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ABSTRACT An optimal fuzzy controller design scheme is proposed to address the influence of time delay
and disturbance on the control performance of nonlinear batch processes. First, a two-dimensional (2D)
equivalent Takagi-Suguno (T-S) fuzzy error model is formulated. By introducing a quadratic performance
index function and adopting 2D Lyapunov–Krasovskii theory, the existence condition of the optimal fuzzy
control law is given. Furthermore, its solvable condition, which depends on time-delay bounds, is constructed
in terms of linear matrix inequalities, and its gain is obtained by using an optimization algorithm. This design
has the advantages of faster tracking and better tracking performance. Finally, two different algorithms (with
and without optimization) are used to control the water level of a triple-capacity water tank. The results show
that the presented strategy is more effective and feasible.

INDEX TERMS Nonlinear time-delayed batch processes, 2D-T-S fuzzy model, fuzzy guaranteed cost
control, 2D Lyapunov–Krasovskii functional approach, linear matrix inequalities.

I. INTRODUCTION
To improve production efficiency and save production costs,
there is an urgent need for advanced control strategies and
optimization methods in industrial production mode [1].
In many advanced control algorithms [2]–[11], feedback con-
trol and iterative learning control (FILC) has attracted much
attention. Foe batch processes, ILC takes into account the
batch and time direction characteristics of the batch process
and has a better control effect than iterative learning control
or feedback control. Since this algorithm was proposed [5],
many achievements have been made. With the description
of system models, the algorithm has been extended from
linear systems [5], [6] to nonlinear systems [9]. Regarding
the characteristic of phases, it has developed from single-
phase [5], [6] to multiphase [7], [8], [11]. Even fault-tolerant
control of systems has been achieved [3], [5], [9]–[11].
Because time delay and disturbances are the main factors
of system performance degradation, the control algorithms
designed for these two aspects are still a popular research
topic.
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Time delays exist in many aspects of industrial processes.
They can lead to system instability or the degradation of
control performance. Studies on time-delayed systems have
emerged in recent decades. In general, there are two meth-
ods to address the delay problem with Lyapunov stability
theory: one is based on the Lyapunov-Rajomijin func-
tion (LRF) [12]–[14]) method and the other is based on
the Lyapunov-Krasuski function (LKF) method. The LKF
method analyzes the stability of high-dimensional augmented
systems in which the state variables include all delayed
states [15], [16]. Although there is some difficulty in design-
ing the V function, it is widely used due to its small degree of
conservatism. Since it is impossible to avoid time delay in the
batch process, it is essential to study the stability of the batch
process with time delay. There are some research results at
present [17]–[23]. For practical systems with disturbances,
to devise a control law ensuring the stable operation of the
system is only one of the goals; the other is to maintain
the system with optimal control performance. Therefore,
the guaranteed cost control method proposed by Chang and
Peng has been applied [24]. Recently, some results have
been obtained.Wang et al. proposed a delay-range-dependent
method for iterative learning guaranteed cost control for
batch processes [25] and then extended the results to optimal
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fault-tolerant control [26]. At present, these research results
have been extended to optimal control and optimal fault-
tolerant control of multi-phase batch processes [27], [28].

All of the above research results are directly dependent on
linear models. Batch processes have strong nonlinearity, and
it is difficult to establish a suitable linear model [29], [30].
In this case, the famous Takagi-Suguno (T-S) fuzzy mod-
els [31] proposed by Japanese scholars have been applied,
which provide a basic framework for the analysis and syn-
thesis of fuzzy control and profoundly affect the study and
application of fuzzy control theory [32]. Fuzzy control has
been proven to be an effective method to deal with nonlinear
systems [33]–[35], and various fuzzy control methods are
emerging [36]–[40]. At present, the results are also reflected
in time-delayed nonlinear systems [41], [42]. Moreover, the
fault detection problem can be studied by fuzzymethods [43],
[44]. With the development of research technology, some
results on nonlinear control theory for batch processes have
become available recently [45]–[50]. For nonlinear batch
processes, the current solutions are mainly the following: (1)
using model predictive control and feedback control to solve
nonlinearity and constraint problems [45]; (2) treating nonlin-
earity as uncertainty, such as in [48], [49]; and (3) developing
2D fuzzy iterative learning control for batch processes with
disturbances and time delays based on T-S fuzzy control [50].

As mentioned earlier, steady operation is the basic demand
of the production process. It is the lifelong goal of all
enterprises and researchers that systems have better control
performance to achieve the goal of energy conservation and
emission reduction. Based on this objective, the optimal con-
trol of batch processes with time delay has attracted much
attention. However, all the models considered in these results
are linear system models.

For this reason, fuzzy iterative learning optimal con-
trol for nonlinear time-delayed batch processes is discussed
in the paper. The specific strategies are as follows. First,
a fuzzy controller is designed, and an error function is intro-
duced to establish the equivalent fuzzy 2D Rosser model.
Then, a fuzzy update law preserving optimal performance
is designed, and solvable conditions are given, where the
upper bound of the quadratic performance index is not more
than a certain bounded value. The scheme of the designed
control law is given in terms of linear matrix inequalities
(LMIs). Furthermore, an algorithm analysis of the optimal
performance index is proposed, and the controller gain and
optimal performance index are obtained by certain constraint
conditions. Compared with a controller without optimization
algorithms, the advantage of this kind of controller is that
the actual output of the system tracks the given output faster
and the tracking performance is better. In the long run, the
goals of energy conservation and consumption reduction are
achieved. Taking controlling the water level of the three tanks
as an example, two different algorithms (with or without
optimization) are used for comparison, and the results show
that the algorithm presented in this article is more effective
and feasible.

Certain notation is used throughout the paper. Rn is an
n-dimensional Euclidean space and R(n+l)×(n+l) is a set of
(n + l) × (n + l) real matrices. x̄Tt,k denotes the transpose
of x̄t,k . # represents a transposed element in the symmetric
position.

II. PROBLEM FORMULATION
Omitting the step of transforming the nonlinear batch process
model into a fuzzy model as in [39], the following model
with unknown internal uncertainties and external disturbance
is given directly:

xk (t + 1) =
r∑
i=1

hi(xk (t))Ai(t, k)xk (t)

+

r∑
i=1

hi(xk (t))Aidxk (t − d(t))

+

r∑
i=1

hi(xk (t))Biuk (t)+ wk (t)

yk (t) = Cixk (t)
xk (0) = x0,k , i = 1, 2, . . . , r, 0 ≤ t ≤ T ; k = 1, 2, ...

(1)

where xk (t) ∈ Rn, xk (t − d(t)) ∈ Rn, yk (t) ∈ Rl and uk (t) ∈
Rm denote the state, time delay state, output and control input,
respectively; Ai(t, k) = Ai +1Ai(t, k) = Ai + Di1i(t, k)Ei,
Ai,Aid ,Bi,Ci,Di and Ei are constant matrices under the
corresponding rules such that 1T

i (t, k)1i(t, k) ≤ I ; r is
the fuzzy rule number; xk (0) denotes the initial value of the
kth batch; wk (t) is the external disturbance; the time-varying
delay d (t) satisfies d ≤ d (t) ≤ d̄ , where d and d̄ represent
the lower and upper bounds of time delay; t is time; k is the

batch; and hi(xk (t)) satisfies
r∑
i=1

hi(xk (t)) = 1, hi(xk (t)) ≥ 0.

For system (1), the objective of this paper is to propose an
optimal control strategy to guarantee that the actual output of
the system can follow the set trajectory of the given output
and preserve the optimal performance J∗.

III. THE DESIGN OF THE FUZZY OPTIMAL CONTROLLER
This section is divided into two parts: the first part is the
construction of the equivalent model. The second part is the
control law design based on this equivalent model. In this
part, the existence condition and solvable condition of the
controller are given, and the upper bound of the performance
index that the designed controller must satisfy is also given.

A. EQUIVALENT SYSTEM FORMULATION
To accomplish the above control target, we use the iterative
learning control method, and the law is designed as follows:{

uk(t) = uk−1(t)+ rk(t)
u(t, 0) = 0

, t = 0, 1, 2, . . . ,T (2)

where rk(t) is the update law designed at time t in batch k and
u (t, 0) is the initial iterative value, which is set as 0. Thus,
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if we want to design uk(t), we only need to design the update
law rk(t) to guarantee that the system output yk (t) tracks the
desired output yr .

The system state error and output tracking error are defined
as (3) and (4), respectively:

1(xk (t)) = xk (t)− xk−1 (t) (3)

ek (t) = yr − yk (t) (4)

We can obtain from (1) - (3) that

1(xk (t + 1)) =
r∑
i=1

hi(xk (t))Ai(t, k)1(xk (t))

+

r∑
i=1

hi(xk (t))Aid1(xk (t − d(t)))

+

r∑
i=1

hi(xk (t))Birk (t)+ w̄k (t) (5)

where

w̄k (t) = ωk (t)+1(wk (t)) ,1 (wk (t)) = wk (t)− wk−1(t),

ωk (t) =
r∑
i=1

1(hi(xk (t)))Aixk−1(t)

+

r∑
i=1

hi(xk (t))1Ai(t, k)xk−1(t)

−

r∑
i=1

hi(xk−1(t))1Ai(t, k − 1)xk−1(t)

+

r∑
i=1

1(hi(xk (t)))Biuk−1(t)

+

r∑
i=1

1(hi(xk (t)))Aidxk−1 (t − d (t))

For yk (t) = Cixk (t), taking into account the special cir-
cumstance that Ci = C (i = 1, 2, . . . , r), we can conclude
from (1) - (5) that

ek (t + 1)= ek−1(t + 1)−C

(
r∑
i=1

hiAi(t, k)1(xk (t))+w̄k (t)

+

r∑
i=1

hiBirk (t)+
r∑
i=1

hiAid1(xk (t−d (t))

)
(6)

We design the global 2D T-S fuzzy law of the system:

rk (t) =
r∑
i=1

hiKi

[
1(xk (t))
ek−1 (t + 1)

]
. (7)

Let

x̄ ′t,k =
[
1(xk (t + 1))
ek (t + 1)

]
=

[
xhk (t + 1)
xvk+1 (t)

]
,

x̄t,k =
[
1(xk (t))
ek−1 (t + 1)

]
=

[
xhk (t)
xvk (t)

]
,

x̄d,h =
[
1k (x (t − d (t)))
ek−1−h(k−1) (t + 1)

]
=

[
xhd
xvh

]
,

hi = hi (xk (t)) , w̄k (t) = w̄t,k .

From formulas (5)-(7), the equivalent 2D model is repre-
sented as follows:

x̄ ′t,k =
r∑
i=1

r∑
i=1

h2i Âii(t, k)x̄t,k +
r∑
i=1

hiĀid x̄d,h + C̄w̄t,k

+ 2
r∑
i=1

∑
i<j

hihj

(
Âij(t, k)+ Âji(t, k)

2

)
x̄t,k

zt,k = ek−1 (t + 1) = D̄x̄t,k (8)

where

Âij(t, k) = Āi(t, k)+ B̄iKj, Âji = Āj(t, k)+ B̄jKi (i, j ≤ r) .

Suppose h(k − 1) satisfies h ≤ h(k − 1) ≤ h̄, Āi(t, k) =[
Ai(t, k) E0
−CAi(t, k) I

]
, Āid =

[
Aid E0
−CAid E0

]
, C̄ =

[
I
−C

]
,

D̄ =
[
E0 I

]
, where I is a unit matrix and E0 is a zero matrix.

System (8) is the equivalent model of the original
model (1). Under this model, the design of the fuzzy control
law uk(t) is transformed into the design of the fuzzy update
law rk(t). Next, we need to design the update law (7).
Remark 1: At present, there are two main methods for

designing controllers. One is to regard the batch process
as a one-dimensional system only related to time, such as
tracking control [42]. In this kind of method, the controller
is composed of an extended dimension state formed by com-
bining the state error of adjacent time and the tracking error.
It is mainly aimed at reducing information mismatch between
batches. If information between batches is repeated, the two-
time-dimension (2D) control method that we propose in this
paper is a good choice. This method adopts an iterative learn-
ing control strategy. By introducing the state error along with
batches and tracking error, the original model is transformed
into an equivalent 2D Roessor model, and a control law
including time and batch direction is designed, which has
the merits of fast tracking and good tracking performance.
In particular, optimal control is considered in this paper. The
control effect will therefore be better.

B. THE DESIGN OF THE FUZZY OPTIMAL CONTROLLER
For the fuzzy time-delay system (8), we define the perfor-
mance index function:

J =
N1∑
t=0

N2∑
k=1

[
x̄Tt,kQ1x̄t,k + rTt,kQ2rt,k

]

=

N1∑
t=0

N2∑
k=1

x̄Tt,k

Q1 +

r∑
i=1

r∑
j=1

hihjKT
i Q2Kj

 x̄t,k (9)

where Q1,Q2 > 0.
For a two-dimensional system, assume there is a set

of finite initial conditions and two positive integers
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satisfying∥∥x̄(t,−h)∥∥ = max{‖x̄(t, 0)‖, ‖x̄(t,−h(0))‖, ‖1(t,−h(0))‖}
t ≥ r1 ≥ 0, −h̄ ≤ k ≤ 0 (10)∥∥x̄(−d,k)∥∥ = max{‖x̄(0, k)‖, ‖x̄(−d(0), k)‖, ‖1(−d(0), k)‖}
k ≥ r2 ≥ 0, −d̄ ≤ t ≤ 0 (11)

where r1 < ∞ and r2 < ∞ are positive integers. The initial
boundary condition is:

S=
{∥∥x̄(t,−h)∥∥ , ∥∥x̄(−d,k)∥∥ ∈ Rn : ∥∥x̄(t,−h)∥∥ = 8ϑ1,∥∥x̄(−d,k)∥∥ = 8ϑ2, ϑTmϑm ≤ I , (m = 1, 2)

}
(12)

where 8 is a given matrix.
Remark 2: In contrast to existing research results [33],

to realize fast tracking control of the system and maintain
a certain control performance, (9)-(12) are introduced here.
Therefore, general fuzzy control is transformed into fuzzy
optimal control. In addition, because the system state is
affected by time delay, the initial conditions are defined to
be related to time delay. Such consideration may reduce the
conservatism of the system.
Definition 1: For any scalar γ > 0, w̄t,k 6= 0, and zero

boundary conditions (12), take any disturbances as w̄t,k ∈ l,
if the system output satisfies

||zt,k || < γ ||w̄t,k ||

then system (8) is stable and has H∞ performance γ .
Definition 2: For all admissible uncertain parameters and

γ > 0, r∗t,k is called the robust H∞ optimal control law for
system (8) if the following conditions are satisfied:

(1) when w̄t,k = 0, system (8) is asymptotically stable,
(2) under the zero initial condition, the controller output

z (t, k) satisfies ||zt,k || < γ ||w̄t,k ||,
(3) the cost function of system (8) satisfies J ≤ J∗.
Lemma 1 [51]: For any vectorψ (t) ∈ Rn, there are positive

values κ0, κ1 and a matrix 0 < R ∈ Rn×n such that the
following inequality holds:

− (κ1−κ0 + 1)
κ1∑
t=κ0

ψT (t)Rψ (t)<−
κ1∑
t=κ0

ψT (t)R
κ1∑
t=κ0

ψ (t)

Based on the above definition and lemma, the existence
condition of the fuzzy update law is given. The results are as
follows:
Theorem 1: For system (8) with (10-12), for any given

scalars 0 < d < d̄ , 0 < h < h̄ and matrices Q1,Q2 >

0, when w̄t,k = 0 holds, if the matrices to be solved
P,Q,M ,G = diag (•h, •v) > 0 and the controller gains
Ki,Kj satisfy the following inequalities:

ψ1 E0 G 014 015 Q
1
2
1 KT

i Q
1
2
2

# −Q E0 ĀTidP ĀTidM E0 E0
# # −G−M E0 E0 E0 E0
# # # −P E0 E0 E0
# # # # −T−2M E0 E0
# # # # # −I E0
# # # # # # −I


< 0

(13)



ψ1 E0 G 024 025 Q
1
2
1 KT

ij Q
1
2
2

# −Q E0 ĀTidP ĀTidM E0 E0

# # −G−M E0 E0 E0 E0
# # # −P E0 E0 E0
# # # # −T−2M E0 E0
# # # # # −I E0
# # # # # # −I


< 0

(14)

then system (8) is asymptotically stable. Additionally,
the cost function (9) satisfies the following upper bound:

J ≤
N1∑
t=0

x̄hTt,0Phx̄ht,0 + x̄vTt,0Pvx̄vt,0 + t−1∑
r=t−d(t)

x̄hTr,0Qhx̄
h
r,0

+

−1∑
r=−h(0)

x̄vTt,rQvx̄
v
t,r

+

t−1∑
r=t−d̄

x̄hTr,0Mhx̄hr,0 +
−1∑

r=−h̄

x̄vTt,rMvx̄vt,r

+

−d∑
s=−d̄

t−1∑
r=t+s

x̄hTr,0Qhx̄
h
r,0

+

−h∑
s=−h̄

−1∑
r=s

x̄vTt,rQvx̄
v
t,r + d̄

−d∑
s=−d̄

t−1∑
r=t+s

1hT
r,0Gh1

h
r,0

+ h̄
−h∑
s=−h̄

−1∑
r=s

1vT
t,rGv1

v
t,r


+

N2∑
k=0

x̄hT0,kPhx̄h0,k + x̄vT0,kPvx̄v0,k + −1∑
r=−d(0)

x̄hTr,kQhx̄
h
r,k

+

k−1∑
r=k−h(k)

x̄vT0,rQvx̄
v
0,r +

−1∑
r=−d̄

x̄hTr,kMhx̄hr,k

+

k−1∑
r=k−h̄

x̄vT0,rMvx̄v0,r +
−d∑
s=−d̄

−1∑
r=s

x̄hTr,kQhx̄
h
r,k

+

−h∑
s=−h̄

k−1∑
r=k+s

x̄vT0,rQvx̄
v
0,r + d̄

−d∑
s=−d̄

−1∑
r=s

1hT
r,kGh1

h
r,k

+h̄
−h∑
s=−h̄

k−1∑
r=k+s

1vT
0,rGv1

v
0,r


= J∗ (15)

where 014 = ÂTii (t, k)P, 015 =
(
ÂTii (t, k)− I

)
M ,

024 = ĤT
ij (t, k)P, 025 =

(
ĤT
ij (t, k)− I

)
M ,

T = diag
(
d̄ Ih, h̄Iv

)
, D = diag

((
d̄ − d

)
Ih,
(
h̄− h

)
Iv
)
,

Âii(t, k) = Āi(t, k)+ B̄iKi, Kij =
Ki+Kj

2 ,

Ĥij =
ÂTij (t,k)+Â

T
ji (t,k)

2 , and ψ1 = −P+ G+ DQ+ Q−M .
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Proof: Define:1h
r,k = x̄hr+1,k−x̄

h
r,k ,1

v
t,r = x̄vt,r+1−x̄

v
t,r ,

x̄d̄,h̄ =

[
xh
t−d̄,k
xv
t,k−h̄

]
, and φt,k =

[
x̄Tt,k x̄

T
d,h x̄

T
d̄,h̄

]T
. Select

the following Lyapunov function:

V
(
x̄t,k

)
= Vh

(
x̄ht,k

)
+ Vv

(
x̄vt,k

)
(16)

where

Vh
(
x̄ht,k

)
=

5∑
n=1

Vhn
(
x̄ht,k

)
, Vv

(
x̄vt,k

)
=

5∑
n=1

Vvn
(
x̄vt,k

)
,

Vh1
(
x̄ht,k

)
= x̄hTt,kPhx̄

h
t,k , Vv1

(
x̄vt,k

)
= x̄vTt,kPvx̄

v
t,k ,

Vh2
(
x̄ht,k

)
=

t−1∑
r=t−d(t)

x̄hTr,kQhx̄
h
r,k ,

Vv2
(
x̄vt,k

)
=

k−1∑
r=k−h(k)

x̄vTt,rQvx̄
v
t,r ,

Vh3
(
x̄ht,k

)
=

t−1∑
r=t−d̄

x̄hTr,kGhx̄
h
r,k ,

Vv3
(
x̄vt,k

)
=

k−1∑
r=k−h̄

x̄vTt,rGvx̄
v
t,r ,

Vh4
(
x̄ht,k

)
=

−d∑
s=−d̄

t−1∑
r=t+s

x̄hTr,kQhx̄
h
r,k ,

Vv4
(
x̄vt,k

)
=

−h∑
s=−h̄

k−1∑
r=k+s

x̄vTt,rQvx̄
v
t,r ,

Vh5
(
x̄ht,k

)
= d̄

−d∑
s=−d̄

t−1∑
r=t+s

1hT
r,kMh1

h
r,k ,

Vv5
(
x̄vt,k

)
= h̄

−h∑
s=−h̄

k−1∑
r=k+s

1vT
t,rMv1

v
t,r ,

and Ph,Pv,Qh,Qv,Mh,Mv,Gh andGv are unknown positive
definite matrices. The increment of V

(
x̄t,k

)
is expressed as

1V
(
x̄t,k

)
=Vh

(
x̄ht+1,k

)
−Vh

(
x̄ht,k

)
+Vv

(
x̄vt,k+1

)
−Vv

(
x̄vt,k

)
(17)

With Lemma 1, we can obtain

x̄Tt,kQ1x̄t,k + rTt,kQ2rt,k +1V
(
x̄t,k

)
= φTt,k5φt,k (18)

where 5 = ψ +3T
1 P31 +3

T
2H

2R32,

ψ =

ψ1 + Q1 + KT
i Q2Kj E0 M

# −Q E0
# # −G−M

,
31 =

[ r∑
i=1

r∑
j=1

hihjÂij(t, k)
r∑
i=1

hiĀid E0
]
, and

32 =

[ r∑
i=1

r∑
j=1

hihjÂij(t, k)− I
r∑
i=1

hiĀid E0
]
.

From (13)-(14), we can obtain φTt,k5φt,k < 0.
For x̄Tt,kQ1x̄t,k + rTt,kQ2rt,k ≥ 0,1V

(
x̄t,k

)
≤ 0. Thus,

Vh
(
x̄ht+1,k

)
+ Vv

(
x̄vt,k+1

)
≤ Vh

(
x̄ht,k

)
+ Vv

(
x̄vt,k

)
.

For the above inequality, t is added from N to 0 and k is
added from 0 to N. For any nonnegative integer N and from
Lemma 1 in [6], we conclude that

V
(
x̄h1,N

)
+ V

(
x̄v0,N+1

)
+ V

(
x̄h2,N−1

)
+ V

(
x̄v1,N−1

)
+ · · · + V

(
x̄hN ,0

)
+ V

(
x̄vN ,1

)
=

∑
t+k=N+1

V
([

x̄ht,k
x̄vt,k

])
≤ V

([
x̄h0,k
x̄v0,k

])

+ · · · + V
([

x̄hN ,0
x̄vN ,0

])
=

∑
t+k=N

V
([

x̄ht,k
x̄vt,k

])
(19)

Obviously, the Lyapunov function decreases. Then,

lim
t+k→∞

x̄t,k → 0 (20)

According to the initial conditions (10-12) and theorem 1,
we obtain

N1∑
t=0

N2∑
k=0

̄xTt,k
Q1+

r∑
i=1

r∑
j=1

hihjKT
i Q2Kj

 x̄t,k+1V
(
x̄t,k

)≤0
(21)

Then,

N1∑
t=0

N2∑
k=1

x̄Tt,k

 r∑
i=1

r∑
j=1

hihj
(
Q1 + KT

i Q2Kj
)x̄t,k

≤ −

N1∑
t=0

N2∑
k=1

[
1V

(
x̄t,k

)]
=

N1∑
t=0

V (t, 0)+
N2∑
k=0

V (0, k)

(22)

Thus,

J ≤
N1∑
t=0

x̄hTt,0Phx̄ht,0 + x̄vTt,0Pvx̄vt,0 + t−1∑
r=t−d(t)

x̄hTr,0Qhx̄
h
r,0

+

−1∑
r=−h(0)

x̄vTt,rQvx̄
v
t,r +

t−1∑
r=t−d̄

x̄hTr,0Ghx̄
h
r,0

+

−1∑
r=−h̄

x̄vTt,rGvx̄
v
t,r

+

−d∑
s=−d̄

t−1∑
r=t+s

x̄hTr,0Qhx̄
h
r,0 +

−h∑
s=−h̄

−1∑
r=s

x̄vTt,rQvx̄
v
t,r

+d̄
−d∑

s=−d̄

t−1∑
r=t+s

1hT
r,0Mh1

h
r,0 +h̄

−h∑
s=−h̄

−1∑
r=s

1vT
t,rMv1

v
t,r


+

N2∑
k=0

x̄hT0,kPhx̄h0,k + x̄vT0,kPvx̄v0,k + −1∑
r=−d(0)

x̄hTr,kQhx̄
h
r,k
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+

k−1∑
r=k−h(k)

x̄vT0,rQvx̄
v
0,r +

−1∑
r=−d̄

x̄hTr,kGhx̄
h
r,k

+

k−1∑
r=k−h̄

x̄vT0,rGvx̄
v
0,r

+

−d∑
s=−d̄

−1∑
r=s

x̄hTr,kQhx̄
h
r,k +

−h∑
s=−h̄

k−1∑
r=k+s

x̄vT0,rQvx̄
v
0,r

+ d̄
−d∑

s=−d̄

−1∑
r=s

1hT
r,kMh1

h
r,k+h̄

−h∑
s=−h̄

k−1∑
r=k+s

1vT
0,rMv1

v
0,r


= J∗ (23)

It can be seen from the equations (19-20) that the state
converges. Because the state x̄t,k includes the output error
ek−1 (t + 1), the output error converges. This conclusion will
be verified in the simulation. Theorem 1 gives the existence
condition of the control lawKi,Kj. Under the condition of the
above theorem, we look for the solvable condition of Ki,Kj
under repetitive disturbances and nonrepetitive disturbances.
Then, the following two theorems hold.
Theorem 2: Formodel (8) with (10-12), any scalar 0 < d <

d̄ , 0 < h < h̄ and matricesQ1,Q2 > 0, when w̄t,k = 0 holds,
if a scalar ε > 0 and the matrices to be solved L, S,N =
diag (•h, •v) > 0, G1,G2,G3 = diag (•h1, •v1) > 0, and
Yi,Yj, satisfy the matrix inequalities

ψ̄1 E0 L 0̃14 0̃15 LQ
1
2
1 Y Ti Q

1
2
2 LẼTi E0

# −S E0 LĀTid LĀTid E0 E0 E0 E0
# # 0̃33 E0 E0 E0 E0 E0 E0
# # # −L E0 E0 E0 E0 εD̃Ti
# # # # −T−2N E0 E0 E0 εD̃Ti
# # # # # −I E0 E0 E0
# # # # # # −I E0 E0
# # # # # # # −2ε E0
# # # # # # # # −ε


<0

(24)

ψ̄1 E0 L 0̆14 0̆15 LQ
1
2
1 Y Tij Q

1
2
2 LẼTi LẼTj

# −S E0 LĀTid LĀ
T
id
E0 E0 E0 E0

# # 0̃33 E0 E0 E0 E0 E0 E0
# # # 0̆44 E0 E0 E0 E0 E0
# # # # 0̆55 E0 E0 E0 E0
# # # # # −I E0 E0 E0
# # # # # # −I E0 E0
# # # # # # # −2ε E0
# # # # # # # # −2ε


< 0

(25)

then the system (8) is optimally controllable, and the con-
troller’s gains are Ki = YiL−1,Kj = YjL−1. In addition, the
optimal performance index satisfies formula (15), where
0̃14 = LĀTi + Y Ti B̄i, 0̃15 = LĀTi + Y Ti B̄i − L, 0̆14 =

LḠij + H̄ij,

0̆15 = LḠij + H̄ij − L, 0̃33 = −G2 −N , 0̆44 = −L + 0̃D̃,
0̆55 = −T−2N + 0̃D̃, ψ̄1 = −L + G1 + DS + S − G3,

0̃D̃ =
ε
(
D̃iD̃Ti +D̃jD̃

T
j

)
2 , D̃i =

[
Di
−CDi

]
, Ẽi =

[
Ei E0

]
,

H̄ij =
Y Tj B̄

T
i +Y

T
i B̄

T
j

2 , Yij =
Yi+Yj
2 , Ḡij =

ĀTi +Ā
T
j

2 , and
D̃j and Ẽj. D̃i and Ẽi have the same meaning, but the symbols
are different.

Proof: Based on theorem 1, we left-multiply and right-
multiply with diag

[
P−1,P−1,M−1,P−1,M−1, I , I

]
of for-

mulas (13) and (14), and we let L = P−1, P = diag [Ph,Pv],
G1 = P−1GP−1, X = M−1, S = P−1QP−1, G2 =

M−1GM−1, G3 = P−1MP−1, Yi = KiL,Yj = KjL.
We obtain formulas (24) and (25). Theorem 2 is proven.

Theorem 2 gives the control law design under repeti-
tive disturbances, but for batch production processes, distur-
bances cannot be completely repetitive in a batch. In this case,
it is necessary to design a control algorithm to reduce non-
repetitive disturbances. The H∞ control method is widely
used because of its strong anti-interference. Next, we will
give the stability conditions of the system under nonrepetitive
disturbances.
Theorem 3: For system (8) with (10-12), any scalars 0 <

d < d̄ , 0 < h < h̄, and γ > 0 and matrices Q1,Q2 > 0,
when w̄ (t, k) 6= 0 holds, if there exist a scalar ε > 0
and matrices to be solved L, S,N = diag (•h, •v) > 0,
G1,G2,G3 = diag (•h1, •v1) > 0, and matrices Yi,Yj satisfy
the matrix inequalities



5̂11 5̂12 5̂13 514 515 516 517 E0
# −L E0 E0 E0 E0 E0 εD̃Ti
# # −T−2N E0 E0 E0 E0 εD̃Ti
# # # −γ I E0 E0 E0 E0
# # # # −I E0 E0 E0
# # # # # −I E0 E0
# # # # # # −2ε E0
# # # # # # # −ε


< 0

(26)

5̂11 5̃12 5̃13 514 515 516 517 518

# 0̆44 E0 E0 E0 E0 E0 E0
# # 0̆55 E0 E0 E0 E0 E0
# # # −γ I E0 E0 E0 E0
# # # # −I E0 E0 E0
# # # # # −I E0 E0
# # # # # # −2ε E0
# # # # # # # −2ε


< 0

(27)

then system (8) is considered robust optimal control, the the
robust performance index is γ , and the controllers’ gains are
Ki = YiL−1,Kj = YjL−1, (i, j ∈ {1, 2 · · · , r}). Addition-
ally, the optimal performance index’s upper bound satisfies

formula (15). r ∗ (t, k) =
r∑
i=1

hiKix̄t,k is the 2D optimal

VOLUME 8, 2020 42613



H. Yi, Q. Zhang: Optimal Fuzzy Control Method for Nonlinear Time-Delayed Batch Processes

fuzzy time-delayed state feedback controller, where 5̂11 =[
511 E0
E0 −γ I

]
, 511 =

 ψ̄1 E0 L
# −S E0
# # −G2 − N

,
5̂12 =


LĀTi + Y

T
i B̄

T
i

LĀTid
E0
C̄T

, 5̂13 =


LĀTi + Y

T
i B̄

T
i − L

LĀTid
E0
C̄T

,

515 =


LQ

1
2
1
E0
E0
E0

, 516 =


Y Ti Q

1
2
2
E0
E0
E0

, 517 =


LẼTi
E0
E0
E0

,

518 =


LẼTj
E0
E0
E0

, 5̃12 =


LḠij + H̄ij
LĀTid
E0
C̄T

,

5̃13 =


LḠij + H̄ij − L

LĀTid
E0
C̄T

, and 514 =
[
D̄L E0 E0 E0

]T
.

Proof:We introduce

J∞=
∞∑
t=0

∞∑
k=0

[
γ−1zTt,kzt,k − γ w̄

T
t,k w̄t,k

]
(28)

J =
∞∑
t=0

∞∑
k=0

x̄Tt,k
Q1 +

r∑
i=1

r∑
j=1

hihjKT
i Q2Kj

 x̄t,k

.
(29)

Then, for w̄t,k ∈ l2 {[0,∞] , [0,∞]}, we can obtain

J ≤
∞∑
t=0

∞∑
k=0

[
γ−1zTt,kzt,k − γ w̄

T
t,k w̄t,k

]

+ x̄Tt,k

Q1 +

r∑
i=1

r∑
j=1

hihjKT
i Q2Kj

 x̄t,k +1V
(
x̄t,k

)
(30)

γ−1zTt,kzt,k − γ w̄
T
t,k w̄t,k

+ x̄Tt,k

Q1 +

r∑
i=1

r∑
j=1

hihjKT
i Q2Kj

 x̄t,k +1V
(
x̄t,k

)
=

[
φt,k
w̄t,k

]T (
ψ̂1 +

[
3T

1
C̄T

]
P
[
3T

1
C̄T

]T
+H2

[
3T

2
C̄T

]
G
[
3T

2
C̄T

]T)[
φt,k
w̄t,k

]
(31)

where ψ̂1 =

[
ψ̃1 E0
E0 −γ I

]
and ψ̃1 =


↔

ψ1
E0 G

# −Q E0
# # −M − G

,
with ψ1 + γ

−1D̄T D̄ + Q1 + KT
i Q2Kj =

↔

ψ1. Using formu-
las (28) and (29), the proof method is the same as for theorem

1 and theorem 2. We obtain

ψ̂1 +

[
3T

1
C̄T

]
P
[
3T

1
C̄T

]T
+ H2

[
3T

2
C̄T

]
G
[
3T

2
C̄T

]T
< 0

(32)

Then, ||zt,k || < γ ||w̄t,k || is established.

IV. ANALYSIS OF THE OPTIMAL CONTROL ALGORITHM
To obtain the optimal update law r ∗ (t, k) =

r∑
i=1

hiKix̄t,k and

the minimum of the upper bound of the performance index,
we must optimize formula (15).

From the upper bound of inequality (15) based on the initial
condition provided by the system, for N1 ≥ r1 and N2 ≥ r2,
the upper bound of performance satisfying inequalities (11-
12) and (15) is represented as follows:

J ≤
N1∑
t=0

V (t, 0)+
N2∑
k=0

V (0, k)

= r1
(
x̄Tt,0Px̄t,0 + x̄

T
d(t,0)EMQx̄d(t,0) + x̄

T
d(t,0)EMGx̄d(t,0)

+ x̄Td(t,0)FMQx̄d(t,0) + x̄
T
M(t,0)GMGx̄M(t,0)

)
+ r2

(
x̄T0,kPx̄0,k+x̄

T
d(0,k)EMGx̄d(0,k)+x̄

T
d(0,k)EMGx̄d(0,k)

+ x̄Td(0,k)FMQx̄d(0,k)+x̄
T
M(0,k)GMGx̄M(0,k)

)
≤ J∗=(r1+r2) (βI+EMγ1 + EMγ2+FMγ1+GMγ3)

(33)

where x̄t,0 =

[
x̄ht,0
x̄vt,0

]
, x̄0,k =

[
x̄h0,k
x̄v0,k

]
, x̄d(t,0) =[

x̄ht−d(t),0
x̄vt,−h(0)

]
, x̄M(t,0) =

[
1h
t−d(t),0
1v
t,−h(0)

]
, x̄d(0,k) =

[
x̄h
−d(0),k
x̄v0,k−h(k)

]
,

x̄M(0,k) =
[
1h
−d(0),k

1v
0,k−h(k)

]
, EM = diag

(
d̄ Ih, hIv

)
, GM =

diag
[
d̄(d̄+d)(d̄−d+1)

2 Ih,
h̄(h̄+h)(h̄−h+1)

2 Iv
]
, and FM =

diag
[
(d+d̄)(d̄−d+1)

2 Ih,
(h+h̄)(h̄−h+1)

2 Iv
]
.[

−βI 8T

8 −P−1

]
< 0,

[
−γ1I 8T

8 −Q−1

]
< 0,[

−γ2I 8T

8 −G−1

]
< 0, and

[
−γ3I 8T

8 −M−1

]
< 0.

(34)

To realize optimal control and have the smallest upper
bound of the performance index, the following optimization
issues must be resolved:

min (r1 + r2) (β + EMγ1 + EMγ2 + FMmγ1 + GMγ3)

subject to (26), (27), and (34). (35)

Obviously, in order to obtain the optimal controller based
on the above optimization algorithm, the first step is to
address certain parameters and matrices in the inequality.
Here, some parameters need to be given or calculated when
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designing the controller gain. For example, 0 < d < d̄ ,
0 < h < h̄, r1, r2, and the anti-interference value γ > 0
are given in advance, and ε > 0 is obtained by directly
solving inequalities. Some matrices, such as Q1,Q2 > 0,

are also given. Thus, the matrices Q
1
2
1 ,Q

1
2
2 in the inequali-

ties are known and do not affect the solution of the linear
inequality. Of course, the constant value or matrix given here
is adjustable until we find the optimal controller gain. The
steps of the optimization algorithm are as follows:

Step 1: Construct the upper bound of the performance
indexes J∗;
Step 2: According to the given initial conditions, the vari-

ables to be solved in J∗ are transformed into inequalities (34);
Step 3: Minimize J∗, which satisfies constraints (26), (27),

and (34);
Step 4: Adjust the known matrices in the constraint con-

ditions (26), (27) and (34). If they do not have the optimal
values, return to step 3 until the controller gain matrices
Ki = YiL−1,Kj = YjL−1, (i, j ∈ {1, 2 · · · , r}) are obtained.
Then, the algorithm ends.

V. SIMULATION CASE
The simulation case analysis in this chapter is based on a 3-
capacity water tank as an example. The type is TTS20, and it
is shown in Fig. 1.

FIGURE 1. The three water tanks of TTS20.

In general, for a test, only one injection process is used for
observing the controller’s result. This chapter regards each
water injection process as a batch. To show the effect of
control, the chosen model is similar to that in [50], and the
design results in [50] are compared with those of the method
in this paper. As described in [50], the fuzzy rule is given
in Fig. 2. The 2D fuzzy time-delayed system transformed is
shown through formula (1) given in this paper, in which the
system matrices are:

A1 =
[
0.9951 0.0035
0.0025 0.9930

]
, A2 =

[
0.9944 0.0040
0.0029 0.9919

]
A3 =

[
0.9863 0.0098
0.0071 0.9804

]
, A4 =

[
0.9807 0.0137
0.0100 0.9724

]

FIGURE 2. Membership function.

B1 =
[
32.3885
0.0414

]
, B2 =

[
32.3763
0.0478

]
B3 =

[
64.4900
0.2327

]
, B4 =

[
64.3072
0.3276

]
A1d =

[
0.1057 0.0004
0.0002 0.0807

]
, A2d =

[
0.1072 0.0005
0.0003 0.0807

]
A3d =

[
0.0962 0.0011
0.007 0.1096

]
, A4d =

[
0.0858 0.0013
0.0010 0.1029

]
The fuzzy control law is considered in [50]. Clearly, a control
law that is designed depending on repeated disturbances only
analyzes the stability of the system and does not consider its
control performance. Aswe have explained, it is not sufficient
to only consider stability in an actual production project.
Control performance must be considered to achieve the goal
of energy saving and consumption reduction. This is also the
main research goal of this article. To achieve this goal, using
the above optimization algorithm and solving the constraint
condition (35), we can obtain the optimal fuzzy controller
gain under repetitive disturbance as shown in formula (36).

K o
1 =

[
−0.0056 −0.0003 0.00109

]
K o
2 =

[
−0.0056 −0.0003 0.00109

]
K o
3 =

[
−0.0045 −0.0003 0.0070

]
K o
4 =

[
−0.0046 −0.0003 0.0070

]
(36)

Kw
1 =

[
−0.0045 −0.0001 0.0098

]
Kw
2 =

[
−0.0047 −0.0002 0.0089

]
Kw
3 =

[
−0.0033 −0.0001 0.0059

]
Kw
4 =

[
−0.0031 −0.0001 0.0049

]
(37)

K o
i is designed by the optimal control algorithm, and Kw

i is
designed without optimal control as in [50]. Simulation runs
of 50 batches are chosen, and 300-step runs are assumed in
each batch. To evaluate the control effect, the evaluation index

RSSE (root-sum-squared-error) DT (k) =

√
Tp∑
t=1

e2(t, k) is
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FIGURE 3. RSSE comparison with and without optimization algorithms
under repetitive disturbances.

FIGURE 4. Output comparison with and without optimization algorithms
under repetitive disturbances.

adopted. The benefits of the optimization algorithm will be
shown as follows:

A. CASE 1: REPETITIVE DISTURBANCE
The repetitive disturbance between batches is chosen as
ωt,k = 0.05 ∗

[
sin (t) cos (t)

]
. Figs. 3 and 4 show the

comparison results between the non-optimization algorithm
and the optimization algorithm. It is shown in Fig. 3 that
the tracking performance of the initial batch systems is
better than it is without the optimization algorithm. It can
also be seen in Fig. 4 that the output of this algorithm
tracks quickly and can ultimately achieve zero-error track-
ing. In general, the optimal control algorithm presented in
this paper has faster convergence speed and better control
performance. To show the convergence of output errors of
different batches, Fig. 5 shows several simulation graphs of
different batches. As seen from the graphs, under repeated
disturbances, although the convergence effect of tracking
errors of the first few batches is poor, the errors converge to
zero in the 25th batch. This point proves that the system is
asymptotically stable.

FIGURE 5. Tracking error in different batches (e(t, k)).

FIGURE 6. RSSE under nonrepetitive disturbances.

FIGURE 7. Output curve under nonrepetitive disturbances.

B. CASE 2: NONREPETITIVE DISTURBANCE
In this case, the nonrepetitive disturbance is taken to be
ω =

[
0.01 0.01

]
∗1, where1 is a random number in [0, 1].

Despite the effect of the time delay and nonrepetitive distur-
bance, the algorithm proposed in this paper still has better
tracking performance except that the control performance is
decreased to some extent, as shown in Fig. 6. Fig. 7 shows
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FIGURE 8. Tracking error under nonrepetitive disturbances (e(t, k)).

FIGURE 9. Output curve when the step signal is the disturbance signal.

FIGURE 10. Tracking error when the step signal is the disturbance signal.

the same result. Clearly, because it is affected by the above
factors, the output curve fluctuates continuously around a
given point but does not deviate too much. Fig. 8 shows the
tracking error curves of different batches of the system under
nonrepeated disturbances. It can be seen from the figure that
under nonrepeated disturbance, the convergence effect of the
tracking error is obviously poor, especially for the first few
batches. Although it cannot converge to zero, it still fluctuates
around zero.

C. CASE 3: THE STEP SIGNAL IS THE
DISTURBANCE SIGNAL
To show its control performance, we simulate the step signal
as an interference signal. The step signal is taken as 0.05, and
the occurrence time is 100 steps in the first batch. As seen
from Figs. 9 and 10, the tracking effect is poor. However,
since the designed iterative learning control method can resist
the influence of disturbances, the control effect is very good
after several batches, and even zero-error tracking is realized.

VI. CONCLUSION
A strong nonlinear time-delayed batch process is addressed
by using a 2D T-S fuzzy model including unknown internal
uncertainties and external disturbance. A 2D fuzzy optimal
control strategy based on time-delay upper and lower bounds
is proposed. The optimal design algorithm of the optimal
fuzzy control law is also given in terms of LMI constraints.
The simulation result of a 3-capacity water tank shows that
the designed controller in this article is more practical than
that without optimization. At the same time, it also has great
robustness.
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