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ABSTRACT In view of the existing problems that multiple vehicles interaction in the selection of fast
charging stations for electric vehicles (EVs) and the equalizing the service capability by multiple stations
game in station-EVs interaction, a dynamic response strategy of fast charging station-EVs considering
interaction of multiple vehicles is proposed. According to this, the charging scheme of EVs and the dynamic
service fee of charging stations are decided. Firstly, the charging guidance framework of station-EVs
interaction is proposed to describe the information flow relationship for vehicle, station, road and intelligent
transportation system (ITS). Secondly, in order to meet the diversified needs of car owners in charging
selection, a charging navigation model is established. Considering the impact of dynamic path travel time,
a dynamic path selection model of urban road network is established based on the road segment transmission
model. Thirdly, in order to accurately analyze the interaction process between vehicles, a charging decision-
making method is proposed considering the dynamic evolution of EVs, which reflects the station selection
probability of different positions during driving. Fourthly, according to the queuing time of the charging
station, the service fee of the charging station is dynamically adjusted to optimize the service capacity of
the charging station, and the multi-agent stackelberg game model is established by combining the charging
station selection of EVs with the dynamic service fee of charging station. Finally, Sioux Falls urban road
network system is used as an example to analyze the path selection, dynamic decision of charging station
selection and service fee, and station-EVs interaction strategy. The results show that this method improves
the efficiency of electric vehicle charging station searching, guides EVs in the road network to charge orderly,
balances the charging load between charging stations and optimizes the service capacity of charging station
reasonably.

INDEX TERMS Fast charging station, navigation, interaction ofmultiple vehicles, dynamic response, spatial
transfer ability.

dosij , d
sd
ij the length of the road segment ij from the

starting position to the charging station and
from the charging station to the destination
respectively

xij 0-1 variable
Td travel time to the charging station
Tq queuing time of EVs in the charging station
Tc charging time
Cbat battery capacity of electric vehicle
SOCini initial state of charge
we power consumption per kilometer
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tti(t) the travel time of road segment i during period
t

ttwi the travel time of road segment i in path w.
σw
′

tt,i′ the standard deviation of the travel time relia-
bility of road segment i′ in alternative path w′

qwOD(x, t) the traffic flow of path w in OD at time t .
qOD(x, t) the total traffic flow in OD at time t .
NOD(t) the number of vehicles in OD at time t .
Nw
OD(t) the number of vehicles driving in path w of OD

at time t .
αw′ the proportion of vehicles that choose the path

w’
Qex expected residual capacity at the end of charg-

ing
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P power of charger
η charging efficiency
T srec remaining charging time of the electric vehicle

charging on charger S
Nq set of electric vehicles queuing for charging in

line
T sc charging time required for the electric vehicle

waiting for charging on charger S
Qre residual capacity
N (x, t0), the total number of vehicles in position x at t0
N (x0, t) and the total number of vehicles in x0 at t ,

respectively.
qmax maximum capacity of the road segment
ρjam the blocking density of the road segment
w reverse shock velocity of the road segment
vfreei free flow speed of road segment
ρmin
i , minimum density and maximum density of
ρmax
i road segment i.
vmin
i minimum driving speed of vehicles.
Y ki the driving power consumption cost on the

road, when electric vehicle k selects the charg-
ing station i.

γ the distance cost coefficient
we the power consumption per kilometer. pi is the

unit service fee of charging station i
απ the time cost coefficient
βπ the service fee price coefficient.
Pi(t) the probability of selecting charging station i.
π̄ (t) the average payment of the population.
T avgq the average queuing time of all charging sta-

tions.
Cs the fixed investment cost of charging station.
C j
f the staff salary of charging station j.

C j
h the land rent of charging station j.

Gj the revenue of charging station j
1pj the change of service fee.
sjin, respectively represent increase and decrease in

quantity of vehicles that
sjout select charging station j due to the price adjust-

ment.

I. INTRODUCTION
A. MOTIVATION
In order to promote the implementation of energy conserva-
tion and emission reduction policies and the development of
new energy automobile industry, countries around the world
have introduced a timetable for banning the sale of fuel
vehicles in [1]. For the vehicles whose driving time is much
longer than the stopping time, fast charging is an important
way. Large scale disordered charging of electric vehicles will
cause serious congestion of charging stations in the core
area of the city, and further increase the load of power grid
in this area, such as in [2] and [3]. Therefore, through the
reasonable scheduling of EVs with fast charging demand, the
contradiction between the strong charging demand and the

limited charging stations in the local area can be reconciled,
the orderly charging of EVs and the service capacity opti-
mization of charging stations can be realized.

B. RELATED WORKS
(1) Background and related works of interactive research on
charging stations and EVs

With the development of communication technology,
the information between electric vehicle and charging station
has two-way flow characteristics, which promotes the station-
EVs interaction. In [4], a fast charging navigation strategy for
electric vehicles based on the internet of things is proposed.
The charging station makes the fast charging price according
to the charging power regulation scheme, and the electric
vehicle selects the charging station according to the charging
price. Reference [5] proposes a stochastic resource planning
scheme of charging stations, and considers the impact of price
sensitive and scheduled charging electric vehicle users on the
service capacity of charging station respectively to optimize
the supply side and demand side of electric energy. Refer-
ence [6] proposes a hierarchical game method. In the upper
level game, a non cooperative game model is established to
simulate the competition between electric vehicle charging
stations. In the lower level game, the station selection strategy
of electric vehicle is formulated based on the pricing strategy.

(2) Background and related works of EVs charging path
selection

Due to the influence of the travel habits of electric vehicle
users and the urban spatial structure, the charging load will
be concentrated in some charging stations during the peak
period, which has a great impact on the operation of the power
grid and the charging experience of the owners. Therefore,
it is necessary to use the charging navigation system to guide
the charging of electric vehicles. All infrastructure networks,
especially urban areas are highly dependent on the electric
grid power-supply [7] analyzed the capacity of the grid to
meet large adoption of PHEVs, modelled the interdepen-
dency between the power systems and the electrified trans-
portation networks and the Plug-in Electric Vehicles (PEVs)
served as coupling agents to realise the interdependencies
of the power and transportation networks. In [8] and [9],
the driving path of electric vehicle is simulated by Markov
state transition analysis method, and the time-space transfer
model of charging load is established. In [10]–[13], Agent-
cellular automata system is introduced to simulate the behav-
ior of electric vehicle drivers, and the rules of macro traffic
flow are obtained by using the data obtained from micro
traffic simulation, and then the dynamic evolution process
of space-time distribution of electric vehicles is obtained.
In [14], taking the total charging time and charging cost as
two objectives, a fast charging navigation scheme is obtained
based on the constraints of traffic network and distribution
network. References [15]–[17] transform driving time and
queuing time in charging station into the travel cost of the
user, and establishs the charging navigation optimization
model aiming at the minimum sum of the travel cost and
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the charging cost of users. References [18]–[20] study the
influence of charging demand on the interests of electric
vehicle users, power grid enterprises, charging station oper-
ators and transportation departments, and establishs a win-
win coordinated charging navigation mode based on the
fuzzy decision method. In [21]–[23], combining the travel
chain analysis method andMonte Carlo simulation, the travel
model of electric vehicle users is established, and the closed-
loop simulation is carried out in the way of equal step clock
propulsion to complete the time sequence interaction analysis
of travel and charging demand. Considering the real-time
information interaction between electric vehicle and traffic
information center, an electric vehicle navigation system is
proposed in [24] based on autonomic computing and vehicle
self-organizing network layered architecture, including the
traffic and charging station situation prediction and path plan-
ning. To decrease the traveling cost of EVs and improve the
load level of the concerned distribution system, a dynamic
EV charging navigation strategy was proposed based on
periodic traffic information update in [25], which can lead
to severe congestions in cellular networks and extremely
increase communication expense with the dramatic rise of
EV number. In the above references, the shortest distance,
the minimum time, the smallest time utilization deviation and
power utilization deviation of the charging station are taken
as objectives, and a multi-objective optimization model for
EVs charging path is established.

(3) Background and related works of charging station ser-
vice fee dynamic decision

As a kind of movable load, electric vehicle has flexible
demand response characteristics in a certain space. The rea-
sonable service fee scheme of charging station is beneficial
to reduce the charging cost of users and improve the service
capacity of charging station. In [26], the pricing strategy of
electric vehicle fast charging station is studied. Considering
the total revenue of fast charging station and the response
of users to the pricing scheme, the pricing scheme of each
charging station is optimized to minimize the total voltage
amplitude deviation of distribution network. In [27]–[30],
aiming at the accessible load threshold of the fast charging
station, a charging price formulation method is proposed to
guide the electric vehicle to select the idle charging sta-
tion, which meets the multiple demands of vehicle-station-
network. In [31], aiming at the adjustable characteristics of
electric vehicle charging demand, a charging price is made
to distinguish the busy degree of charging station, which can
motivate users to adjust the charging time, so as to improve
the charger utilization rate and reduce the queuing time in
charging station.

However, in the study of EV charging navigation and
Station-EVs interaction, the above references pay more atten-
tion to modeling from the perspective of single vehicle,
which is not enough to reflect the interactive influence of
charging station selection among a large number of electric
vehicles. In the research of station-EVs interaction, the tradi-
tional charging pricing mostly considers the control of users’

charging behavior, without considering the influence of price
game between multiple stations on equalizing the load of
charging stations.

C. CONTRIBUTION
In this paper, a dynamic response strategy of electric vehicle
and fast charging station considering the interaction of multi-
vehicle is presented. The list of key contributions are as
follows.

(1) Based on the analysis of the dynamic evolution process
of vehicles, from the three aspects of distance, total charging
time and service fee, this paper puts forward EV charging
navigation schemes.

(2) Based on the dynamic path selection model,
the dynamic traffic simulation method of urban road network
is proposed, the dynamic travel time is obtained, and the
selection of vehicle driving path schemes is realized.

(3) By using the method of multi-agent stackelberg game,
the dynamic service fee of charging station is established,
the orderly charging of EVs and the service capacity opti-
mization of charging stations can be realized.

D. ORGANIZATION
In this context, based on the intelligent transportation sys-
tem, Part II proposes a framework of supply and demand
interaction between fast charging station and electric vehicle.
In Part III, considering the interaction of vehicles with charg-
ing demand in the driving process, the dynamic path selection
model of electric vehicles is established, the charging naviga-
tion strategy of vehicle dynamic evolution is proposed, and
the charging scheme is decided. In Part IV, combined with
the demand response characteristics of electric vehicle own-
ers and the service capacity of charging station, a dynamic
service fee model of charging station is proposed based on
multi-agent stackelberg game model, which describes the
interaction process between the service fee adjustment of
charging station and the dynamic charging station selection of
users, guides users to charge in idle fast charging station, and
realizes the spatial transfer of load. Finally, a certain typical
city is taken as an example to verify the effectiveness of the
method in Part V.

II. FRAMEWORK DESCRIPTION OF THE DYNAMIC
RESPONSE STRATEGY OF FAST CHARGING STATION-EVS
With the development of 5G communication, the intelligent
transportation system (ITS), which is supported by the vehic-
ular networking technology, is becoming more and more
mature in Vehicle-to-Infrastructure cooperation. At the same
time, edge computing technology also provides users with a
high reliability and low delay operation environment, such as
in [32]. Without central scheduling node, it is possible to real-
ize information sharing and transmission between vehicles,
stations, roads and ITS.

In the future, the electric vehicle can be connected with
the vehicular networking platform system (VNPS) through
the internet to upload the status and location of the electric
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FIGURE 1. EV charging charging guidance system framework.

vehicle in real time. At the same time, electric vehicles can
also get the current information of the road conditions and the
charging station operation. Through the analysis of the elec-
tric vehicle status, VNPS can predict the charging demand
and the charging time of the electric vehicle, so as to predict
the road condition and the charging station condition at the
charging time.

The structure of the electric vehicle charging guidance
system is shown in Fig.1. With VNPS as the center, the road
condition information is dynamically updated to promote
station-EVs interaction. Each EV independently interacts
with VNPS.

Through the research of the Section III, the following
goals can be realized. After the electric vehicle sends out the
charging request, without considering he influence of com-
munication delay and according to the vehicle travel demand,
VNPS recommends the charging strategy to the owner from
the shortest distance, the minimum time or the lowest cost.
The owner chooses the most effective charging station for
himself and get the optimal path to charge, according to the
geographical location, destination location, road condition
information and the queuing time in each charging station at
the moment. Every certain time, the traffic flow information
and charging station information will be refreshed, and the
optimal charging station is recalculated and the driving path
is replanned.

Through the research of the Section IV, the following goals
can be realized. According to the maximum transmission
power that can be obtained from the distribution network at
the moment, the charging station calculates the number of
vehicles that can be accepted in this period. Based on the
service fee of surrounding charging station obtained from
VNPS and the charger utilization rate, the charging station
formulates the service fee in this period considering its own
profitability and uploads the service fee to VNPS. VNPS
publishes the information to the EV users with charging
request, and updates the queuing time of EVs in each charging
station to dynamically adjust the deployment of charging
vehicles to each charging station. For electric vehicle users
with high price elasticity, if the service fee is higher than the

price sensitivity threshold, it will prompt users to change the
charging station selection in response to the price signal of
the charging station, and the spatial transfer of charging load
is realized.

III. VEHICLE DECISION SCHEME CONSIDERING
CHARGING NAVIGATION AND DYNAMIC TRAFFIC
SIMULATION
Electric vehicle charging navigation is an important means
to achieve coordinated charging. Customized navigation
scheme for different vehicle charging needs can effectively
improve the response of car owners. Taking a single vehicle as
the research object, the electric Vehicle Charging Navigation
Model is established considering the three factors of distance,
total time or economy in Section A of Part III. The travel
time in the total time is detailed in Section B of Part III.
The three factors are also the basis for analyzing the charging
station selection under the interaction of multiple vehicles in
Section C of Part III.

Dynamic traffic simulation method of urban road network
is proposed in Section B of Part III to calculate the travel
time, simulate the driving behavior of vehicle owners, and
establish a dynamic path selection model to analyze the inter-
action between vehicles driving on the road, so as to provide
transportation support for the EV charging decision.

Based on the electric vehicle charging navigation model in
Section A of Part III and the dynamic path selection model
in Section B of Part III, multi-vehicles charging selection
method considering decision dynamic evolution is proposed
in Section C of Part III.

A. ELECTRIC VEHICLE CHARGING NAVIGATION MODEL
Assume the electric vehicle is driving on the road, when its
residual capacity is lower than the threshold or not enough to
reach the destination, it will generate fast charging demand.
The charging navigation model needs to consider the driving
distance, the total driving and charging time and the charging
economy.

When some electric vehicle owners can not access VNPS
for some reason, they can not obtain real-time road condi-
tion and charging station information. Such owners usually
choose the nearest charging station for charging. Dijkstra
algorithm is used to calculate the shortest path in this paper.
The direction of charging station selection should be con-
sistent with the direction to the destination, i.e. no turning
back. Therefore, the path optimization is carried out with the
shortest sum of the distance O from the starting point to the
charging station and the distance D from the charging station
to the destination as the objective.

min S =
m∑
i=1

n∑
j=1,j 6=i

dosij xij+
m∑
i=1

n∑
j=1,j 6=i

d sdij xij (1)

In formula, i, j are the road network nodes. m, n are the
total number of road network nodes. dosij , d

sd
ij are the length of

the road segment ij from the starting position to the charging
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station and from the charging station to the destination respec-
tively. xij is 0-1 variable. If the road segment ij is selected,
xij = 1, otherwise xij = 0.
For users who can access VNPS, if they have high time

sensitivity, they should optimize the charging path aiming at
the shortest total charging time.

minT = Td + Tq + Tc (2)

In formula, Td is the travel time to the charging station. Tq
is the queuing time of EVs in the charging station. Tc is the
charging time.

When the electric vehicle reaches the charging station,
the residual capacityQre is directly related to the distance that
it drives on the road, as shown in equation (3).

Qre = Cbat · SOCini − we

∫ Td

0
vidt (3)

In formula, Cbat is the battery capacity of electric vehicle.
SOCini is the initial state of charge. we is the power consump-
tion per kilometer.

Assume that the charging power of the charger in the
charging station is constant, Tc can be expressed as equation
(4).

Tc = (Qex − Qre)/Pη (4)

In formula, Qex is the expected residual capacity at the end
of charging, which is set to 90% of battery capacity in [33].
P is the power of charger. η is the charging efficiency.
Tq depends on the sum of the power demand of the vehicles

queuing in front, which changes with the change of the queue
length, as shown in equation (5).

Tq = T srec +
∑
ls∈Nq

T sc (5)

In formula, T srec is the remaining charging time of the
electric vehicle charging on charger S. ls is the electric vehicle
to be charged on charger S soon. Nq is the set of electric
vehicles queuing for charging in line. T sc is the charging
time required for the electric vehicle waiting for charging on
charger S.
Some users connected to VNPS are more sensitive to the

travel cost. The travel cost C includes the driving power
consumption cost on the road Croad and the charging cost in
charging station Cch. The optimization model is established
to minimize the travel cost as follow.

minC = Croad + Cch

= ρ̄w
∫ Td

0
vidt + P

∫ tstart+T

tstart+Td+Tq
ρ(t)dt (6)

In formula, ρ̄ is the average value of EV fast charging
price. P is the fast charging power provided by the charging
station to the EV. tstart is themoment of EV departure from the
start point. ρ(t) is the fast charging price of charging station,
including the spot price and charging service fee.

The premise of selecting charging station for electric vehi-
cle is that its residual capacity Qre should be able to maintain
its arrival at charging station, and it should meet the residual
capacity constraint as follow.

Qre > we∗dos (7)

B. DYNAMIC TRAFFIC SIMULATION OF URBAN ROAD
NETWORK
In the urban road network, the driving behaviors of vehicle
owners are quite different. The spatial-temporal distribution
of vehicles presents obvious random characteristics. There-
fore, the travel time of the road segment Td is also time-
varying. Based on the theory of dynamic traffic simulation
in [34]–[37], this paper proposes a dynamic travel time
model, and then analyzes the traffic characteristics of urban
road network.

Due to the characteristics of high density and less dead end
roads in urban road network, there will be multiple paths for
car owners to choose under the condition of given starting and
ending points. Based on the dynamic travel time, this paper
establishes a path selection model to describe the driving
characteristics of vehicle owners.

1) DYNAMIC TRAVEL TIME MODEL OF ROAD SEGMENT
The dynamic traffic simulation method in this paper is
based on the road segment transfer graph model in [37],
which includes the road segment model and the node model,
in which the node is the boundary of the road segment. The
movement of vehicles in the road segment can be described
by the cumulative number of vehicles N (x, t), which repre-
sents the number of vehicles passing through the observation
point x before time t . For each road segment, it is necessary
to ensure that the vehicle meets the first in, first out (FIFO)
rule.

According to the definition of traffic flow and density,
the traffic flow q(x, t) and traffic flow density ρ(x, t) are
obtained as follow.

q (x, t) = lim
t→t0

N (x, t)− N (x, t0)
t − t0

=
∂N (x, t)
∂t

ρ (x, t) = lim
x→x0

N (x0, t)− N (x, t)
x − x0

= −
∂N (x, t)
∂x

(8)

In formula, N (x, t0) and N (x0, t) are the total number of
vehicles in position x at t0 and the total number of vehicles in
x0 at t , respectively.

The three parameters of traffic flow include flow, density
and speed. According to the relationship among them, the free
flow speed vfree is calculated as follow.

vfree (x, t) = q (x, t)
/
ρ (x, t) (9)

Given the maximum capacity qmax and the blocking den-
sity ρjam of the road segment, the critical density ρcrit and the
reverse shock velocityw of the road segment can be expressed
as follow. {

ρcrit = qmax
/
vfree

ω = −qmax
/(
ρjam − ρcrit

) (10)
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Assuming that the free flow vehicles are evenly distributed
in the road segment, the density ρi(t) of road segment i can
be expressed as follow.

ρi(t)=max{xi(t)+ N (x0i , t)− N (xLi , t),0}
/
Li (11)

In formula, xi(t) is the number of vehicles in road segment
i during period t . ni is the number of vehicles that can be
accommodated in unit length of road segment i. Li is the
length of road segment i.

After the density of traffic flow is obtained, according to
the speed-density function, the driving speed vi(t) of road
segment i can be expressed as follow.

vi(t) =



vfreei ρi(t) < ρmin
i

vmin
i + (vfreei − v

min
i )× ρi(t) ∈

(1− (
ρi(t)− ρmin

i

ρmax
i − ρmin

i

)α)β [ρmin
i , ρmax

i ]

vmin
i ρi(t) > ρmax

i

(12)

In formula, vfreei is the free flow speed of road segment.
ρmin
i and ρmax

i are the minimum density and maximum den-
sity of road segment i. vmin

i is the minimum driving speed of
vehicles. α and β are model parameters.
Therefore, the travel time tti(t) of road segment i during

period t can be expressed as follow.

tti(t) = Li/vi(t) (13)

2) DYNAMIC PATH SELECTION MODEL
Due to the characteristics of high density and less dead end
roads in urban road network, there will be multiple paths for
EV owners to select under the condition of given starting and
ending points. Therefore, based on the dynamic travel time,
this section establishes a dynamic path selection model to
describe the driving characteristics of EV owners.

It is assumed that each vehicle owner selects the shortest
time path to the destination pre-trip, and changes the path to
reduce the delay time after receiving the congestion informa-
tion of the road segment during the trip. The subjective prob-
ability that alternative road segment i′ is selected is shown in
equation (14).

Pw
′

i′ (0 < ttw
′

i′ ≤ ttwi ) =
1

√
2πσw

′

tt,i′

∫ ttws

0
e
−

(tt−ttw
′

i′
)2

2(σw
′

tt,i′
)2
d(tt) (14)

In formula, ttw
′

i′ is the travel time of road segment i′ in
alternative path w′. ttwi is the travel time of road segment i
in path w. σw

′

tt,i′ represents the standard deviation of the travel
time reliability of road segment i′ in alternative path w′.

The actual path chosen by the car owner, which shall meet
the shortest travel time, is the path with the largest subjective
probability, as shown in equation (15).

Pw
′

i = max(Pw1
i ,P

w2
i , · · · ,P

wn
i ) (15)

At time t , the calculationmethod of traffic flow on different
paths of OD interval is shown in equation (16).

qwOD(x, t) = qOD(x, t)Nw
OD(t)/NOD(t) (16)

In formula, qwOD(x, t) is the traffic flow of path w in OD
at time t . qOD(x, t) is the total traffic flow in OD at time t .
NOD(t) is the number of vehicles in OD at time t . Nw

OD(t) is
the number of vehicles driving in path w of OD at time t .

Due to the congestion in the road segment i of OD, some
vehicles passing through road segment iwill choose to bypass
to other road segment, and the remaining number of vehicles
entering the road segment i N̄w

OD(t) is shown in equation (17).

N̄w
OD(t) =

∑
x∈i

qwOD(x, t)− kqOD(x, t)N
wi
OD(t)

/
NOD(t) (17)

In formula, k represents the proportion of vehicles chang-
ing the path due to the road segment congestion.Nwi

OD(t) is the
number of vehicles driving in road segment i at time t .

There aremultiple alternative paths for vehicle owners who
change the path. The number of vehicles Nw′

OD(t) allocated to
the path w’ is shown in equation (18).

Nw′
OD(t) = kαw′qOD(x, t)N

wi
OD(t)

/
NOD(t) (18)

In formula, αw′ is the proportion of vehicles that choose
the path w’, among the vehicle owners who change the path,
0≤ αw′ ≤1.
Through the calculation of travel time and the construction

of path selection model, we can get the result of dynamic
traffic flow distribution, and determine the complete dynamic
travel path of vehicles.

C. MULTI-VEHICLES CHARGING SELECTION
CONSIDERING DECISION DYNAMIC EVOLUTION
After VPNS recommends the charging strategy to the electric
vehicle users, the users will not necessarily charge according
to the recommended scheme, and there will be the uncertainty
of choice.

The charging selection of multiple electric vehicles is a
game problem, and the participants of the game are the whole
of N electric vehicles with charging demand in the road net-
work. After receiving the status information of the charging
station from VPNS, each EV user selects a charging station
for charging. Due to personal privacy and other factors, car
owners cannot see the charging station selected by other users
on VPNS. Thus, the problem can be transformed into a hybrid
strategy problem to solve.Mixed Logit model is themost gen-
eral discrete choice model, which can deal with the problem
of consumer choice with random preference difference. In the
case of random preference differences, the probability of the
owner’s initial charging station selection Pi can be described
as follow.

Pi =
∫
Li(β)f (β |θ )dβ =

∫
(

e−(βπi)∑
i∈M

e−(βπi)
)f (β |θ )dβ (19)
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In formula, β is the preference difference of charging
station selection. πi is the utility value. M is the set of all
charging stations.

Because the probability function of this mixed Logit model
is unclosed-form, it can not be solved by analytical method.
Monte Carlo sampling method can be used to discretize the
integral and approximately solve the probability function of
continuous random variables. The process is as follows.

Step 1, the maximum likelihood estimation method is used
to estimate the parameter θ .
Step 2, after θ determined, a random variable β is randomly

selected from the given density function f (β|θ ).
Step 3, calculate the probability value Pi according to the

equation (19).
Step 4, repeat sampling N ’ times and calculate the mean

probability value of station selection Pi(β), which can be
expressed as follow.

Pi(β) =
∑N ′

n=1
Li(βn)

/
N ′ (20)

In the process of electric vehicle driving to the charging
station, the queuing time and charging service fee of the
charging station may be dynamically adjusted at any time.
Therefore, the choice of charging station for electric vehicles
will also change. When one car owner changes his decision,
it will certainly have an impact on the decision of other car
owners. Therefore, the adjustment of decision is essentially
a process of evolutionary game. The payment function of
charging station selection π can be expressed as follow.

π = −Y ki − απ (T
j
q + Td)− βπp2i

= −γ dki − απ (T
j
q + Td)− βπp2i

= −piwedki − απ (T
j
q + Td)− βπp2i (21)

In formula, Y ki is the driving power consumption cost on
the road, when electric vehicle k selects the charging station i.
γ is the distance cost coefficient.we is the power consumption
per kilometer. pi is the unit service fee of charging station i. dki
is the distance between electric vehicle k and charging station
i. απ is the time cost coefficient, a reference range of time cost
coefficient is given as 17-22U /h in [38]. βπ is the service fee
price coefficient.

As a rational decision-maker, EV users have certain learn-
ing and imitation ability for the optimal strategies in the
group. The replicator dynamic model can be established as
follows.

∂Pi
∂t
= Pi(t)[πi(t)− π̄ (t)] (22)

π̄ (t) =
∑
i∈M

Pk (t)πk (t) (23)

In formula, Pi(t) is the probability of selecting charging
station i. t is the time. π̄ (t) is the average payment of the
population.

According to the characteristics of the differential equa-
tion (22), the faster the individual with the optimal response

can obtain the optimal charging strategy. When there is no
difference between the user’s payment function π and the
average payment of the population π̄ (t), it is considered that
the evolution has reached an equilibrium point, as shown in
equation (24).

∂Pi
∂t
= 0 (24)

At t0, when any EV owner changes the target charging
station and its payment function value is lower than that of the
original strategy, which indicates that there is no interest in its
change strategy, and the evolution process is terminated. The
solution of evolution process can be approximated by discrete
steps, as shown in equation (25).

Pi(s+ 1) = Pi(s)+1× Pi(s)× [πi(s)− πi(s)] (25)

In formula, s is the number of iterations. is the step size in
simulation.

Due to the continuous change of space-time position in
the process of electric vehicle driving, the probability of
charging station selection is also changing dynamically. The
influence on the probability of charging station selection is
still analyzed by the factors of distance, time and price in
Section B of Part III.

Generally, when the electric vehicle passes or is close
to a charging station, if which is not selected, the chosen
probability of the charging station in the following time will
be reduced rapidly. In this paper, the exponential function
model is used to describe this feature as follows.

Pi =


1/Ns x < do1
1/edi∑

i∈M
1/edi

x ≥ do1 (26)

di = max{dOD, dOD + 2(x − doi)} (27)

In formula, di is the distance between the vehicle and
charging station i. x is the distance traveled. do1 and doi are the
distance traveled from the starting point to the first charging
station and the charging station i respectively. dOD is the total
length of the travel.

Considering the influence of travel time and queuing time
on station selection, the probability function can be expressed
as follow.

Pi(Td,Tq) =
1

‖doi − x‖

×
1

Td + T iq

/
(
∑
i∈M

1
‖doi − x‖

×
1

Td + T iq
) (28)

For charging stations with different service fee, if the
charging cost of low unit price plus the detour time cost is
still lower than the charging cost of high unit price, the price
sensitive users will choose detour to charging, and the SOC
consumption in both scenarios is shown in Fig.2.

Therefore, from the perspective of price, the probabil-
ity expression of selecting charging station is shown as
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FIGURE 2. SOC consumption situation in different scenarios.

equation (29).

Pi =
1/epi∑

i∈M
1/epi

(29)

IV. STATION-EVS INTERACTION STRATEGY BASED ON
THE STACKELBERG GAME
After obtaining the charging selection of electric vehicles, the
charging station shall guide the electric vehicles in the road
network to charge orderly according to the actual situation
in the station, and optimize the service capacity of charging
station reasonably.

A. SERVICE CAPACITY OPTIMIZATION MODEL OF
CHARGING STATION
There are many fast charging stations in the urban area.
The function of charging stations is similar, and there is
obvious substitution relationship between them. The VNPS
can update the status of each charging station in real time,
optimize the charging recommendation strategy issued to
car owners, and improve the charger utilization rate of idle
charging station.

Combined with the charger utilization of each charging
station and the number of vehicles in the station, an optimiza-
tion method is used to minimize the variance of queuing time
between charging stations.

minF =
1
Ns

T∑
t=t0+1

N∑
i=1

(T iq − T
avg
q )2 (30)

In formula, Ns is the number of charging stations in the
area. t0 is the number of current scheduling time. T is the total
number of scheduling time interval, 15 minutes is a schedul-
ing time interval, one day is divided into 96 scheduling time
intervals. T iq is the queuing time of charging station i. T avgq is
the average queuing time of all charging stations.
T avgq is affected by the power demand of charging vehi-

cles and queuing vehicles. The longer the remaining time of
charging vehicles or the larger the power demand of queuing

FIGURE 3. Charging recommendation process of VNPS.

vehicles, the longer the queuing time. Assuming current time
is t0, T

avg
q can be expressed as follow.

T avgq =
1

ηNsP

Ns∑
i=1

mi∑
j=1

(Qex − Q(t0))+
ki∑

j=mi+1

(Qex − Qre)


(31)

In formula, mi and ki are the number of chargers and
electric vehicles in charging station i respectively.
If a large number of electric vehicles queuing for charging

are piled up in a charging station at t0, the number of electric
vehicles it can serve at t0+1 will be affected. Assuming that
VNPS distributes the charging demand in accordancewith the
service capacity of the charging station, the charging demand
Qi(t0+1) that can be recommended to the charging station i
at t0+1 is shown as follow.

Qi(t0 + 1) = [Qq(t0)+ Q(t0 + 1)] ·
Pi
P
− Qq

i (t0) (32)

In formula, Qq
i is the demand power of electric vehicles

queuing at charging station. Pi is the total charging power of
charging station i.

When Qi(t0+1) is negative, the VNPS will not recom-
mend new charging demand to charging station i temporarily.
For the electric vehicles with and without charging request,
the overall process recommended byVNPS is shown as Fig.3.

B. STATION-EVS STACKELBERG GAME MODEL
Due to the uneven distribution of charging vehicles in each
charging station, the node voltage of distribution network
will be reduced, the network loss will be increased, and the
reliability will be reduced, such as in [17], [39]–[41]. Through
the price setting, some price sensitive car owners can be
guided to the charging station with low service fee.

In the peak load period, a large amount of electric vehicles
charging at the same time may cause the node voltage not to
meet the requirement in [42], then the service fee of charging
station can be increased to reduce the fast charging load
of electric vehicles. On the other hand, in some areas with
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smaller traffic flow, there are less electric vehicles in these
charging stations, which can attract more electric vehicles
to charge by reducing service fee and improve the charger
utilization rate.

While adjusting the service fee, the charging station should
consider cost constraints tomaintain its sustainable operation.
The cost of charging station j usually includes construction
cost and operation cost. The equivalent annual value of con-
struction cost C j

con is shown in equation (33).

C j
con = (λ · mj + Cs)

i(1+ i)n

(1+ i)n − 1

= (λ · mj + asϕ1)
i(1+ i)n

(1+ i)n − 1
(33)

In formula, λ is the construction cost of a single charger.
mj is the number of chargers at charging station j. Cs is
the fixed investment cost of charging station. i is the annual
interest rate. n is the service life. as is the area of charging
station j. ϕ1 is the construction cost per unit area of charging
station j.

The operation cost of the charging station C j
o mainly

includes labor cost and land rent, which can be expressed as
equation (34).

C j
o = C j

f + C
j
h = C j

f + asϕ2 (34)

In formula, C j
f is the staff salary of charging station j.

C j
h is the land rent of charging station j. ϕ2 is the land price

per unit area where the charging station j is located The closer
to the city center, the more expensive C j

h is.
The charging station has the authority to change the charg-

ing service fee. The electric vehicle users get the service fee
information of each charging station published on VNPS,
and select the station that can maximize their own interests.
The charging station can adjust the service fee according
to the number of electric vehicles in the station. The above
is essentially a stackelberg game problem. Considering the
bipartite game subjects, one is the set of charging stations,
which strategy is the formulation of dynamic service fee, and
the other is the set of electric vehicles with charging demand,
which strategy is the charging station selection. As the leader
of the game, the charging stations formulate the service fee
to guide the electric vehicle.

Because the service between charging stations is alterna-
tive, this paper focuses on the analysis of the stackelberg
game in which multiple charging stations influence each
other. Charging stations should consider not only the behavior
of electric vehicle users, but also the behavior of other charg-
ing stations, and conduct multi-agent stackelberg game. The
utility functionGj is to maximize charging station revenue by
adjusting the service fee, which can be decided by charging
station.

maxGj = (pj −1pj)[
n∑
i=1

Di + (
sjin∑
i=1

Di −
sjout∑
i=1

Di)]

− a(C j
o + C

j
con/365) (35)

In formula, Gj is the revenue of charging station j. 1pj
is the change of service fee. Di is the charging demand of
electric vehicle i. n is the number of electric vehicles that have
not changed the charging selection after the price adjustment.
sjin and sjout respectively represent increase and decrease in
quantity of vehicles that select charging station j due to the
price adjustment. a is the cost coefficient of charging station
in a period.

The service fee needs to meet the constraints of national
macro policy in [43].

pj < r (36)

In formula, r is the upper limit of service fee.
The owner selects the charging station according to the

charging price published by VNPS, and the utility function
πi is to maximize their own interests as follow.

maxπi=−(pj −1pj)[Qex − Qre+w · djd ]− α · (T
j
q + Td)

(37)

In formula, djd is the distance from the charging station j
to the destination.

In this game, equilibrium refers to a kind of strategy set
c∗ ={c∗1, . . . , c

∗
n} that all participants can get the maximum

benefit. Each participant can always get the maximum benefit
when compared with other strategies. Therefore, all partic-
ipants have no motivation to deviate from the equilibrium
strategy. For each participant i, the following constraint need
to be met.

πi(c∗i , c−i) ≥ πi(ci, c−i), ∀i ∈ N
i (38)

In formula, c−i is a set of participants except participant i.
The existence proof of the equilibrium solution of this

game is shown as follow. Assuming that the electricity sales
of charging station j is Qj, the total electricity sales of all
charging stations is Q = Q1+ . . .+QNs, the function of
price pj can be expressed as pj = f (Q1, . . . , QNs), and
Qj = f −1(p1, . . . , pNs). The income of charging station j
is Gj = Qj∗f (Q1, . . . ,QNs). To maximize Gj, the first-order
condition must be met as follow.
∂Gj
∂Qj
= f (Q1, · · · ,QN)+ Qj

df (Q1, · · · ,QN)
dQj

= 0 (39)

At the same time, the first-order condition of the electricity
sales of charging station j shall be the difference between
the marginal response capacity of electric vehicle users to
charging station j and the marginal response capacity to other
charging stations except charging station j, as shown in equa-
tion (40).

∂Q(p)
∂pj

=
∂[Qj(p1, · · · , pN)− Q−j(p1, · · · , pN)]

∂pj
= ϕj − ϕ−j (40)

In formula, ϕj and ϕ−j are the marginal response capacity
of EV owners to charging station j and other charging stations
except charging station j respectively.
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In this game, the number of electric vehicles and charging
stations is limited. The selection strategy of electric vehi-
cles and the range of charging station service fee are cer-
tain. Eqs.39-40 reflect the continuity of utility function, thus
ensuring the existence of equilibrium solution of Nash game.
In addition, with the consideration of EV user utility function,
the strict proof of its convergence can be referred to [44].

After electric vehicle is guided by the strategy, the change
of space-time distribution and charging information will have
an impact on the subsequent charging service fee formulation.
The order of strategies and actions has been explained in this
paper, and the interaction of different subject strategies is
described as follows.

Service fee is determined in the next simulation time,
according to the optimal response of the charging station
with the state of electric vehicles in the previous simulation
moment. Therefore, the paper has actually considered the
subsequent service fee adjustment strategy of charging sta-
tions during the continuous update process of electric vehicle
information. In the repetition of the game, the continuous
change of the state will make the strategies of both sides
update constantly in stackelberg game, which reflects the
interaction between the information of electric vehicles and
the charging service fee formulation.

Time-sequence change of the stackelberg game result is
explained as follows. We take the result of the previous
moment as the input of the known quantity, and get the
strategy of this moment through the game. The game results
will change over time. If users make decision according to
the equilibrium strategy of the game, the best game result
can be obtained by using the game time sequence recurrence.
However, in fact, users may not charge according to the
strategy given by the game method, i.e. users are limited
rational. At this time, according to the actual result, the next
optimization result related to the actual result can be calcu-
lated through the game, so as to get the optimal time series
pricing strategy for each charging station.

C. SOLUTION OF STATION-EVS STACKELBERG GAME
MODEL
This model assumes that the service fee decision and station
selection in Stackelberg game are made at the same time.
Once the charging station issues the service fee, the owners
of electric vehicles can quickly make a response through the
payment function, and the charging stations need to con-
stantly adjust its decision to approach the optimal solution.
The algorithm steps are as follows.

Step 1, preset the service fee initial value of each charging
station, which is as standard charging service fee.

Step 2, preset the order of action between charging stations,
and give the maximum decision rounds N.

Step 3, in each round of decision, according to the decision
of other charging stations c2(t), . . . , cn(t), the first charging
station make its own optimal decision c1(t+1). When the
decision of all charging stations is finished, ci(t+1) is used to

FIGURE 4. Sioux Falls Diagram.

replace the original decision, then the decision of this round
is finished, and the number of rounds is increased by one.

Step 4, until all the decisions made in this round are the
same as those made in the last round, or the norm of all
charging stations difference between the current round and
the last round is less than the given value, the operation is
terminated and the convergence solution is obtained. If the
maximum number of rounds is reached, the operation is
terminated.

V. EXAMPLE ANALYSIS
A. INTRODUCTION OF EXAMPLES
In this paper, Sioux Falls urban road network system is used
as an example. The road network topological structure and
the location distribution of fast charging stations are shown
in Fig.4 (a). There are 24 nodes, 76 road segments and
5 fast charging stations. The number indicated on the road
segment in Fig.4 (a) represents the length of the road segment,
km. Structure of Sioux Falls urban distribution network is
shown in Fig.4 (b), which shows corresponding nodes for fast
charging station accessing distribution network. Urban road
parameters is shown in Table I.

The OD distribution of typical days in the road network is
shown in Fig.5. In this paper, the more common BYD E6 is
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TABLE 1. Sioux falls road parameters. TABLE 1. (continued) Sioux falls road parameters.

FIGURE 5. Typical daily OD distribution.

FIGURE 6. Vehicle time distribution in road network.

used for example simulation. The battery capacity is 82kWh,
the endurance mileage is about 400km, and the penetration
rate of electric vehicles is 10%. Considering that the charging
is all fast charging scenarios, the power of the charger is set
to 350kW. When EV leaves the charging station, the SOC is
90%.
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FIGURE 7. Road network traffic flow distribution.

B. ANALYSIS OF DYNAMIC CHARGING PATH SELECTION
IN URBAN ROAD NETWORK
In this paper, the time distribution proportion of vehicles in
each period of road network is obtained through OD survey,
as shown in Fig.6.

Through the dynamic traffic simulation of urban road net-
work, the traffic flow distribution at 7:00 and 8:00 am is
shown in Fig.7 (a) and Fig.7 (b). In Fig.7, the larger the traffic
flow is, the wider the road segment width is.

It can be seen from Fig.7 that the number of OD vehicles
driving in node 15 of the road network is small in Fig.5, but
it belongs to the more important hub node in the city, and
the road segment between node 15 and node 22 of the road
network forms the main road in the north-south direction of
the city, so traffic flow of road segment 15-22 is large in the
morning rush hour.

According to the analysis of the travel from node 15 to node
23 in Fig.4, there are path 1 as 15-22-23 and path 2 as 15-14-
23 for selection, and the one-day travel time calculated by
the dynamic travel time model is shown in Fig.8. As the total
length of path 2 is 2km longer than that of path 1, considering
the condition of free flow, all vehicle owners will select path

FIGURE 8. Travel time from node 15 to node 23.

FIGURE 9. Path selection in different scenarios.

TABLE 2. Charging navigation decision information.

1 drive in, which results in the sharp increase of traffic flow
between nodes 15 and 22 in Fig.7 (a).

It can be seen from Fig.8 that the travel time of path 1 is
0.18h longer than that of path 2 at 7 a.m. according to the opti-
mization result of dynamic path selection model, the number
of vehicles choosing path 1 at 8 a.m. is significantly reduced,
and the traffic flow of path 2 increases accordingly, which
plays an alternative role in easing congestion, as shown in
Fig.7 (b).

Taking 7:00 a.m. as an example, this paper analyzes the
charging path selection of a single EV user considering three
goals: distance, time and service fee. Set the starting point
of electric vehicle as node 2 and the ending point as node 9,
and the decision information of charging navigation is shown
in Table II.

Scenario 1 aims at the shortest distance. The distance from
node 2 to charging station 3 is 14km, and the distance from
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TABLE 3. Charging option at 7 a.m. considering shortest distance.

TABLE 4. Charging option at 7 a.m. considering minimum time.

TABLE 5. Charging option at 7 a.m. considering minimum service fee.

charging station 3 to end node is 9km. The travel path is the
red line shown in Fig.9.

Scenario 2 takes the minimum time as the goal, and selects
charging station 1. The total consuming time before charging
is 0.44h, and the travel path is the blue line shown in Fig.9.

Scenario 3 takes the minimum service fee as the goal,
selects charging station 4, the service fee is 0.8U, and the
travel path is the purple line shown in Fig.9.

The path selection of other vehicles at this time is shown
in Table III, Table IV, and Table V.

In this paper, the hybrid Logit model is used to solve the
station selection probability of electric vehicle from each net-
work node, as shown in Fig.10. It can be seen from Fig.10 that
at the start of the travel, each charging station has a strong
attraction to the electric vehicles of the nearby road network
nodes.

An electric vehicle from start node 14 to end node 7 is
taken as an example to analyze its station selection strategy.
The electric vehicle starts from node 14 at 8:00 a.m., it passes
through 3 charging stations during the driving, namely No.2,
No.3 and No.4 charging station. Assume two scenarios as
follows, and scenario 4 and scenario 5 both consider the
charging service fee as constant.

FIGURE 10. Station selection initial probability of electric vehicles.

Scenario 4 does not consider the impact of queuing time
on station selection, as shown in Fig.11.

Scenario 5 considers the impact of queuing time on station
selection, as shown in Fig.12.

It can be seen from Fig.11 that before arriving at charging
station 2, the owner has no clear tendency to charge at which
of charging stations. But after passing through charging sta-
tion 2, there are still two charging stations to be selected
ahead of the path, and it will not turn back to charging
station 2. Therefore, the selection probability of charging
station 2 drops rapidly to 0.

It can be seen from Fig.12 that there are many charging
vehicles in charging station 3 at the initial time, and the
queuing time is long. Therefore, the selection probability of
charging station 3 is the lowest before the electric vehicle
passes node 15. After passing node 15, although the queuing
time of charging station 2 is not the longest, the selection
probability of charging station 2 is greatly reduced because
it is located in the opposite direction of vehicle driving.

Under the condition of dynamic change of service fee,
an electric vehicle from start node 16 and end node 23 is
selected to compare the influence of service fee change on
its station selection strategy. The initial service fee of five
charging stations is 1U /kWh. When the vehicle owner drives
to node 17, the service fee is adjusted. After adjusting, the ser-
vice fee is 1.3 U /kWh, 1.5 U /kWh, 1.2 U /kWh, 1 U /kWh
and 1 U /kWh respectively. The station selection probability
considering service fee adjustment is shown in Fig.13.

The original path of the car owner, which is the dotted line
shown in Fig.13, via charging station 2 before the service
fee unadjusted. The selection probability of charging station
5, which is not on the original path, is low. The service fee
is updated after node 17, the electric vehicle is still moving
towards the direction close to charging stations 2 and 5, and
the selection probability of both increases. When driving to
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FIGURE 11. Dynamic station selection probability of electric vehicle.

node 20 after node 19, the value of payment function of charg-
ing station 5 increases rapidly, so its selection probability also
increases, which reflects the advantages of dynamic charging
navigation.

C. ANALYSIS OF MULTI-AGENT STACKELBERG GAME
The optimization results of queuing time are shown in Fig.14.
With the increase of fast charging vehicles, the queuing time
of charging station 3,which is affected by the disordered
charging of electric vehicles at 8:15 a.m., has exceeded 0.4h.
It indicates that the charging demand of electric vehicles
at charging station 3 exceeds its service capacity. While
charging vehicles at charging station 4 do not need to queue,
the variance of queuing time between five charging stations
reaches 0.187 at this time. It can be seen from Fig.14 that
the charging vehicles at the following time are reasonably
guided, part of the charging vehicles are transferred to charg-
ing station 4, and the queuing time of charging station 3 is
also reduced. At 10:00 a.m., the variance between 5 charging

FIGURE 12. Dynamic station selection probability considering queuing
time.

TABLE 6. Charging station operation information.

stations is only 0.026. The service capacity of each station has
been fully utilized.

Considering the pricing game between charging stations,
the pricing scheme between charging stations is obtained by
the model solution method in Section B of Part IV, as shown
in Fig.15. The maximum number of rounds is set to 150. The
example parameters are shown in Table VI.

It can be seen from Fig.15 that the game converges in about
60 generations. Charging station 1 and 2 are located close to
the center of the road network, and a large number of electric
vehicles have the willingness to charge. Therefore, charging
station 1 and 2 have the high service fee to maximize their
own benefits. The location of charging station 3 is moderate.
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FIGURE 13. Station selection probability considering service fee
adjustment.

FIGURE 14. Evolution of queuing time.

The charging demand of electric vehicles at charging station
3 is less than its service capacity limit, so its service fee is
slightly lower than that of station 1 and 2. Charging station

FIGURE 15. Pricing game between charging stations.

4 and 5 are located in a remote place, so there are few
charging vehicles at stations. Therefore, it is necessary to
attract electric vehicles to charge at a low price to maximize
the revenue and realize the spatial transfer of fast charging
load.

The electricity sales result of charging stations is shown in
Fig.16. Electricity sales of charging station 1 and 2 is large
from the whole period, which exceeds the average electricity
sales at most of time. The above two stations are located near
the traffic hub, which reflects their strong ability to attract
charging demand. 3 p.m. is the low point of fast charging
demand, and the electricity sales of all stations are at the
lowest point in the daytime. It can be seen from Fig.16 that the
electricity sales of each station is equalized and at a high level
in morning peak and evening peak hours, which shows that
through the adjustment of service fee, the charging demand
of charging station 1 and 2 is partially transferred to charging
station 4 and 5, effectively reducing the load of distribution
lines around charging station 1 and 2, and realizing peak
cutting and valley filling.
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FIGURE 16. Charging station electricity sales game.

In terms of distribution network node voltage, the average
maximum voltage deviation rate of the distribution network
access node for charging station 1 is 9.65% before adjusting
the service fee. The average maximum voltage deviation
rate decreases to 9.13% after adjusting the service fee. The
average maximum voltage deviation rate of the distribution
network access node for charging station 5 is 6.23% before
adjusting the service fee. The average maximum voltage
deviation rate decreases to 6.41% after adjusting the service
fee. The results show that the reasonable distribution of elec-
tric vehicle charging load can improve the voltage level of
distribution network after the dynamic service fee adopted,
and the operation of distribution network will be safer and
more reliable, which supports the theoretical description in
Section B of Part IV.

VI. CONCLUSION
In this paper, a dynamic response strategy of fast charging
station-EVs considering interaction of multiple vehicles is
proposed. In the study of EV charging navigation scheme

selection, this paper pays attention to modeling from the
perspective of EVs, which can reflect the interactive influence
of charging station selection among a large number of electric
vehicles and satisfy different response characteristics of the
electric vehicle users. In the research of station-EVs interac-
tion, the charging service fee considers the control of users’
charging behavior and the influence of price game between
multiple stations on equalizing the load of charging stations.

The dynamic response strategy is evaluated on a real data of
the Sioux Falls urban road network system. Conclusions are
made below from the perspective of dynamic charging path
selection and dynamic charging service fee decision based on
multi-agent stackelberg game.

(1) The performance of the proposed dynamic response
strategy in terms of dynamic charging path selection

Based on the case study results, the charging path can be
optimized by applying the dynamic response strategy.

a) Avoiding road congestion
As the total length of path 2 is 2km longer than that of

path 1, considering the condition of free flow, all vehicle
owners will select path 1 drive in. But the travel time of path
1 is 0.18h longer than that of path 2 at 7 a.m. according
to the optimization result of dynamic path selection model,
the number of EVs choosing path 1 at 8 a.m. is significantly
reduced, and the traffic flow of path 2 increases accordingly.
The proposed dynamic response strategy plays an important
role in avoiding road congestion.

b) Proposing differentiated charging navigation schemes
Taking 7:00 a.m. as an example, this paper analyzes the

charging path selection of a single EV user considering three
goals as follows. Scenario 1 aims at the shortest distance, the
distance, travel and queue time, service feewere 14km, 0.69h,
1.1U respectively. Scenario 2 aims at the minimum time,
the distance, travel and queue time, service fee were 17km,
0.44h, 1U respectively. Scenario 3 aims at the minimum
service fee, the distance, travel and queue time, service fee
were 15km, 0.7h, 0.8U respectively.

The proposed dynamic response strategy can guide the fast
charging load to move orderly in the road network according
to the different response characteristics of the electric vehicle
users.

c) Charging station selection probability varies with ser-
vice fee

After passing through a charging station, there are still
charging stations to be selected ahead of the path, and EVwill
not turn back to this charging station. Therefore, the selec-
tion probability of charging station reduced greatly, which is
located in the opposite direction of vehicle driving. The selec-
tion probability of charging stations to be selected increased,
which is located in the ahead of the vehicle driving path.

With the value of payment function (21) increases, selec-
tion probability of charging stations to be selected ahead of
the path also increases, which reflects the advantages of the
proposed dynamic response strategy.

(2) The performance of the proposed dynamic response
strategy in terms of dynamic charging service fee decision
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Class I charging stations are located close to the center of
the road network, which can increase service fee to maximize
their own benefits. Class II charging stations are located in
a remote place of the road network, which should reduce
service to attract EVs charging and maximize the revenue.
The proposed dynamic response strategy realizes the spatial
transfer of fast charging load, effectively reduce the load of
distribution lines around charging stations, and realize peak
cutting and valley filling.

In terms of distribution network node voltage, the average
maximum voltage deviation rate of the distribution network
access node for the class I charging station is from 9.65%
to 9.13%, after increasing the service fee. The average maxi-
mum voltage deviation rate of the distribution network access
node for the class II charging station is from 6.23% to 6.41%,
after reducing the service fee.

The results show that the reasonable distribution of electric
vehicle charging load can improve the voltage level of distri-
bution network after the dynamic service fee adopted, and
the operation of distribution network will be safer and more
reliable.

In general, the proposed dynamic response strategy con-
siders the interests of the charging station and the owner,
guides the fast charging load to move orderly in the road
network according to the different response characteristics
of the electric vehicle users, equalizes the charging demand
between different fast charging stations and effectively reduce
the peak load of distribution lines around charging stations.

In this paper, when analyzing the pricing game of charging
stations, it is assumed that different stations belong to differ-
ent operators and there is a competitive relationship between
them.With the development of the fast charging station, a few
strong operators may occupy most of the market share in the
future. Therefore, the research on the pricing strategy of the
operator consortium will be a key point in the future. The fast
charging station in the city center will no longer be able to
meet the increasing charging demand due to the factors such
as land price and the load rate of the power grid. The urban
fast charging station planning is also a research direction in
the future based on the load spatial transfer characteristics of
EVs.

REFERENCES
[1] A Study on China’s Timetable for Phasing-Out Traditional Ice-Vehicles,

Innov. Energy Transp. Center, Los Angeles, CA, USA, May 2019.
[2] Z. Moghaddam, I. Ahmad, D. Habibi, and Q. V. Phung, ‘‘Smart charging

strategy for electric vehicle charging stations,’’ IEEE Trans. Transp. Elec-
trific., vol. 4, no. 1, pp. 76–88, Mar. 2018.

[3] R. Mehta, D. Srinivasan, A. M. Khambadkone, J. Yang, and A. Trivedi,
‘‘Smart charging strategies for optimal integration of plug-in electric vehi-
cles within existing distribution system infrastructure,’’ IEEE Trans. Smart
Grid, vol. 9, no. 1, pp. 299–312, Jan. 2018.

[4] W.Mo, C. Yang, X. Chen, K. Lin, and S. Duan, ‘‘Optimal charging naviga-
tion strategy design for rapid charging electric vehicles,’’ Energies, vol. 12,
no. 6, p. 962, Mar. 2019.

[5] D. Zhaohao, L. Ying, and Z. Lizi, ‘‘A stochastic resource planning scheme
for PHEV charging station considering energy portfolio optimization
and price-responsive demand,’’ IEEE Trans. Ind. Appl., vol. 54, no. 6,
pp. 5590–5598, Nov./Dec. 2018.

[6] J. Tan and L. Wang, ‘‘Real-time charging navigation of electric vehicles to
fast charging stations: A hierarchical game approach,’’ IEEE Trans. Smart
Grid, vol. 8, no. 2, pp. 846–856, Mar. 2017.

[7] M. H. Amini, J. Mohammadi, and S. Kar, ‘‘Distributed holistic framework
for smart city infrastructures: Tale of interdependent electrified transporta-
tion network and power grid,’’ IEEE Access, vol. 7, pp. 157535–157554,
2019.

[8] Z. Qian, W. Zhong, and T. Weiyu, ‘‘Spatial-temporal distribution predic-
tion of charging load of electric vehicle based on MDP random path
simulation,’’ (in Chinese), Automat. Electr. Power Syst., vol. 42, no. 20,
pp. 65–72, 2018.

[9] F. J. Soares, J. A. P. Lopes, and P. M. R. Almeida, ‘‘A stochastic model to
simulate electric vehicles motion and quantify the energy required from
the grid,’’ in Proc. 17th Power Syst. Comput. Conf., Stockholm, Sweden,
2011, pp. 1–7.

[10] S. Shu, L. Xiangning, and Z. Hongzhi, ‘‘Spatial and temporal distribution
model of electric vehicle charging demand,’’ (in Chinese), Proc. CSEE,
vol. 37, no. 16, pp. 54–65 and 322, 2017.

[11] A. I. Adamatzky, ‘‘Computation of shortest path in cellular automata,’’
Math. Comput. Model., vol. 23, no. 4, pp. 105–113, Feb. 1996.

[12] M. Batty, Cities and Complexity: Understanding Cities With Cellular
Automata, a Gent-Based Models and Fractals, 1st ed. Cambridge, MA,
USA: MIT Press, 2007.

[13] J. G. Hayes and K. Davis, ‘‘Simplified electric vehicle powertrain model
for range and energy consumption based on EPA coast-down parameters
and test validation by Argonne national lab data on the Nissan leaf,’’ in
Proc. IEEE Transp. Electrific. Conf. Expo (ITEC), Dearborn, MI, USA,
Jun. 2014, pp. 1–6.

[14] S. Sun, Q. Yang, and W. Yan, ‘‘Optimal temporal-spatial electric vehi-
cle charging demand scheduling considering transportation-power grid
couplings,’’ in Proc. IEEE Power Energy Soc. Gen. Meeting (PESGM),
Portland, OR, USA, Aug. 2018, pp. 1–5.

[15] Y. Hongming, L. Ming, and W. Fushuan, ‘‘Route selection and charging
navigation strategy for electric vehicle employing real-time traffic infor-
mation perception,’’ (in Chinese), Automat. Electr. Power Syst., vol. 41,
no. 11, pp. 106–113, 2017.

[16] T. Jurik, A. Cela, R. Hamouche, R. Natowicz, A. Reama, S.-I. Niculescu,
and J. Julien, ‘‘Energy optimal real-time navigation system,’’ IEEE Intell.
Transp. Syst. Mag., vol. 6, no. 3, pp. 66–79, Jul. 2014.

[17] Q. Guo, S. Xin, H. Sun, Z. Li, and B. Zhang, ‘‘Rapid-charging navigation
of electric vehicles based on real-time power systems and traffic data,’’
IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1969–1979, Jul. 2014.

[18] H. Hui, F. Hao, and S. Shu, ‘‘Multilateral win-win strategy for smart
charging service of electric vehicle,’’ (in Chinese), Automat. Electr. Power
Syst., vol. 41, no. 19, pp. 66–73, 2017.

[19] D. Wu, D. C. Aliprantis, and L. Ying, ‘‘Load scheduling and dispatch for
aggregators of plug-in electric vehicles,’’ IEEE Trans. Smart Grid, vol. 3,
no. 1, pp. 368–376, Mar. 2012.

[20] J. Hu, S. You, M. Lind, and J. Ostergaard, ‘‘Coordinated charging of elec-
tric vehicles for congestion prevention in the distribution grid,’’ IEEE
Trans. Smart Grid, vol. 5, no. 2, pp. 703–711, Mar. 2014.

[21] L. Hong, Z. Xu, and L. Chang, ‘‘Timing interactive analysis of elec-
tric private vehicle traveling and charging demand considering the suffi-
ciency of charging facilities,’’ (in Chinese), Proc. CSEE, vol. 38, no. 18,
pp. 5469–5478, 2018.

[22] S. Bae and A. Kwasinski, ‘‘Spatial and temporal model of electric vehicle
charging demand,’’ IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 394–403,
Mar. 2012.

[23] M. D. Galus, R. A. Waraich, F. Noembrini, K. Steurs, G. Georges,
K. Boulouchos, K. W. Axhausen, and G. Andersson, ‘‘Integrating power
systems, transport systems and vehicle technology for electric mobility
impact assessment and efficient control,’’ IEEE Trans. Smart Grid, vol. 3,
no. 2, pp. 934–949, Jun. 2012.

[24] J.-Y. Yang, L.-D. Chou, and Y.-J. Chang, ‘‘Electric-vehicle navigation sys-
tem based on power consumption,’’ IEEE Trans. Veh. Technol., vol. 65,
no. 8, pp. 5930–5943, Aug. 2016.

[25] H. Yang, Y. Deng, J. Qiu, M. Li, M. Lai, and Z. Y. Dong, ‘‘Electric vehicle
route selection and charging navigation strategy based on crowd sensing,’’
IEEE Trans Ind. Informat., vol. 13, no. 5, pp. 2214–2226, Oct. 2017.

[26] X. Dong, Y. Mu, X. Xu, H. Jia, J. Wu, X. Yu, and Y. Qi, ‘‘A charging pric-
ing strategy of electric vehicle fast charging stations for the voltage control
of electricity distribution networks,’’ Appl. Energy, vol. 225, pp. 857–868,
Sep. 2018.

42420 VOLUME 8, 2020



X. Liu: Dynamic Response Characteristics of Fast Charging Station-EVs on Interaction of Multiple Vehicles

[27] I. S. Bayram, G. Michailidis, and M. Devetsikiotis, ‘‘Unsplittable load
balancing in a network of charging stations under QoS guarantees,’’ IEEE
Trans. Smart Grid, vol. 6, no. 3, pp. 1292–1302, May 2015.

[28] J. Johnson,M. Chowdhury, Y. He, and J. Taiber, ‘‘Utilizing real-time infor-
mation transferring potentials to vehicles to improve the fast-charging
process in electric vehicles,’’ Transp. Res. C, Emerg. Technol., vol. 26,
pp. 352–366, Jan. 2013.

[29] P. C. Fishburn and A. M. Odlyzko, ‘‘Dynamic behavior of differential
pricing and quality of service options for the Internet,’’ Decis. Support
Syst., vol. 28, nos. 1–2, pp. 123–136, Mar. 2000.

[30] S. Yingchi, M. Yunfei, and L. Jiaying, ‘‘A fast charging guidance strategy
for multiple demands of electric vehicle, fast charging station and distribu-
tion network,’’ (in Chinese), Automat. Electr. Power Syst., to be published.

[31] C. Lixing and H. Xueliang, ‘‘Ordered charging strategy of electric vehicles
at charging station on highway,’’ (in Chinese),Electr. Power Autom. Equip.,
vol. 39, no. 1, pp. 112–117 and 126, 2019.

[32] G. Gangjun, L. Anqin, and C. Zhimin, ‘‘Cyber physical system of active
distribution network based on edge computing,’’ Power Syst. Technol.,
vol. 42, no. 10, pp. 3128–3135, 2018.

[33] Y. Mu, J. Wu, N. Jenkins, H. Jia, and C. Wang, ‘‘A spatial–temporal model
for grid impact analysis of plug-in electric vehicles,’’ Appl. Energy,
vol. 114, pp. 456–465, Feb. 2014.

[34] G. Shaoyun, Z. Linwei, and L. Hong, ‘‘Optimal deployment of electric
vehicle charging stations on the highway based on dynamic traffic sim-
ulation,’’ (in Chinese), Trans. China Electrontech. Soc., vol. 33, no. 13,
pp. 91–101, 2018.

[35] M. B. Arias, M. Kim, and S. Bae, ‘‘Prediction of electric vehicle charging-
power demand in realistic urban traffic networks,’’ Appl. Energy, vol. 195,
pp. 738–753, Jun. 2017.

[36] S. Opricovic and G.-H. Tzeng, ‘‘Extended VIKOR method in comparison
with outranking methods,’’ Eur. J. Oper. Res., vol. 178, no. 2, pp. 514–529,
Apr. 2007.

[37] I. Yperman, The Link Transmission Model for Dynamic Network Loading.
Leuven, Belgium: Katholieke Univ., 2007.

[38] D. Liu, T. Qi, K. Zhang, and Y. Guo, ‘‘Beijing residents’ travel time sur-
vey in small samples,’’ J. Transp. Syst. Eng. Inf. Technol., vol. 9, no. 2,
pp. 23–26, Apr. 2009.

[39] A. S. Masoum, S. Deilami, P. S. Moses, M. A. S. Masoum, and
A. Abu-Siada, ‘‘Smart load management of plug-in electric vehicles in
distribution and residential networks with charging stations for peak shav-
ing and loss minimisation considering voltage regulation,’’ IET Gener.,
Transmiss. Distrib., vol. 5, no. 8, pp. 877–888, 2011.

[40] S. Deilami, A. S. Masoum, P. S. Moses, and M. A. S. Masoum, ‘‘Real-
time coordination of plug-in electric vehicle charging in smart grids to
minimize power losses and improve voltage profile,’’ IEEE Trans. Smart
Grid, vol. 2, no. 3, pp. 456–467, Sep. 2011.

[41] P. Bangalore, ‘‘Development of test system for distribution system reliabil-
ity analysis, integration of electric vehicles into the distribution system,’’
Ph.D. dissertation, Dept. Energy Environ., Division Electr. Power Eng.,
Chalmers Univ. Technol., Gothenburg, Sweden, 2011.

[42] S. Shu, S. Jinwen, L. Xiangning, and L. Xianshan, ‘‘Electric vehicle smart
charging navigation,’’ Proc. CSEE, vol. 33, no. S1, pp. 59–67, 2013.

[43] Notice on Matters Related to Electricity Price Policy for Electric Vehicles,
China Develop. Reform Commission, Beijing, China, Jul. 2014.

[44] D. Xicai and G. Huahua, ‘‘Existence of the equilibrium solution of a two—
Stage leaders-followers gamee,’’ Math. Econ., vol. 26, no. 4, pp. 50–53,
2009.

XIAOOU LIU received the B.S., M.S., and Ph.D.
degrees in electrical engineering from Tianjin Uni-
versity, in 2007, 2010, and 2019, respectively.

He is currently a Senior Engineer with the China
Energy Engineering Group Tianjin Electric Power
Design Institute Corporation, Ltd. He has con-
tributed to a number of research projects granted
from the National Natural Science Foundation of
China and industry corporations. He has published
more than six peer-reviewed academic articles and

holds more than two invention patents of China. His research interests
include simulation, analysis, operation and planning in smart distribution
systems, integrated energy systems, and electric vehicles.

VOLUME 8, 2020 42421


	INTRODUCTION
	 MOTIVATION
	RELATED WORKS
	 CONTRIBUTION
	 ORGANIZATION

	FRAMEWORK DESCRIPTION OF THE DYNAMIC RESPONSE STRATEGY OF FAST CHARGING STATION-EVS
	VEHICLE DECISION SCHEME CONSIDERING CHARGING NAVIGATION AND DYNAMIC TRAFFIC SIMULATION
	 ELECTRIC VEHICLE CHARGING NAVIGATION MODEL
	 DYNAMIC TRAFFIC SIMULATION OF URBAN ROAD NETWORK
	 DYNAMIC TRAVEL TIME MODEL OF ROAD SEGMENT
	 DYNAMIC PATH SELECTION MODEL

	 MULTI-VEHICLES CHARGING SELECTION CONSIDERING DECISION DYNAMIC EVOLUTION

	STATION-EVS INTERACTION STRATEGY BASED ON THE STACKELBERG GAME
	 SERVICE CAPACITY OPTIMIZATION MODEL OF CHARGING STATION
	 STATION-EVS STACKELBERG GAME MODEL
	 SOLUTION OF STATION-EVS STACKELBERG GAME MODEL

	EXAMPLE ANALYSIS
	 INTRODUCTION OF EXAMPLES
	 ANALYSIS OF DYNAMIC CHARGING PATH SELECTION IN URBAN ROAD NETWORK
	 ANALYSIS OF MULTI-AGENT STACKELBERG GAME

	CONCLUSION
	REFERENCES
	Biographies
	XIAOOU LIU


