
(−1)H0(s)

sT

∞∑
n=−∞

BnMn(sT r, θi − θ ) (8c)

E(L) (s) =
(−1)H0(s)

s0

∞∑
n=−∞

GnLn(sLr, θi − θ ) (8d)

where εL is the longitudinal dielectric function, sL :=s0
√
εLµr ,

and E(s) is the scattered electric field.
As the boundary condition for the general homogeneous

media, the tangential component of the electromagnetic fields
is continuous on the boundary. In addition, the boundary
condition for a hydrodynamic model can be modified as
follows:

H (i)
z + H

(s)
z = H (T )

z (9a)

E (i)
θ + E

(s)
θ = E (T )

θ + E
(L)
θ (9b)

E (i)
r + E

(s)
r = E (T )

r + E
(L)
r (9c)

The unknown coefficients can be obtained by solving the
linear equations as follows:

An = −

CnIn (s0a)+ In (s0a) I ′n (sT a)
−
√
εT I
′
n (s0a) In (sT a)

CnKn (s0a)+ Kn (s0a) I ′n (sT a)
−
√
εTK

′
n (s0a) In (sT a)

(10a)

Cn =
n2

sLa
In (sLa)
I ′n (sLa)

In (sT a)

×

(√
εT

s0a
−

1
sT a

)
(10b)

Bn =
In (s0a)+ AnKn (s0a)
√
εT In (sT a)

(10c)

Gn = −
n

jsLsT a

×
sT In(s0a)+ sTAnKn(s0a)− s0BnIn(sT a)

I ′n(sTa)
(10d)

To consider the permittivity dispersion ε(s) for a metal,
the relative permittivity of the medium is expressed by the
Drude model in the complex frequency domain. In addi-
tion, because of the pressure from the electron response,
we consider the hydrodynamic model for nonlocal effects.
The dielectric function can be divided into transverse and
longitudinal dielectric functions. In the hydrodynamic Drude
model, the transverse dielectric function εT is the same as that
in the general Drude model [18], and is represented as,

εT (s) = 1+
f0ω2

p

s2 + 00s
(11)

where ωp is the plasma frequency, f0 denotes strength, and
00 represents the damping coefficient.
The longitudinal dielectric function εL depends not only on

frequency but also on the wave number s0, as follows:

εL(s0, s) =
ω2
p

s2 + s00 + βs20
(12)

where β = (3/5) v2F and vF is the Fermi velocity.
Here, when the medium is not represented by the hydro-

dynamic Drude model, the coefficients Cn and Gn are zero.
In addition, the coefficients for a perfect electric conducting
cylinder, dielectric cylinder, and metallic nanosphere are pro-
vided in the appendix.

III. REFERENCE SOLUTIONS
To validate our solutions, we refer to the scattered electro-
magnetic waves for the metallic cylinder. The radius of the
cylinder is a = 1.0 nm. The incident wave is a plane wave,
which originates from θi = 180◦. Further, the medium is gold
andwe use the hydrodynamic Drudemodel [16]. The incident
waveform is a modulated Gaussian pulse, which is generally
used in time domain solvers. Because the Laplace transform
of the Gaussian type of pulses cannot be defined, we derived
the pseudo-Gaussian pulse [19]. The center wavelength of the
modulated Gaussian pulse is 444 nm, which is the plasmon
resonance wavelength.

Here, to consider the standard FDTD method for compari-
son, the modeling for the scatterer uses the staircase approx-
imation and the second-order accurate central-difference
scheme is applied. The cell size 1x (= 1y) for the FDTD
method is 0.1 nm, which is one-tenth of the cylinder radius.
The time increment 1t of an explicit FDTD method is
restricted by the maximum time step size 1tCFL, which
is satisfied the Courant–Friedrichs–Lewy (CFL) condition
based on a cell size, for stable calculation. The observation
time in the FDTD method tends to be a random number.
Fig. 3 (a) and (b) show the electric field distributions obtained
by our reference solution and the FDTDmethod, respectively,
at t = 22.48670284948268 fs. Here, the observation time
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FIGURE 3. Electric field distribution for metallic nanocylinder at t =

22.48670284948268 fs. (a) Our solution, (b) FDTD result, and (c) Absolute
error between our solutions and the FDTD result. The field distribution at
a specific observation time can be evaluated using our reference solution.

FIGURE 4. Our solutions for arbitrary observation time. (a) Electric field
distribution for arbitrary observation time, and (b) Time domain response.
By certainly focusing on an observation point and discretely changing the
observation time, the time response of the electromagnetic field can be
obtained.

is determined by the time step size 1t = 0.99 × 1tCFL.
The absolute error between these two methods is shown
in Fig. 3(c). It is clear that only our solution can accurately
evaluate the field distribution at a desired observation time.

Fig. 4(a) and (b) show the field distributions for the arbi-
trary observation time and the time domain response of the
electric field for the r-component at the observation point,
which is (r , θ ) = (1.2 nm, 90◦), respectively. Our solution
for field distribution can arbitrarily select a specific observa-
tion time. By certainly focusing on an observation point and
changing the observation time discretely, the time response
of the electromagnetic field can be obtained. In this case, for
a pulse including a plasmon resonance wavelength, the dif-
ference between both results increases with the observation
time.

FIGURE 5. Time responses of the FDTD method are evaluated at a specific
observation time. Our results can select an arbitrary observation time.

TABLE 1. Truncation number of FILT k required for 7 digits of accuracy.
Our method can determine the observation time and the sampling
complex frequency.

FIGURE 6. Computational accuracy of the FDTD method for various cell
sizes. The FDTD results converge to our results as the cell size reduces.

Here, the time domain response obtained by the FDTD
method is evaluated using our solutions. Fig. 5 shows that
the time domain response of the FDTD method is estimated
at a specific observation time. The time step size of the FDTD
method is 2.335067793300381×10−19 s, which satisfies the
stable condition for an explicit method. In our reference, the
solution can be selected using an arbitrary observation time,
which is useful for evaluating the time domain response.
Table 1 shows the truncation number of FILT k required for
converging to seven digits of accuracy. Here, we confirm
the convergence history for varying the truncation number
of FILT. In our method, the sampling frequency for inverse
Laplace transform can be determined by using our algorithm.
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To confirm the computational accuracy of the FDTD
method, a convergence test is conducted by varying the cell
size. Fig. 6 shows the time domain response for various cell
sizes. The difference between our result and the FDTD results
appears in the phase rather than the amplitude, when the cell
size is coarse. On the other hand, the amplitude is determined
by the charge distribution based on nonlocal effects. The
FDTD results converge to our results with the reduction in
cell size. The number of digits of agreement is 2 when the
cell size is 0.025 nm.

IV. CONCLUSION
An evaluation method for time domain electromagnetic
solver was proposed in this study. The reference solutions of
electromagnetic waves in the time domain for a nanocylin-
der with nonlocal effects were derived. The solutions for a
metallic nanocylinder were modeled using the hydrodynamic
Drude model and defined in the complex frequency domain.
These solutions were then transformed into the time domain
by FILT. The time domain response for a perfect electric con-
ducting cylinder, dielectric cylinder, and metallic nanosphere
is shown in the appendix. Using our highly reliable time
domain response at a specific observation time, the numer-
ical accuracy for the time domain methods was evaluated.
The original data will be provided online (DOI:10.21227/
dj4j-3647). These solutions can be applied for further devel-
oping time domain solvers.

APPENDIX
The purpose of our solution is to verify a wide variety of
time domain solvers, such as verifying the accuracy of FDTD
codes created by students and proof of concept for novel
computational techniques. The coefficients and samples of
reference solution for the scattering problems discussed in
textbooks are described here; for example, scattering from a
perfect conducting cylinder, dielectric cylinder, and metallic
nanosphere. The original data will be provided online.

A. SOLUTION FOR A PERFECT ELECTRIC CONDUCTING
CYLINDER
For a perfectly conducting cylinder, the following boundary
condition applies: the tangential component of the electric
field vanishes at the boundary. The unknown coefficient can
be determined as follows:

An = −
I ′n(s0a)
K ′n(s0a)

(A1)

Bn = Cn = Gn = 0 (A2)

Fig. 7 shows the electric field distribution at t =
1.27000000000000 fs; Fig. 8 shows the time domain response
of the electric field. The radius a of the cylinder is 100 nm,
and the incident wave is assumed to be a plane wave. The
waveform is a pseudo-Gaussian pulse [19], whose parameters
of image function are M = 36 and �g = 1 × 10−16. The
incident angle θi is 180◦. The coordinates of the observation
point (r, θ) are (200 nm, 180◦).

FIGURE 7. Electric field distribution for a perfectly conducting cylinder at
t = 1.27000000000000 fs.

FIGURE 8. Time domain response for a perfectly conducting cylinder.

FIGURE 9. Electric field distribution for a dielectric conducting cylinder at
t = 1.27000000000000 fs.

B. SOLUTION FOR A DIELECTRIC CYLINDER
For a dielectric cylinder, the boundary condition is such
that the tangential component of the electromagnetic field is
continuous on the surface. The unknown coefficient can be
determined using the following equations:

An = −
In (s0a) I ′n (s1a)−

√
εr I
′
n (s0a) In (s1a)

Kn (s0a) I ′n (s1a)−
√
εrK ′n (s0a) In (s1a)

(A3)

Bn =
In (s0a)+ AnKn (s0a)
√
εr I ′n(s1a)

(A4)

Cn = Gn = 0 (A5)

Fig. 9 shows the electric field distribution at t =
1.27000000000000 fs; Fig. 10 shows the time domain

44322 VOLUME 8, 2020



S. Masuda et al.: Reference Solutions for Time Domain Electromagnetic Solvers

FIGURE 10. Time domain response for a dielectric cylinder.

FIGURE 11. Geometry and coordinate system of the sphere. The scatterer
consists of metal with permittivity ε(s) and radius a. E(i) and H(i ): incident
waves, θi : angle of incidence.

response of the electric field. The radius a and relative per-
mittivity of the cylinder are 100 nm and 5, respectively. The
incident wave is assumed to be a plane wave. The waveform
is a pseudo-Gaussian pulse, whose parameters of the image
function are M = 36 and �g = 1 × 10−16. The incident
angle θi is 180◦; the coordinates of the observation point
(r, θ) are (200 nm, 180◦).

C. SOLUTION FOR A METALLIC NANOSPHERE WITH
NONLOCAL EFFECTS IN THE COMPLEX FREQUENCY
DOMAIN
Fig. 11 shows the geometry and coordinate systems. The scat-
tering electric field for a metallic nanosphere with nonlocal
effects can be derived as,

E (s)(P) = −E0(s)est

×

∞∑
n=−∞

j−n
2n+ 1
n(n+ 1)

(bnM1n(P)−jcnN1n(P))

(A6)

where

Mmn = ∇ ×
[
ârψ (r, θ, ϕ)

]
(A7a)

Nmn =
1
S
∇×Mmn (A7b)

ψ (r, θ, ϕ) = zn (sr)Pmn (cos θ )e
jmϕ (A7c)

FIGURE 12. Electric field distribution at t = 26.8900000000000 fs on the
x–y plane. The field of hydrodynamic Drude model is distributed not only
along the side but also within the sphere.

FIGURE 13. Time domain response for the metallic nanosphere. Because
the resonance frequency is included in the incident pulse, a long time is
taken for the energy stored inside the sphere to be released.

where zn(·) represents themodified spherical Bessel functions
and Pmn (·) represents the associated Legendre polynomials.
The unknown scattering coefficients can be obtained using
the boundary conditions as follows:

bn = −

In (sT a) (s0aIn (s0a))′

−In (s0a) (sT aIn (sT a))′

In (sT a) (s0aKn (s0a))′

−Kn (s0a) (s0aIn (sT a))′

(A8a)

cn = −

CIn (s0a)

+I ′n (sLa)
{
In (s0a) (sT aIn (sT a))′

−
√
εT In (sT a) (s0aIn (s0a))

′

}
CKn (s0a)

+I ′n (sLa)
{
Kn (s0a) (sT aIn (sT a))′

−
√
εT In (sT a) (s0aKn (s0a))

′

}
(A8b)

C = n (n+ 1)
In (sLa)
I ′n (sLa)

In (sT a)
(√
εT − 1

)
(A8c)

Here, when the medium is not represented by the hydrody-
namic Drude model, the coefficient C is equal to zero.
Fig. 12 shows the electric field distribution at t =

26.8900000000000 fs on the x–y plane and z = 0;
Fig. 13 shows the time response. The field is distributed not
only along the side but also within the sphere. The parameters
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of the modified Gaussian pulse incidence areM = 64, ωm =

2π × 482× 10−9, and �g = 1.919144741316492× 10−15.
The electric fields increase with time. Because the resonance
frequency is included in the incident pulse, releasing of the
energy stored inside the sphere requires a long time.
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