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ABSTRACT Electronic indoor positioning systems deal with the combination of sensors, actuators, and
computational algorithms for precisely locating subjects, delivering navigation directives, and keeping track
of particular objects. The main factors considered for the construction and evaluation of these systems are
the localization accuracy and the time spent to calculate and deliver this information. The challenge in
developing successful positioning systems is to find a tolerable relationship between those factors. In this
proposal, after a careful analyses of related works, we associated different methodologies and technologies to
construct a hybrid positioning model that uses a mapping algorithm called Linear Weighted Policy Learner,
a navigation model called iterative Pedestrian Dead Reckoning (which uses the Kalman filter to deliver
real-time location), and an obstacle detection algorithm that combines sounds and stereo vision sensorial
capabilities. The adopted choices were based on the published state-of-the-art, and comparisons of the
obtained results showed that our system is accurate and fast enough to be very competitive with the current
stage of the technology.

INDEX TERMS Indoor positioning system, indoor localization system, pedestrian dead reckoning, Kalman
filter, particle filter.

I. INTRODUCTION
The computational models of locating people and objects
in outdoor environments have resulted in numerous applica-
tions such as navigation systems, tracking, etc. [1]. However,
the widely used and precise outdoor Global Positioning Sys-
tem (GPS) is still impaired by internal building structures due
to services that affect its satellite information reception pro-
cess. That was discussed by Nebel that developed a study on
the utilization of GPS, considering diverse conditions, using,
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directly and indirectly, obtained coordinates, intermediated
by a signal repeater to observe its limitations and the real
possibilities of application in indoor positioning systems [2].

Other strategies tried in various studies had as a goal to
overcome the use limitations of GPS in indoor environments
and to make the Indoor Positioning System (IPS) more accu-
rate. The margins of error presented by approaches of the
use of GPS in indoor environments were around 20.00 m,
considered very high value, as indicated by Chu [3]. The
signal transponder interposes the external GPS signals to the
building structure, reducing the error margin to 10.00 m.
However, its use has increased the time it takes to process
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and identify a place [3]. Many research groups still working
to obtain accessible indoor GPS.

Several other groups look for techniques and technologies
that could make IPS more robust and provide accurate infor-
mation in many types of scenarios, especially environments
that affect data obtained from mono sensory systems [4].
The increase in the indoor positioning model’s complexity
is a new problem to be solved concerning the relationship
between the level of accuracy and the acceptable time for
information delivery, which must consider the limitations of
the adopted devices [5].

In simpler systems, linear mathematical formulations
require less processing and thus adopt approximation criteria
requiring the acceptance of error margins, as indicated by
the application of Alpha-Beta (ABF) and Linear Kalman
Filter (LKF) [6], [7]. In non-linear systems, themore complex
calculations adopted deliver better results of the reference
values, however, requiring more time to reach them, as seen
in the applications of particle filters [3], [8].

Hybrid systems have gained more considerable attention
because they combine data fusion techniques and allow their
use in scenarios with different characteristics [9]. However,
many of the hybrid indoor positioning systems face as one
of the main problems the search for the balance between
performance and processing time [10], [11]. Each approach
has the advantages of using it in its separate or combined
application, requiring knowledge of its characteristics and the
most appropriate context for its use [4].

This study presents an indoor positioning solution that
deals with hybrid features, aiming to increase the final pre-
cision of the system, keeping the processing time within a
tolerable scale for human navigation systems. We assume
that the recognition of these human activities in indoor envi-
ronments can provide a range of opportunities in location,
navigation, and tracking services, as is already available in
outdoor environments [12]. Our system maps a set of indoor
human activities, such as moving around, going up and down
the stairs, going through doors, or turning to the right and left
sides. Besides these activities, it identifies objects arranged
along a path, whether they are fixed or temporarily left in
these places.

This paper presents this research topic for discussion,
with the proposal and results in the following organization:
Section 2 discusses the strategies and results of closely related
works, the goal is to increase the understanding of the limits
of the successful approaches. Section 3 shows the conception
and the limitations of the proposed hybrid positioning sys-
tem. Section 4 contains the test protocols and configuration
of the test cases, as well as an evaluation of the obtained
results. Section 5 summarizes the conclusion of this work and
presents future approaches.

II. STATE OF ART
The related works are divided into four parts. The first part
describes various approaches using Wi-Fi sensors. In the sec-
ond part are the works that used inertial sensors. Part 3 brings

work that applies computer vision to targeting, navigating,
and tracking. Finally, part four describes work that used com-
binations of hardware and software to increase the accuracy
of indoor positioning systems and shorten processing time.

A. WI-FI-BASED LOCATION
Wi-Fi sensors were the first devices used in the Indoor
Positioning System approaches to replace GPS and provide
reference values for target location [2]. The choice of the
Wi-Fi sensor was motivated by the high availability of this
type of sensor in the most diverse industrial, commercial, and
residential environments [2].

Initial approaches used raw Signal Strength Indica-
tors (RSSI) data to record addresses of interest and stored
them in map schemes to allow the displacement of the tar-
get from one place to another as described by Liu, Waqar,
and Bolat [10], [12], [13]. The results indicate that the sce-
nario influenced the values of Wi-Fi caused an average error
of 3.57 m when used alone and 1.74 m with the use of the
fingerprinting scheme. Variations of the RSSI signal collected
from the same address cause oscillation of the positioning
error margins to vary between 1.00 m and 3.00 m, even when
data is driven by redundant fusion schemes, which require
a larger volume of data to indicate a location, as shown by
Waqar [12].

Liu showed that increasing the amount of Wi-Fi nodes
also allows a reduction of the margins of error, however, it is
necessary to investigate this quantity so that there is no signal
interposition and increase the volume of processed data [10].

Li focused on the application of signal-to-noise ratio (SNR)
and noise reduction filters on the raw RSSI signals to discard
the very divergent values of the mean of the set and at the
same time, reduce the set to a sample space capable of identi-
fying each internal address in a map [14]. The error margins
obtained in the experiments were 2.40 m for the RSSI, 2.10 m
for the SNR, 3.30 m for the noise level, and 1.40 m for the
RSSI and SNR combination. These values show that the use
of the SNR reaches hit levels very close to those of the RSSI
and that the combination of the two decreases the oscillations
of the obtained values. The noise level presented the worst
result in the tests performed. Fingerprinting mapping further
showed the need to be rebuilt when there is some change in
the scenario or when the arrays of the sensors and records are
changed.

Wi-Fi-based location systems tend to vary significantly in
their information, which justifies the search for other sensor
models for IPS projects. Inertial sensors have been tried
as an alternative to locating targets in indoor environments
[4]. The inertial sensor, also called inertial measurement
unit (IMU), represents the combination of several sensors
such as the magnetometer, gyroscope, accelerometer, and
barometer [13]. These sensors have started to be offered in
a variety of devices, such as smartphones, video games, and
TV controls due to their precision levels and the low cost of
processing and power consumption [15].
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B. INERTIAL BASED LOCATION
Kealy and his co-authors addressed the information availabil-
ity in indoor positioning systems concerning demand (when
required) and continuity (always available) [16]. The author
opted for the use of the inertial sensors because no physi-
cal intervention is necessary for the environment, being its
implementation more like the projects that use the GPS for
location outdoors. The results showed that the best result had
an average error of around 0.20 m. This value is achieved
through three factors: (1) detection capability of the sensors
used, (2) physical arrangement of sensors, and (3) robustness
of model integration. The viability of a positioning system
is directly affected by the detection capability of the sensors
used. System performance is directly affected by the adopted
physical arrangement of the sensors. Performance depends
on the robustness of the integration of the algorithms and
their data.

Yan also used the inertial sensors as a reference for his
indoor positioning system [5]. The author chose as strat-
egy the use of twelve associated inertial sensors, applying a
redundant data fusion to indicate the location. The approach
used in the project intended to keep the data volume high,
without increasing the time needed to process and present
the results. The tested system used a fixed route for the
planned navigation, hitting about 83.18% of the predefined
markings with an average margin of error of 0.50 m. The use
of more associated inertial sensors allowed the positioning
system to present greater precision and stability, even in noisy
environments.

Inertial systems perceive more subtle changes of position
than Wi-Fi networks, but still show stable oscillations in
places where there are sources that interfere with reading
the Earth’s magnetic field, even when using many combined
sensors, as in the work of Yan [5]. The visual positioning
system is an alternative to providing a location where inertial
and Wi-Fi networks are affected [17]. Visual positioning
systems use images captured by one camera (monocular
model) or multiple cameras (stereo image), which provide
a large amount of data, and it is necessary to establish cri-
teria for the removal of spurious data to achieve a balance
between the accuracy of level and time spent on visual
recognition [18].

C. COMPUTER VISION-BASED LOCALIZATION
Pradeep built an indoor navigation system based on the stereo
vision to guide the visually impaired in pre-mapped places,
acting as a visual odometry system [17]. The prototype built
for use on the user’s head has captured a higher volume of
information that allowed avoiding collisions with tall objects
not previously perceived by devices used at lower altitudes.
Visual localization system activates micromotors arranged on
the user’s shoulders and waist to indicate their movement
orientation. The navigation model adopted in the tests was
the Simultaneous Localization and Mapping (SLAM), which
assembled a 3D data map, associating the map records in

a neighborhood scheme. The visual positioning system was
able to identify objects at a distance between 0.30 m and
2.00 m, captured in images received at a maximum speed
of 14 frames per second.

Xue presents a study on the construction of a visual indoor
location, with the focus on reducing mapping time, so that
its use is not an impediment factor [19]. The author pro-
posed the construction of maps extracting images directly
from the video streaming, reducing the samples to a set
of 100 images per record by the algorithm RANdom SAmple
Consensus (RANSAC). The algorithm Speeded-Up Robust
Features (SURF) was used to quickly construct the markers
in a similar way to the Haar model; however, disregarding
the angulation and lighting variations. The accuracy level
obtained in the tests was 70%, resulting in a maximum error
distance of 2.00 m to the location reported by the system.

Yuke and his co-authors have developed a mapping and
visual navigation using an information reinforcement process
based on a Weighted Policy Learner (WPL) [20]. The WPL
reduces the complexity of the fingerprinting model in con-
structing the relationships between the mapped records of
the scenario and the possible recognition during navigation
through an auto-critical system, which collects a sample of
the received data and applies a training [21]. The place,
which had 20 rooms, was mapped in a simulator and the data
submitted to the TensorFlow environment for training [22].
The data were provided to a C-Net network for the identifi-
cation of features and learning [22]. The training lasted about
1.3 hours and had a margin of error ranged from 0.4 meters to
0.7 meters. These location variations are caused by the small
amount of data used in training but have already generated a
high wait time when considering real-time systems.

Systems based on visual recognition also have limitations
such as light changes, viewing angles, and need to deal
with a large amount of data and have high computational
complexity [18]. Approaches that relate the use of two cam-
eras improve the perception of the environment by bringing
distance information through depth maps and identifying
the scenery from a 3D perspective [23]. Many authors have
associated different sensors and data in hybrid arrays to make
the system more robust, making one subsystem reinforce the
other, or at worst, maintain at least some reliable information
about the location of the user or markers recorded in the
scenario mapping [3].

D. HYBRID BASED LOCALIZATION
Bolat proposed a hybrid navigation solution for pedestrians in
indoor locations, associating Wi-Fi signals to magnetic fields
through a particle filter [13]. The objective was to create a
collaborative scheme in which one technology compensated
for the deficiency of the other [13]. A particle filter processed
the data fusion and delivered the data to a fingerprinting
algorithm, which relates the records to a map. The mapped
registers were consumed by the Pedestrian Dead Reckon-
ing (PDR) algorithm to aid in navigation on a reference route,
with a distance of 65.50 m. The tests consisted of collecting
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the route data during a ten-fold cycle to verify the behavior
of the localization algorithms. The results obtained showed
an average error rate in the first two laps was 4.80 m and a
reduction to 0.45 m after the 10th lap.

Another author who used a hybrid arrangement of sen-
sors and algorithms to form an indoor navigation system
was Leppäkoski [11]. RSSI signals indicated a larger area,
and the inertial information distributed in each region of the
Wi-Fi reinforced the environmental perception, forming a
more robust position identifier. The data received from the
inertial and Wi-Fi sensors have different characteristics, and
therefore it was necessary to use the complementary and
Extended Kalman filters (CEKF) and a particle filter, which
use the principle of propagation of state like CEKF. These
filters are implementations of nonlinear Bayesian algorithms
capable of merging redundant and complementary data. The
margins of error obtained in the test results were 12.00 m in
the Wi-Fi navigation, 5.00 m using PDR only, 4.00 m in the
CEKF, and 3.00 m using the particle filter.

Chen associated the visual and inertial perceptions in his
hybrid navigation system [24]. The Kalman Filter (KF) asso-
ciates the visual depth map data generated by the red, green,
blue, and distance (RGBD) camera with the inertial informa-
tion to provide a 3D perspective of the recorded position. The
KF algorithm also reduced the accumulated errors presented
by the PDR algorithm during navigation. A total of 937 ref-
erence points was defined along 61.00 m, and a small robot
developed for the tests, walked the designated path, observing
the coordinates reached along the way. The error margins
averaged 0.40 m as compared to the standard values recorded
for each place.

Hanchuan proposed a hybrid indoor location solution,
associating RSSI signals, provided byWi-Fi base stations and
RFID devices distributed throughout the environment, with
visual information captured by the smartphone camera [9].
Hanchuan fixed the visual ground labels to reinforce an
address, thus increasing the confidence in the data generated
by the system. Such operation was done to overcome the
oscillations of the Wi-Fi signals The positioning scheme
associated two Wi-Fi base stations to indicate the distance of
the mobile device to each of the bases and visual perception,
within a range of 0.50 m and 2.00 m. The use ofWi-Fi signals
only showed a mean margin of error of 3.00 m, while the
hybrid system decreased and stabilized the error by 1.00 m.

Unlike the works described and discussed, which usually
use the standard model to identify the user when stopped
or moving, in addition to recording a lot of scenario data,
this work presents a solution classified as a hybrid internal
positioning.

The proposed system combines data captured by distinct
sensors and mathematical approaches to allow the localiza-
tion of visually impaired people indoors, making the system
hybrid. Another aspect that helps us to classify the system as
a hybrid is the use of autonomous methods such as proximity,
PDR, and Kalman algorithms, as well as the use of training-
dependent methods such as particle filter and visual analysis.

The sensors used to obtain environmental information are
of the absolute and relative type to provide the system with
a better understanding of the various characteristics of the
registered location. In absolute positioning systems, there is
the use of external devices and resources arranged in the
scenario, such asWi-Fi-based systems and visual information
[12], [18]. A relative positioning system does not require
the use of an external source, taking inertial systems as an
example [4]. Another reason to choose the Wi-Fi, inertial,
and camera sensors is to use the sensors adopted in most
IPS approaches and take advantage of all available literature.
The next sections present the details of each step and its
subsystems.

III. DEVELOPMENT OF THE HYBRID IPS PROPOSAL
The proposed model has hybrid features in its two main
modules, which describe the tasks required to construct the
mapping and navigation process. Figure 1 shows a general
architecture model of the indoor positioning system.

The proposed indoor system architecture utilizes data
reduction by pre-fusion sampling to improve information
quality, reduce data processing time, and maintain the right
level of localization. Each subsystem works independently,
having its data manipulation method capable of constructing
a site representation according to the indication of the gain
of its use in a decision-making process. Each step is detailed
below, indicating its methods and algorithms.

A. PREPROCESSING
Data preprocessing represents the step where the algorith-
mic interventions on raw data are applied, improving their
representations to reach the expected standards for marker
definition. The objectives of manipulating the data before
submitting to redundant and complementary fusion algo-
rithms are to enhance data quality and reduce the time taken
to identify the pattern of data received.

In general, this step indicates performing two main tasks:
sensor type identification and feature extraction algorithms,
as detailed below. Sensor identification allows you to direct
data to the most appropriate algorithms. Feature extraction
algorithms perform pattern search functions and use the data
to fuse verified patterns.

1) SENSOR IDENTIFICATION
The sensors are physically connected to a central processing
unit, where they send their data to be processed and used in
the location and indoor navigation operations. The identifica-
tion of sensor types occurs by inserting an IDwith values 1, 2,
and 3. These values identify the signals and data of theWi-Fi,
inertial, and visual locations, respectively.

The data can be requested from two sources: the mapping
and the navigation, using a second ID. When the mapping
requires the data, the ID triggers the sample reduction mod-
ule. When browsing requires the data, the ID triggers the
linear data fusion module.
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FIGURE 1. Indoor mapping and navigation system architecture.

FIGURE 2. Sensor identification flowchart and data delivery for data
fusions.

After receiving the data and inserting the sensor identifi-
cations, a decision algorithm observes the values of the IDs
and directs the data to its proper processing, as indicated
in Figure 2.

2) FEATURE EXTRACTION
Feature extraction has two functions: reducing the sample
space used in mapping preparation, and multisensory data
fusion, which applies linear processes to provide information
in the navigation process.

Feature extraction uses a set of data obtained from the
sensor type identification and applies a weight-based sort
order to define a sample, providing a small subset of relevant
features.

3) SAMPLE REDUCTION
The strategy used to reduce processing time while main-
taining the robustness level of the marker was to select
representative samples of the raw data of each sensor type.
The algorithm for this data decrease in a robust sample was
the RANSAC probabilistic model.

RANSAC randomly selects a subset of data samples and
uses it to estimate model parameters. It then determines the
samples that are within the error tolerance of the generated
model [18]. We consider these samples as agreed with the
generated model and called a consensus set of the chosen data
samples [25].

Here in this paper, the data samples in the consensus
behaved as inliers and the rest as outliers by RANSAC. If the
consensus sample count is high enough, it will train the final
consensus model to use them as the valid data set for the
system. RANSAC repeats this process over several iterations
and returns the model that has the smallest average error
among the generated models [25].

Because it is a random algorithm, RANSAC does not
guarantee to find the ideal parametric model concerning the
inliers subset data. However, the probability of reaching the
ideal solution is higher than using the raw data.

The RANSAC model used in this work allows the robust
adaptation of a y = f (x;α) model to an S data set contain-
ing inliers and outliers. In this model, the restriction on the
amount of data used andmaintained in the collection of inliers
is given by a limit value, randomly established by RANSAC.
This process is repeated until it reaches the highest value,
considered here as the best sample set of the original data
set [19].

The planning of the RANSAC parameters considers some
criteria before its use, such as:

1) The probability of choosing an inlier is obtained by the
relation Prob = # of inliers

# of samples ;
2) The construction of the sample set is a probabilistic

process, obtained by Probn, where n is the available
amount of sample data;

3) The probability of incorrect construction of a model
during k iterations is (1−Probn)k ;

4) The success rate of RANSAC p is obtained by the
ratio given by formula (1−Probn)k = 1−p, where
k = log (1−p)

log (1−Probn) .
Figure 3 shows the sample reduction process, starting with

data collection and ordering until RANSAC is applied.
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FIGURE 3. Flowchart of the process of creating the data subsets generated by RANSAC and the ordered final sampling.

FIGURE 4. Flowchart of the algorithm used in data selection by RANSAC.

To make it clear how RANSAC was created, the algorithm
flow is described below in Figure 4.

4) MULTISENSOR DATA FUSION
The multisensory data fusion represents the application of a
Particle filter on the data and the fast delivery of the processed
values to the navigation subsystem. The particle filter links
the data received from the sensors to the data obtained from
the iterative Pedestrian Dead Reckoning (i-PDR) associated
with the linear Kalman filter.

The particle filter tracks the variables of interest, classi-
fying each observed value according to the weight given by
the importance of the particle. The particle filter selects and
organizes in an iterative process all the data in a new set,

FIGURE 5. Particle field operating flowchart.

using as a criterion the weight, which indicates the highest
probability of identifying a particular location, thus avoiding
the low representativeness of the data [8].

The algorithm has recursive functions so that the most
representative data are submitted in the prediction and update
stage of the system data. After each iteration, all particle is
modified according to the existing model (prediction stage).
The inclusion of error margins allows the system to adjust
to the noise received by the variables of interest, re-evaluating
the data based on the last reading, and updating when neces-
sary (update step).

The proposed particle filter has four steps: propagation,
measurement update, position and orientation estimation, and
resampling, as shown in Figure 5.

The propagation step represents the position update for
each particle. Both the length of the pitch lt and the direc-
tion orientation θt are passed by the PF component and
assumed as data modified by Gaussian random noise. Hence
the new location and orientation direction of the particle ith at
time t are

θt = ϕt + ε (1)

x it = x it−1 + (lt + δ) cos (θt) (2)

yit = yit−1 + (lt + δ) sin (θt) (3)

where δ is the Gaussian noise for the length of the pass, and
ε is the direction of the direction.
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The measurement update step is the phase responsible
for the correction of the weights of the propagated particles.
First, the particles are collected during time t . Particles that
move away from the most representative group are neglected.
The other particles indicate the most likely correct location.
The particle weights are updated by Equation (4):

wit =
wit−1∑
i∈Pt w

i
t−1

(4)

The center of mass of the particles is calculated and com-
pared with the previously estimated positions, thus indicating
an estimate of position and orientation.

Using this random inliers data limit value, a decision pro-
cess checks whether the particle quantity has reached the
maximum amount to conclude the process or continue run-
ning the process when the quantity is below the allowed limit.

The resampling step begins the process by eliminating
particles weighing zero. All surviving particles generate a
new filtration process under Gaussian distributions with their
weights. The weighted center of all particles provides an
estimate of the user’s current position.

B. MAPPING
The mapping represents the construction of the markers and
the application of neighborhood relation schemes between
markers, to facilitate the location of a specific position and
the building of routes.

Marker term is the terminology given for the representa-
tions of the physical (sensors) and logical (mathematically
defined) registers inserted in the map. The presence of noise
reduces the accuracy of the system and may make it unfea-
sible in certain situations [1]. These representations must
possess characteristics that allow their perception under the
highest possible conditions and the circumstances [26].

The construction of the markers uses the data provided
by RANSAC and apply filters and fusion algorithms that
combine the data according to a standard. Fusion algorithms
initially treat data according to their source (Wi-Fi, iner-
tial, and visual), creating their markers. The complementary
fusion uses the processed data from the redundant fusions and
provides a hybrid marker.

Once the Wi-Fi-based marker construction schemes, iner-
tial sensors, visual information, and the combination of them
are defined, here called the hybrid marker, the next step is to
create the map. We construct the map using proximity rela-
tionships betweenmarkers through neighborhood algorithms.
We detail the whole scheme for defining markers and the map
below.

1) CONSTRUCTION OF THE MARKER
BASED ON WI-FI SENSOR
Locations mapped by theWi-Fi-based model use the received
signal strength indicator (RSSI) captured by the sensor avail-
able on the wearable device.

The RSSI values suffer substantial impacts, which can
cause refraction, reflection, diffusion, and dispersion of the

radio waves, which may make it unfeasible for the localiza-
tion task.

The construction of Wi-Fi markers applied a filter-
ing noise called SNR (Signal-to-Noise Ratio), which
allows separating the foreground signals (desired informa-
tion) and background (undesired signals) [14]. The SNR
formula is:

SNR = signal− noise (5)

The location by RSSI and SNR is given by the trace
of the radius between the access point (AP) and the mea-
surement place. This measurement uses the received Wi-Fi
value to indicate in the digital map the cell correspond-
ing to the real environment, considering the size of the
cell in the digital map, the cell size in the actual place,
the signal strength emitted by the AP, path loss exponent
n, reference distance, and shading. The prediction model of
RSSI is:

PR = PT − PLo − 10n log
(
d
d0

)
−

Nw∑
j=1

kwjw2(ϕ) (6)

where PR is the power received (dBm), PT is the transmitted
power (dBm), PLo is the propagation loss at a reference
distance from the AP (dB). The variable d is the propagation
distance (meters), n is the loss exponent, kwj is the number of
walls of type j, w2 is the empirical loss of propagation due to
walls of type j (dB), and Nw is the number of walls between
the transmitter and the receiver.

The power received information (PR) was used as an indi-
cation of position, but the signal strengths showed jumps that
made identification challenging. The use of the Kalman filter
softened the signals and decreased the distances between the
signals captured in the same position.

The formulation that indicates the distance and location of
the origin of Wi-Fi signals is obtained by:

Zt =
N∑
i=1

wit (xi, yi) (7)

where wit is the weight of the router i at time t , and (xi, yi)
refers to the location of the router itself.

2) CONSTRUCTION OF THE MARKER
BASED ON INERTIAL SENSOR
The creation of an inertial marker uses data obtained from the
three axes (x, y, z) of the gyro, magnetometer and barometer
sensors, which indicate the direction based on the Earth’s
magnetic axis, the angular position in relation to the ground
and altitude, based on the variation of the atmospheric pres-
sure [4], [16]. The gyroscope, magnetometer, and barome-
ter sensors, when combined with the accelerometer sensor,
form an arrangement known as the Inertial Measurement
Unit (IMU) [5].

The combination of the axes occurs by the application
of a fusion combination using the Roll-Pitch-Yaw (RPY)
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FIGURE 6. RPY system.

reference system as a model [4]. The RPY system considers
that the x-axis (Roll axis) should point to the forward direc-
tion of the user’s movement, the y-axis (Pitch axis) must be
orthogonal ax pointing to the right, while the z-axis (Yaw)
points downwards, giving a vertical orientation, as repre-
sented by Figure 6 [11].

The observation of the inertial data in some scenarios,
however, can have strong oscillations caused by numerous
factors that interfere in their values, and which reflect in
erratic behavior, increasing inertial system error [4].

A particle filter implementation called the magnetic field
compensates for perceived variations in magnetometer read-
ings to define a standard [8]. Magnetic fields are microre-
gions that increase the area of perception of the inertial
sensors, reducing the disparities of the identification of
an address but bring an increase in processing time [13].
To limit the captured inertial values, already considering
the imperfections and influences of the place in the data,
a margin of error between the collected data of 0.01 m was
established.

In the particle propagation stage, a magnetic field is
defined by aligning the magnetic data, m, which are con-
fronted with a reference position rref and a reference orienta-
tion ψref ,t , which is expressed as

ψref ,t = tan−1
(
rref ,y,t − rref ,y,t−1
rref ,x,t − rref ,x,t−1

)
(8)

where [rref ,x,t , rref ,y,t ]T = rref ,t , and t is the index of time.

3) CONSTRUCTION OF THE MARKER BASED ON
VISUAL INFORMATION
Visual markers combine fiducial and natural information
to bring greater robustness to the reading and recognition
process and to standardize visual information. The fiducial
information represents the mapped object in its complete
form, while the natural data represent textures and other
elements [26].

The visual marker composition scheme applied the follow-
ing elements: black outer edges to limit the area of the figure,
an edge code to indicate the reading orientation, and a center
object. Figure 7 shows its visual appearance.

The visual recognition algorithm applies a learning process
to construct a marker, covering the maximum of visual vari-
ations to facilitate the decision on when the images represent

FIGURE 7. Visual marker model.

the same information or discarding those that do not represent
any marker [27].

The definition of the visual marker occurs in an unsuper-
vised way in a decision tree of the Haar-like Boosting type,
where the classifier receives the objects and, from different
parameters, allocates them in different classes to construct its
discriminant function [28]. During the unsupervised learning
process, the parameters of the Boosting tree are modified to
adjust the discriminant function better, making the activity
time-consuming and high computational cost. Although the
AdaBoost model has a slow training, it presents good robust-
ness and speed in the recognition process [29].

The construction of a Haar-Like classifier requires a set of
images called positive, containing the desired object, and a set
of negative images containing other visual information [30].

The construction of the classifier follows the scheme
shown in Figure 8.

FIGURE 8. Construction of visual classifiers.

The Annotation, CreateSamples, and Traincascade func-
tions, belonging to OpenCV, are used in the construction of
the visual classifier, defining the standardization of bright-
ness, illumination, and size of images for training and gener-
ation of the most stable Haar-Like classifiers [29].

The annotation algorithm is an image editor that selects and
isolates the desired object from the set of positive images,
creating a file in TXT format with the annotations of the
cut object’s coordinates [30]. Figure 10 shows the tool’s
parameters, indicating the options ‘c’ to accepted, ‘d’ to
delete the latest selection, ‘n’ to proceed with the next image
of the dataset, and esc to stop. Figure 11 shows an excerpt
from the TXT file built by the Annotation tool containing
9 manipulated figures, indicating that only one object was
selected from each image and its respective coordinates.

The CreateSamples algorithm standardizes the visual
elements to be trained in a vector structure, removing the
irrelevant information that causes delay and decrease of pre-
cision [30]. The parameters of the CreateSamples algorithm
are detailed in Table 1.
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FIGURE 9. Selection of visual information by the annotation tool.

FIGURE 10. Registration of coordinates of objects selected by the
annotation tool.

FIGURE 11. Diagram of hybrid marker definition.

Traincascade is a standalone algorithm that searches and
allocates data in the AdaBoost tree, considering that each
node is a subtree [26].

Adaptive Boosting (AdaBoost) is a machine learning algo-
rithm used to increase the performance of other learning algo-
rithms, such as decision trees [25, 26]. The algorithm gives an
adaptive stimulus in the sense that subsequent classifications

TABLE 1. OpenCV CreateSamples parameters.

made in a learning process fit instances negatively classified
by previous classifications, making them less susceptible
to loss of generalizability after many overfitting patterns
have been learned when compared to most machine learning
algorithms.

We used this feature of the AdaBoost algorithm on the
decision tree based model, accessing the data learned in each
classifier, reducing the learning time [25]. Thus, AdaBoost
generates a weak classifier for each feature and combines
these various weak classifiers, with a performance of about
50% + 1, to provide a robust sequential classifier, hence the
name cascade [25], [26].

The parameters of the AdaBoost Traincascade algorithm
are detailed in Table 2.

For the definition of the alarming rate, it was considered
that in 50 negative samples (images without the presence
of the object being recognized), the system should incor-
rectly detect about 10 samples, setting the false alarm in 0.2,
calculated by the ratio 10/50. This value (0.2) allows the
classifier to present a good generalization about the object
learned, avoiding problems of overfitting and overtraining,
which indicates a specialization in training [26]. Each image
receives an equal weight at the beginning, and with the
evolution of the processes, the weights are increased to the
incorrect images. The process runs until the required accuracy
and error rate are met, or the required number of resources is
encountered.

For each resource, the training algorithm finds the best
limit that will classify the markers as positive and negative.
Obviously, there will be classification errors, and therefore,
in the learning process, features that contain a minimal error
rate are selected and classify the images of the markers
more accurately. The ratio between the number of incor-
rectly reported alarms and the total number of stages defined
in the tree construct provides the maximum value of false
alarms [29].
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TABLE 2. OpenCV Traincascade parameters.

The average time spent by the Traincascade algorithm to
build the classifier was 0.9 minutes.

Each visual marker receives a location identification, man-
ually indicated by the user responsible for building the mark-
ers and the map.

4) MARKER CONSTRUCTION BASED ON
HYBRID INFORMATION
Hybrid markers are solutions that combine the resulting data
from the markers created for each sensor with the purpose
of one model compensating for the limitations of others,
as indicated by Hanchuan [9].

The algorithm used to build the hybrid marker is the Linear
Kalman Filter, which is used to define the processed data
and a set that allows classification as prediction and update
functions.

The steps for constructing the hybrid marker are shown in
the flowchart of Figure 11.

The selection of the markers represents the application of
a Euclidean distance calculation (straight line) between the
data collected by the sensors and the markers on the map.

The linear Kalman filter was constructed to meet an inter-
mediate profile between the Kalman filter, developed for
linear problems, and the Extended Kalman filter, used in non-
linear problems [6], [31].

The linear Kalman filter assumes that the probability of the
next state and the possibilities of measurement can be found
in the propagations of the functions f () and h(), where f () is a
nonlinear function of the process and h() a non-linear function

of the measuring system. In this case, the functions f () and h()
can be used to propagate the state vector Xk+1 and the output
vector YK+1.

A nonlinear f () function has a Gaussian also nonlinear,
to avoid the distortion present in the linearization over the
next state. The same principle applies to the h() measurement
function. By projecting Gaussian through this linear approx-
imation, the later belief becomes linear.

Because it is an approximation, uk and wk represent the
control and the process noise, respectively, while uk+1 is
associated with the measurement noise.

The LKF algorithm uses a method called Taylor Expansion
(first-order) [32]. The Taylor Expansion constructs a linear
approximation of f (), from its value and slope. Equation (9)
gives this slope:

f
′

(xk , uk+1)− ∂f
(
xk , uk+1
∂xk

)
(9)

The linearization of f () and h() about the state and the
process noise are called Jacobian matrices and can be seen
in Equations 10, 11 and 12:

F − Df (x)−


∂f1
∂x1

. . .
∂f1
∂xn

...
...

...
∂fn
∂x1

. . .
∂fn
∂xn

 (10)

H − Dh (x)−


∂h1
∂x1

. . .
∂h1
∂xn

...
...

...
∂hn
∂x1

. . .
∂hn
∂xn

 (11)

W − Df (w)−


∂f1
∂w1

. . .
∂f1
∂wn

...
...

...
∂fn
∂w1

. . .
∂fn
∂wn

 (12)

In the EKF algorithm, the Jacobian matrices F and H are
not constants, but they were evaluated about a specific value
of the state vector, x−x0, the corresponding matrices become
constant. F is the Jacobian matrix of the user’s movement, H
is the Jacobian matrix measurement, and W is the Jacobian
matrix of the user’s movement noise. Equations 13 and 14
define the prediction step, and the correction and adjustment
step of the data are defined by Equations 15, 16, and 17.
Prediction

x̂− − f (x̂+t−1,wt−1) (13)

APt−1AT +WQ (14)

Correction

Kt − P−t H
T [HP−t H

+
+ Rt ]−1 (15)

X̂−t − X̂
−
t + Xt [Yt − H

(
X̂−t
)
] (16)

P+t − P
−
t − KtHP

−
t (17)
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where x indicates the user pose, P is the user pose covariance.
Q means the Noise of the permanent movement, K is the
LKF gain, and R Noise of continuous measurement. In the
correction step, the values read by the sensors are indicated
in the formulas by the variable Y , which are confronted with
the user’s pose by non-linear measurement functions h().
As the process is iterative, the time factor is represented in
two moments as T - previous status, T + 1 - current state, as
well as the variables that are manipulated with the values of
Prior information, indicated by the symbol − and Posteriori,
represented by the symbol +.

5) SCENARIO MAP
The environment received the mapping in two grids with
different dimensions to allow a better location. The first grid,
defined by Wi-Fi, has a distance of 1.00 m from one cell to
another, and the second grid divides each Wi-Fi cell into nine
addresses, where each sub-cell is 0.33 m. The initial size def-
inition of 1.00 m observed the RSSI/SNR ratio, as described
by Li and his co-authors [14].

In the mapping process, each marker was considered a
node in a bidirectionally-connected graph, registered in an
adjacency matrix due to its low degree of complexity [31].

The most commonly used models for constructing maps
are fingerprinting and Weighted Policy Learner (WPL). The
advantage of WPL for fingerprinting is that it does not need
to reconstruct the map with the addition or removal of any
record [21], [33]. The disadvantage of using WPL for this
project is its high cost of processing, especially when the
processing center is a mobile device with physical limitations
of resources. To overcome the disadvantages of fingerprint-
ing and WPL, we propose the development of the Linear
Weighted Policy Learner (LWPL) algorithm. LWPL uses the
WPL algorithm as the basis for map construction but inserting
the concept of process linearization. LWPL is an algorithm
that takes advantage of the Weighted Policy Learner (WPL)
learning process, linearizing the mathematical formula-
tions so that the construction of the data representation is
faster [21].

The general idea of LWPL development is to initiate the
pattern learning process faster than standard WPL using a
BubbleSort sorting algorithm to sort the data according to the
weight of each observed value.

The LWPL calculates the position of the target (wearable
device) by the weight of the distance, from the target itself to
allN markers identified in the range. The calculated distances
are arranged in a vector

{
d1t ,d

2
t , . . . ,d

N
t
}
in time t . Then the

weight of each distance is calculated as:

wit =

1
d it∑N
i=1

1
d it

(18)

The LWPL is an autonomous and sequential learning algo-
rithm, which can update the observed data, adjusting two LO
and α parameters, as described in Equation 19.

S it = PLO + 10α log (d it ) (19)

where S it is the marker generated by the combination of data
at time t, PLO is the reference coefficient of path loss, α is the
loss of trajectory and d it is the distance between the marker i
and the target at time t . Based on Equation (20), d it can be
expressed as:

d it = 10
Sit
10α (20)

C. POSITION
The construction of markers and their neighborhood relation-
ships on a map allow the location system to have reference
points about how the user will be located and guided in
the scenario. However, this information needs to be handled
by algorithms that identify the user’s position when he is
not exactly at one point recorded on the map. In this work,
we treat the location of the user while traveling in two ways:
static and dynamic. In static localization, it is considered that
the user is stationary and, in dynamic localization, the user is
shifting through the scenario, requiring higher speed in data
manipulation, because the reference points change rapidly.
We detail each localization strategy below.

Static positioning is used to indicate the location of the
user when the algorithm is stopped. It is also used when the
construction of a route is required for navigation (dynamic
positioning). Using the initial information with these char-
acteristics is a necessary condition so that the initial data is
quite robust, avoiding the contamination of the positioning
result.

Dynamic positioning is used in navigation, indicating the
position of the user within a tolerable relationship between
the level of accuracy and delivery time of the information.

1) STATIC INDOOR POSITIONING
TheWi-Fi identifiers allow calculating the RSSI of a specific
position observed in a straight line from the AP, maintaining
the values within the predetermined limits, using the SNR to
select the RSSI that had the least impact of noise.

Inertial localization uses an extensive collection of inertial
information, obtained by an arrangement of three sensors
arranged side by side on the wearable mobile device. This
strategy was inspired by the formulation indicated by Civera,
who adopted a grouping of six sensors to improve the quality
of the position indicator quickly [25].

The visual localization system requires that some steps be
performed, such as acquisition, preprocessing, segmentation,
resource extraction, and recognition. Then, the interpretation
of the visual information is associated with a coordinate.
The identification of the information contained in one image
occurs through the comparison of their features with a previ-
ously trained model. The complete visual recognition scheme
is given in Figure 12.

The acquisition stage represents the submission of images
to initial histogram treatments and radiometric calibration
[24]. These operations normalize the contrasts and bright-
nesses, making the model adapted to the changing lighting
and angle conditions of the venue [28].
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FIGURE 12. Visual marker recognition scheme.

Additionally, the images are scaled (20% increase or
decrease) to improve the recognition of the objects due to
the variation of capture distance from the camera to the
marker [30].

In the image conversion phase, red, green, blue (RGB)
images are converted to HSV color format, which is more
robust in separating visual information [34]. The reduction in
processing costs was achieved by converting hue, saturation,
and value (HSV) format color images to grayscale images and
then to full image [35]. An integral image uses a sum of the
four corner pixels of an observed area to indicate its value,
allowing the calculation always to be linear, regardless of the
size of the observed area [36].

The preprocessing step represents the application of
morphological transformation and smoothing algorithms to
reduce the amount of noise and prepare the data for visual
recognition [28]. Noises are caused by various reasons such
as the resolution, lighting, and distance between the object
to the camera. The morphological transformation combines
the erosion and dilation algorithms, which follow a minimum
neighborhood requirement [17].

In the segmentation stage, the combination of Canny and
Sobel filters is applied, reinforcing the characteristics of
frames and visual objects about the other elements of the
images. The image resulting from the segmentation phase is
delivered in the recognition extraction step [28].

In the segmentation stage, the combination of Canny and
Sobel filters is applied, reinforcing the characteristics of
frames and visual objects about the other elements of the
images. The image resulting from the segmentation phase is
delivered in the recognition extraction step [28].

The Sobel filter verifies the internal continuities of objects
by the gradient intensity of all points in the image [37]. Math-
ematically, the Sobel filter operator represents the approxi-
mation calculation of the horizontal and vertical derivatives
of the original image for two reference matrices with a 3× 3
dimension [38].

Canny filter verifies the continuities of external edges
of objects [37]. The Canny filter searches for the min-
imum and maximum value within the sample space to
find the smallest possible distance that connects two points
through the approximation obtained from the first Gaussian
derivative.

Kalman’s linear filter algorithm combines inertial and
visual Wi-Fi marker data into a complementary fusion to pro-
vide hybrid localization using the same complexity adopted
during mapping. The primary purpose of the hybrid locator is
to correct the localization errors indicated by only one of its
subsystems.

The hybrid location scheme combines a macro location
provided by theWi-Fi sensor that informs the coverage region
to a micro-location provided by inertial sensors and cameras.
Figure 13 shows the destination location scheme.

2) DYNAMIC INDOOR POSITIONING
We have built a set of linear and nonlinear algorithms to
reduce the data in samples and mainly to maintain an accept-
able relationship between precision level and processing time,
which in practice represent less processor and memory usage
(input and output operations) [16]. These algorithms are
triggered from data receipt to results delivery, in addition
to executing decision making, which maintains or discards
one of the partial locators according to the error control
indicators [33].

Linear and linearized algorithms were built to track and
monitor the target during its displacement. This process is
called guided navigation and is intended to correct any errors
by continually updating your position compared to reference
records saved on the map.

Wi-Fi-based information provides information regarding
the distance from the start to the end of a route, while other
sensors and virtual markers provide more subtle information
and can represent curves and orientation changes during the
route navigation.
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FIGURE 13. Target tracking scheme.

FIGURE 14. Scheme of identifying distances in a straight line or
bypassing obstacles.

The distance between the two points in a straight line
is obtained by applying Euclidean Distance (Equation 21).
The Manhattan Distance (Equation 22) provides the distance
between the start and end points considering the required
curves and deviations, as shown in Figure 14.

Euclidean Distance =
√
((x1 − x2)2 + (y1 − y2)2) (21)

The sum of the legs obtains the geometric representation
of Manhattan:

Manhattan Distance = |x1 − x2| + |y1 − y2| (22)

Inertial sensors are susceptible and fluctuate a lot in the
same position, so it is necessary to collect a high volume
of data to have more confidence in the indicated location.
However, this high volume of data requires a longer time for
fusion algorithms to process and provide information.

The strategy used to decrease data collection time while
maintaining the quantitative that allows the inertial location
algorithm to provide reliable information was to associate
three inertial sensors to work in parallel. Processing time has
also been reduced by simplifying operation by disregarding
the z-axis of the inertial sensor. This simplification consid-
ered that the target has a constant height above the floor dur-
ing its displacement process, being necessary to manipulate
only the x and y axes to cover the user’s movement variations,
using bilinear interpolation, giving the ability to perceive a
2D position [13]. The x-y magnetic map and angulation are

indicated by

Mxy (r) =
√
(Mx (r))2 + (My(r))2 (23)

Mϕ (r) = tan−1 (My(r)/Mx(r)) (24)

with the removal of the z-axis of the magnetometers,
the angular perception capacity was lost. The 2D informa-
tion generated by the magnetometers is enriched with data
obtained from the gyroscope, which provides the angular
perception capability, as shown by the formula:

q =SG q = [k̂ sin
θ

2
cos

θ

2
]T (25)

where {S} e {G} denotes the gyroscope and the global
frames of reference, k̂ is the axis of rotation, and θ means its
magnitude.

The inertial marker also stores information regarding the
length of the displacement (SL) for a given direction θ , at time
t∗, as indicated by Equation (26):

xt+1 = xt + SLt . sin (θt∗ )
yt+1 = yt + SLt . cos (θt∗ )
Zt+1 = zt + SLt . tan (θt∗ )

(26)

The Haar-Like algorithm is relatively fast to recognize the
features of the mapped objects, but it shows slow in the trace
operation, which is necessary for the navigation, being a risk
for the execution of the location. After the visual recognition
of the marker, Haar-Like delivers the region of interest (ROI),
which contains the recognized object to the CamShift algo-
rithm associated with a Linear Kalman filter. CamShift is
faster than Haar-Like because it ignores the region’s growth,
outline, smoothing, and forecasting considerations [36]. The
Kalman filter increased CamShift’s robustness in the process
of recognizing objects received from Haar-Like, even when
they suffer variations caused by elements of the scene, such
as lighting, or suffer distortions, common in the process of
displacement. If the received object is lost from the CamShift
tracing, the Haar-Like algorithm is called again to perform
the recognition. Figure 15 shows the relationship between
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FIGURE 15. Computer-based indoor location.

the Haar-Like and the CamShift associated with the linear
Kalman filter.

The hybrid location needs to be robust, fast, and contin-
uous, using combinations that allow its use even in places
that affect its subsystems. The construction of the hybrid
identifier for dynamic positioning applies a simple decision
that indicates the strength of the representativeness of each
component to maintain or discard from the hybrid arrange-
ment. In the calculation, only values that remain within
limits indicated by the decision layer are considered, drop-
ping from the calculation the most discrepant values, and
that can contaminate the final result, thus compensating the
limitations of some of the models, as already described by
Hanchuan [ 9].

Mp =
p1.x1 + p2.x2 + · · · + pn.xn

p1 + p2 + · · · + pn
(27)

whereMp is the weighted arithmetic mean, p1, p2, . . . ,pn are
the weights of the Wi-Fi, inertial and computational vision
markers, and x1,x2, . . . ,xn are the values of the data obtained
by the locations of the indoor location systems.

D. NAVIGATION
The system navigation step represents the combination of
static and dynamic locations, associated with a set of rules
and procedures for establishing and consuming routes. A rule
is a statement about what to do in a specific situation.
A procedure is a series of steps to follow to achieve
a result.

In the model defined for indoor navigation, processing
of subsystems based on Wi-Fi, inertial, and computational
vision sensors occurs in parallel, and their results provide the
basis for the formation of hybrid localization.

All data consumption and processing are performed
directly on awearablemobile device so that the information is
always available to the user free of dependencies on external
structures.

We detail below the entire route handling process, with
its build, update and rebuild rules, how to deliver a guide to
the user, and user protection against collisions with obstacles
present on these routes.

FIGURE 16. Route manipulation algorithm operations.

1) ROUTES RULES
To define the routes, it is necessary to indicate the initial posi-
tion, the final position, and the routing algorithms, that verify
the intermediate connections between the points based on the
criterion of the processing cost [39]. The initial identification
takes a longer time than the others because it is necessary
to give robustness to the beginning of the process, avoiding
that a weak initial identification contaminates the subsequent
steps with more errors [1].

The process of route definition can be divided into three
stages: creation, updating, and reconstruction, as shown
in Figure 16.

The constructed route indicates the same markers belong-
ing to the path of interest of the user and the relationships
between them, which are recorded in an adjacency matrix,
with the following scheme:

Dijkstra algorithm defines the shortest path to be used in
navigation, consuming the data registered in the adjacency
matrix [40]. The Dijkstra algorithm followed the four steps:

Step 1: Assign the infinite value to indicate the distance to
for all the vertex pairs, except for the origin vertex;

Step 2: The current vertex is defined as the start, and all
others receive the status of unvisited;

Step 3: From the current vertex, the distances are calculated
to reach all the unvisited neighbor vertices, keeping the lowest
value as valid and discarding the others;

Step 4: The nearest vertex is defined as the new starting
point, and the algorithm performs step 3 again.

The Dijkstra algorithm uses the following scheme to relate
the selected records of its search in the mapped markers to
form the route:

Ej k


= 1, if the vertices are connected by edge
= 2, if the vertex it is a crossing
= 0, else

(28)

The established route adjustment operation observes val-
ues referring to position, angle, and direction estimate. The
position correction codes are passed to a set of algorithms
belonging to the motion recognition module.

The reconstruction of the route uses as the parameter
the maximum distance defined for the margin of error,
which is equivalent to the worst location indicative of Wi-Fi.
When this value is reached, the navigation guide process
is interrupted, and the construction of the route is redone
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using the current user’s address as the starting point for new
navigation.

2) GUIDE
The navigation guide has the function of relating the per-
ceptions of the user’s movement, the data obtained from the
sensors or virtual markers, indicating the route and the pres-
ence of obstacles, and the delivery of the sound instructions to
the user.

The guide module consists of the i-PDR navigation
algorithm and the integration system.

The i-PDR navigation algorithm associated with the
Kalman filter calculates the position to be reached by the user
in their displacement and attenuates the effects of the route
deviations by applying the Kalman Filter.

The algorithm, called iterative PDR (i-PDR), modifies
the PDR by inserting an iterative update function. This
intervention in the PDR algorithm addressed its two major
shortcomings: velocity oscillations and location identifica-
tion variations, as described by Zou and his co-authors
[21]. These PDR deficiencies generate errors that accumulate
along a path and create position divergences when compared
to the map reference register [33]. The i-PDR represents
the joining of the PDR to the Kalman filter, which pro-
vides iterative and tuning characteristics of the orientation
algorithm.

The i-PDR starts its localization and adjustment of the
user’s positions after the initial location, which is performed
by the LWPL algorithm, comparing the data with the mapped
records of the scenario (static location). The initial location,
provided by LWPL, is calculated by the formula:

(x, y) =
N∑
i=1

wit (xi, yi) (29)

where w is the weight given to the record, (xi, yi) is the desti-
nation location of the navigation. For eachmarker, the process
is repeated until all routes are known.

The i-PDR uses the multisensory fusion of the prepro-
cessing step and dynamic positioning to identify the user’s
positions during their travel, taking as standard the speed of
about 1.1 m / s [11].

The i-PDR has a solution that relates the magnitude of the
acceleration to the displacement size, reducing the variations
of error margins. The expression describing this relationship
is as follows:

L = β(amax − amin)
1
4 (30)

where β is the adjusted coefficient when the acceleration vari-
ations are perceived, indicating the size of the displacement
between one marker and another.

The candidate sites are indicated by the application of the
K-Nearest Neighbors Algorithm (KNN), which calculates
the approximation of the record built for navigation in the
route map maps. In the KNN, the parameter k indicates the
number of neighbors reads to estimate the coordinate, and

the parameter q indicates the scheme adopted to calculate the
distance between the center value (weighted average) and the
neighbors selected by parameter k.

Due to a large amount of data presented as candidates for
location indication, only k RPs are chosen according to the
first k minimum distances identified by Equation (31).

(
x̂, ŷ

)
=

1
k

k∑
t=1

(xt , yt) (31)

where (xt , yt) is the RP coordinate at time t ,
(
x̂, ŷ

)
is the

estimated coordinate of the observed point. Parameter q can
receive two values: 1 - indicates the use of the Euclidean
equation; 2 - indicates the use of the Manhattan distance
equation. The hybrid marker construction assumes that the
value of parameter q is always equal to 1.

If the number of reference points (RPs) and the number
of location markers (LMs) are respectively m and n, the dis-
tances are defined as follows: Lqi = (

n∑
t=1

|st − sit |q)
1/q

i = 1, 2, . . . ,m

(32)

where st is the sample collected to identify the location at time
t where the data are compared, sit is the sample collected from
the data received from the Wi-Fi, inertial, and visual models.

The Dijkstra algorithm selects the adjacent locations using
as a criterion the shortest distance between the location of the
device position and the candidate points.

The selection of the adjacent places occurs by the applica-
tion of distance calculations between the coordinates received
by the sensors and the candidate coordinates of the route map.

The direction of the user’s movement is obtained by the
difference between the z-axis (azimuth) angle of the magne-
tometer and the geographic north [41]. This information is
reinforced by the gyroscope, which indicates the angulation
and correction of the user’s posture for perception [41].

This movement status information is entered into the
integration system, which powers the i-PDR algorithm
and Kalman Linear filter itself to decrease error mar-
gins and provide the necessary adjustments to the next
position [6], [42].

The Kalman filter adds its data to the preprocess data
set to reduce the impacts generated by systematic and non-
systematic errors. A systematic error occurs within a standard
and is more straightforward to deal with, such as the refine-
ments applied to variations in the user’s distance and walking
speed [41]. A non-systematic error occurs outside a standard,
which hampers the standardization of the approach, such as
displacement variations on uneven floors [41].

The recognition of curves and straight lines results from
the fusion of magnetometer data and gyroscopic sensors
using an angular acceleration calculation and a Gaussian
filter [41]. This association identifies the direction of the
curves, as shown in Figure 17.

43644 VOLUME 8, 2020



W. C. S. S. Simões et al.: Hybrid Indoor Positioning System Using a Linear Weighted Policy Learner and Iterative PDR

FIGURE 17. Identification of curves and lines.

FIGURE 18. Association of magnetometer, gyroscope, and barometer to indicate ascents and descents.

The movements identified as upward and downward are
obtained by data fusion of magnetometer and gyro sensors,
and confirmed by the barometer so that it was not con-
fused with the lateral movement (right, left) [4], [5], [24].
The barometer indicates the upward movement when the air
pressure decreases and the lowering movement when the air
pressure rises, as shown in Figure 18 [16].

3) OBSTACLE IDENTIFICATION
The Obstacle Perception System uses visual information
captured from both cameras in a stereo-vision scheme to
calculate the distance to the objects arranged in front of
the user. The 3D data is decomposed into two 2D arrays in
which the x and y-axes are on the ground, and the y-axes and
z-axes represent the points belonging to the vertical matrix.
Figure 19 gives the general scheme of horizontal and vertical
perception of obstacles.

The integration module combines the processed data of the
guide with the obstacle perception data, delivering the cor-
responding sound information to the user. The calculation of
the safety distancemodule has algorithms that are responsible
for the identification of obstacles positioned horizontally and
vertically in the scenario, providing spatial reasoning to the
user.

The cameras are affixed at a similar distance from human
eyes. Given a pixel that describes some feature in the image to
the right, that same feature is searched in the left image, cal-
culating the distance between the reference points, as shown
in Figure 20.

The distance between the two points of view, called dispar-
ity, provides the depth information and hence, the common
reference points in the two images [18]. Objects close to the
observer have a more significant disparity, whereas distant
objects show less difference [43].
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FIGURE 19. Obstacle detection scheme using stereo vision.

FIGURE 20. Systematics of the disparity map operation.

The matching function between the left and right images
separates the image from the right into sample blocks. Then,
a search for this block in the left image is applied, based
on the parameters reported, starting with minDisparity and
going left in numDisparity value or finding the corresponding
block. The disparity is the result of the difference between the
two blocks.

From the triangular relationship, it is possible to calculate
Z as follows

Zxs = f
b
d

(33)

where d = x1−x2 is called the disparity between the left and
right images, and the s is pixel size. Equation 37 also allows
calculating the distance between the user and the obstacle in
front of him.

The FindStereoCorrespondenceBM function of the
OpenCV library calculates the disparity map, which uses
block and sum (Absolute Difference Sum) matching methods
to find matching points between two images. The algorithm
uses the preFilterSize function to normalize the brightness
and texture of images before the matching process in both
images.

The SAD algorithm applies the SADWindowSize function
to match the horizontal lines, eliminating bad combinations
using a predefined number of pixels in the numberOfDis-
parities parameter. The preFilterCap function determines the
central pixel of the images and serves as a guide to the
combination of the two images [24].

The FindStereoCorrespondenceBM algorithm is based on
blockmatching, which associates matching blocks and edges,
which are information that generates high disparity [44].

The speckeWindowSize and speckleRange functions
parameterize the size of the search window and the maximum
acceptable variation to decrease the disparity [44].

The alerts for ground obstacles occur by the evaluation
of the distance between the user and the nearest obstacle
(up to 4.00 m). The activation of the vertically arranged bar-
rier warnings occurs by evaluating the result of the distance
between the user and the obstacle, up to the limit of 2.50 m.

The sound alert activation function uses the distance
between the user and the nearest obstacle to trigger the cor-
responding sound, and the speed of its movement interferes
with the frequency of sound emission. Thus, the user real-
izes that he is approaching an obstacle, the faster the sound
emission.

The relationship of the sound schemes and the distances
perceived by the stereo vision system uses an alert sound
language similar to that used in the vehicular rear warning
system, enriched with information concerning the height of
the obstacle, as indicated in the flow chart of Figure 21.

The audible alerts are beeps on the A + and C + musical
notes, in the bass and treble, with a difference of three octaves
to reinforce the difference between the tones. Musical tones
have been chosen as the most pleasing natural notes for
human ears [45].

E. AUXILIARY DATA
The intended audience for the use of the system is visually
impaired, requiring all interaction to occur as simply and

FIGURE 21. Sound alert scheme based on obstacle distance.
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naturally as possible. The way adopted in this study was to
use commands spoken by users to enter the commands, and
all system feedback occurs through sound instructions.

The system uses two modules with two well-defined func-
tions: learning spoken instructions and storing models and
managing an audio bank. The speech learning system applies
algorithms that generalize the speaker (independence of the
speaker regarding gender and intonation), creating models
that are used as a reference in the speech recognition pro-
cess. The management of the audio bank is the process of
manipulating a set of previously defined spoken instructions
that correspond to navigational guidance and warnings of
collisions with obstacles. We detail each role and its practical
approaches in the topics below.

1) SPEECH CLASSIFIER
The voice, in its natural state, has stereo features that require
high processing and time [46], [47]. Thus, the vowel sound
was reduced to a monophonic label to allow the recognition
of the pattern more quickly and to share the same decision
tree, dividing the nodes according to binary properties of the
phonetic context [6].

The voice is an analogical feature that must be subjected to
a scanning process to be used in the indoor positioning sys-
tem. Thus, Linear Maximum Likelihood Regression (MLLR)
defines a sampling, which is quantized (converted to the
numerical form) [46]. The numerical data are submitted to the
training and extraction of characteristics, applying Gaussian
averages and weight variations at each iteration, as shown in
the diagram of Figure 22.

FIGURE 22. Scheme of the construction of the voice classifier.

A reduced set of five instructions allowed user interaction
with the system and reduced learning time. Table 3 shows
the voice input commands used in user interaction with the
system.

2) AUDIO BANK
Sound information is the mode used to inform the user about
the operation of the device, its location, and navigation.
To facilitate the interaction, a set of sound instructions was
established, containing eleven short phrases, five to respond
to user vowel requests and six used to guide the user, turn the
device on and off.

Table 4 shows the relationship of navigation guidance
commands and system output sound instructions to the user.

The system architecture, considering the details of each
subsystem and the linkages between them, are presented
in Figure 23.

TABLE 3. Relationship between voice commands and system sound
responses.

TABLE 4. Set of instructions for indoor navigation.

The implementation maintained the hybrid features pro-
posed in themodel of Figure 1. Its twomainmodules describe
the tasks required to construct the mapping and allow naviga-
tion. In the mapping module, the algorithms used to create the
markers based on the Wi-Fi, inertial, and visual technologies,
and the algorithms used to relate the markers to a map are
indicated. The navigationmodule contains the algorithms that
define the route to be used and all the processes necessary to
follow and adjust the routes when necessary are presented.

IV. EVALUATION
A protocol was defined to standardize the tests and evalua-
tions of the algorithms. Two scenarios were used for the tests:
one rectilinear and free of obstacles and one with curves and
obstacles. In each place, a set of collection points was defined
to observe the results of the distances of the Wi-Fi, Inertial,
Visual, and Hybrid models for the mapped registers.

The procedures used for the rectilinear scenario are:
- Data collection begins at the door of the Intelligent Envi-

ronmental Laboratory (AmILab);
- The user must enter the default destination address of the

tests (auditorium door), distant about 75.00 m.
The procedures used for the scenario with curves and

obstacles are:
- Data collection begins at the door of the Ambient Intelli-

gent Laboratory (AmILab);
- The user must enter the default destination address of the

tests (cabinet located on the right side of the room), and the
laboratory should be circulated to arrive at the address.

A. EXPERIMENT PROTOCOL
The environment chosen to explore the behaviors and to
apply the evaluation processes in the prototype and in the
algorithms were the corridor (Figure 24a) and Intelligent
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FIGURE 23. Detailed architecture of the indoor positioning system.

FIGURE 24. (a) CETELI corridor and (b) Ambient intelligent laboratory
(AmILab).

Environmental Laboratory (AmILab) (Figure 24b), belong-
ing to the Center for Research and Development in
Technology and Information Electronics (CETELI), Fed-
eral University of Amazonas (UFAM). The corridor has
dimensions of 75.35 m × 4.00 m and was used as a rectilin-
ear environment. The Intelligent Environmental Laboratory
(AmILab), has dimensions of 10.83 m × 13.80 m and was
used as curves and obstacles.

B. EXPERIMENT SETUP
Two devices were built to carry out the tests and evaluations:
one fixed, with the function of emittingWi-Fi signals, and one
mobile, containing Wi-Fi, inertial sensors and RGB cameras,
capable of processing the data locally.

The mobile device considers the hands-free condition,
which is an essential requirement in experiments with visu-
ally impaired people [17]. Its construction started with a
device affixed to the feet, however, because excessive vibra-
tion was changed to waist height. Although the level of vibra-
tion has decreased, the position of the devicewas not adequate
to perceive obstacles arranged at head height. Finally, a pair
of glasses was chosen as the device.

The construction of the two prototypes considers as prin-
ciples the discretion and the lightness but guaranteeing suf-
ficient space to accommodate their electronic resources,
as shown in Figure 25.

The ESP8266 Wi-Fi sensor is used on the fixed device
and the mobile device with specific functions. In the fixed
device, the sensor provides a reference point for the loca-
tion. In the mobile device, the sensor receives the RSSI
signals and uses these values in the distance calculation.
The association of the STMicroelectronics L3G4200D gyro-
scope sensors, the Analog Device ADXL345 accelerometer,
the Honeywell HMC5883L magnetometer, and the Bosch
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FIGURE 25. (a) fixed device and (b) pair of glasses used for indoor
mapping and navigation.

BMP180 barometer makes the inertial location. The cameras
used are of the RGB type, the Raspberry platform, with
five megapixels resolution and field of view between 30 and
60 degrees. All processing is done on the platform Raspberry
Pi Zero, present in the pair of glasses to increase the percep-
tion of the markers.

C. RESULT OF EXPERIMENTS
The experiments followed the predefined protocols for each
environment, and, in each test, the localization subsystems
were observed alone and combined (hybrid) to record the
performance evolutions (precision versus time) as well as to
know the adjustment needs.

The system information was monitored remotely for data
analysis and not to interfere with the experiments. The
received data was organized in the following visual scheme:
a circular marker (blue) indicates the fixed AP of the Wi-Fi
present in the scene, the stars (yellow) represent the main
mapped locations. The other displayed navigation addresses
represent the map data and the computed positions of the
established route.

The data collected from the navigation, including the start
and ends of the routes, is visually represented in a location
map. A solid blue line indicates the data belonging to the sys-
tem map that are used as reference points. A dotted black line
represents RSSI (Wi-Fi) signals. A solid green line indicates
the locations recorded by the inertial localization. An orange
dashed line shows the positions of the visual tracking system.
A solid red line indicates the location registered by the hybrid
location.

The navigation route began on the right side, near the
entrance of the AmILab laboratory, and ended in front of
the auditorium (left side of Figure 26 (a)). The navigation
in the laboratory consisted of making a complete turn in the
room, starting at the entrance door, and finishing in front of a
cabinet on the other side of the laboratory (Figure 26 (b)).

The Wi-Fi location test used an access point with 228 cells
in the corridor and 154 cells in the lab, all of them with a
1.00 m2 dimension, to meet the maximum tolerable error
limit.

The inertial localization test used 684 cells in the corridor
and 462 cells in the laboratory, all of them 0.33 m2 in size,
to meet the maximum tolerable error limit.

The visual localization test used the same 684 cells in the
corridor and 462 cells in the laboratory, which were defined
for the inertial location, all with a dimension of 0.33 m2.
The main factors that have generated impacts on the Wi-Fi

signals in the two scenarios are listed in Table 5.
The application of the SNR to RSSI has diminished the

effects of the obstacles on Wi-Fi signals. The relationship
between SNR and signal quality is shown in Table 6.

Reading the RSSI and SNR data takes between 1 and
2 seconds, with a smaller volume than the one collected in
the mapping. The increase in Wi-Fi data confidence is given
by the selection of the 5 closest records of a map record.

The sensors that make up the arrangement and inertial loca-
tion show deviations in the values of their axes, which cause
misalignment at the x and y (horizontal) coordinates, and y
and z (vertical). Table 7 lists the main causes of interference
in the inertial sensors in the two study scenarios.

It is necessary to calibrate the system to record iner-
tial marking information. For this purpose, the location

TABLE 5. Loss of Wi-Fi signals.

TABLE 6. SNR and signal quality.

TABLE 7. Causes-effect ratio in inertial values.
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FIGURE 26. The result of target navigation in the corridor.

of the city of Manaus obtained in the public domain
http://www.magnetic-declination.com/ was used. It is also
possible to get the margin of error of the inclination of the
magnetic axis. Figure 27 shows the inertial values of the city
of Manaus.

The angle of observation of the magnetic axis follows the
rule that at the poles, the angle is 90.0 degrees, and the equator
is 0.0 degrees, but this declination varies year after year, and
adjustments are required. For the city of Manaus, the current
magnetic error is 0.1222173.

The inertial system design used three magnetometers to
reduce the interference of the scenario on perceived values.
However, metal structures and people interfered with the
results, presenting a margin of error between 0.10 m and
0.30 m. Figure 28 shows the data received from the com-
binations of the three sensors, indicating that the difference
(dispersion) between the axis values is minimal.

The positions showed by the visual system diverged
from the expected values, caused mainly by the natural
light present in scenario 1 and by the many artificial light

FIGURE 27. Inertial reference of the city of Manaus.

intensities in scenario 2. These variations confused the inter-
pretation, causing the system to confuse in some moments
the walls as part of the floor. The visual markers of
Figure 29 show the same label observed under different levels
of light intensity.
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FIGURE 28. Shown values captured from the combination of
magnetometer type sensors.

FIGURE 29. Visual markers under different lighting.

TABLE 8. Noise and its consequences on visual information.

TABLE 9. The relation between the number of frames processed and time.

Visual information undergoes oscillations of value due to
a series of factors, which generate unwanted effects, making
it difficult to recognize the information. Among the main
causes that produced noise on the visual system are the
issues related to lighting and the presence of photoelectronic
elements. Table 8 lists the consequences of noises on captured
images.

A criterion used to test and analyze the visual posi-
tioning system was to count the number of frames pro-
cessed every second using the frames per second (FPS)
ratio. Table 9 shows the performance gain for each technique
inserted in the system, indicating that higher values of FPS
make the navigation system more efficient.

The hybrid model represents the combination of Wi-Fi,
inertial, and visual systems, taking advantage of each com-
ponent but inheriting its limitations.

To increase the level of precision, the hybrid model has a
decision layer that maintains or removes the data according
to the predetermined error limits. Table 10 shows the mean

TABLE 10. Mean of the margins of error presented by the Wi-Fi, inertial,
visual, and hybrid subsystems.

TABLE 11. Relation of the time factor and the use of subsystems.

distance of the margin of error of the Wi-Fi, inertial, visual
subsystems, and the result indicated by the hybrid model.

The data fusion received from the inertial sensors provided
a more robust horizontal and vertical orientation perception,
with an average orientation error of around 0.186 rad, which
occurred every 10.00 m.

Another criterion adopted in the evaluation of systems is
the time factor and was used to indicate the evolution of time
of each physical and logical intervention used in the system,
as shown in Table 11.

The gain of time in the hybrid localization process was
achieved by applying the perception of the standard deviation,
where the subsystem that distanced itself from the standard
is ignored from the second iteration. That is, the worst loca-
tion indicator is used only in the first moment to aid in the
understanding of the location and then is scorned so as not to
contaminate the processing.

The i-PDR algorithm presented an average location error of
0.11 m, and an error in the direction of 1.8 degrees, remaining
stable in static and dynamic positioning modes. The hybrid
model still had a 93.23% lower margin of error than the
Wi-Fi-based system, which had the worst result among sub-
systems.

The system presented an error rate of 11.3% for the ground
level perception caused by light interferences in the computer
vision system and the non-use of the z-axis in the inertial
location system. However, the data combination from the
inertial system allowed an error reduction to 3.60%.

The test applied to the visual perception of obstacles had
as evaluation criterion the generation of alerts on the location
and distance of the obstacle closest to the user. The envi-
ronment used for this test was the AmILab, which had the
area divided into four regions, with the presence of obstacles
arranged along the way.

The objects chosen to be obstacles met the criteria of size
(small and large objects) and spatial location (horizontal and
vertical). The objects selected by size allow observing if the
system creates the alerts so that the user knows when it is
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FIGURE 30. Perception of obstacles distributed in the four regions of the
laboratory.

TABLE 12. Result of stereo visual detection of obstacles distributed in the
laboratory.

necessary to circumvent the obstacle or when it is possible to
pass between two obstacles. The objects selected due to spa-
tial location allow observing the receipt of alerts to obstacles
present at the height of the user’s head.

In Region 1, a wheelchair was left on the route. In region
2, a brick with a height of 0.20 m was used as an obstacle
to verify the perception of small objects. In region 3, an
air balloon was hung at the height of 1.50 m to check the
presence of objects arranged above the waist height of the
user. In region 4, a table with a height of 0.75 m was used to
verify the perception of complete objects arranged in front of
the user, as shown in Figure 30.

Table 12 shows the average error of users’ perceptions of
obstacles in the horizontal and vertical planes.

The speech recognition algorithm has been tested in two
scenarios to measure its effectiveness: one noise-free and the
other affected by various noises. The noise-free environment
was controlled by using the non-standard time environment
so that no other people were present, and no other noisy
sources would confuse receiving spoken instructions. The
environment that had the presence of noises, such as doors
opening and closing, people talking, air conditioners on, etc.,
allowed to observe the behavior of the system in a scenario
closer to the real.

The models were trained by a set of human voice records,
obtained from 20 people, regardless of the gender and age of
these users for 2 hours of recording.

This data volume consists of 600 trainings on the three
spoken instructions defined for the interaction: Enable sys-
tem, Set destination address, and Auto location. We tested
the trained models on a part of the data (20% of the total) to

TABLE 13. Result of recognition of speech commands in the controlled
environment and the noisy environment.

verify the independence of the speaker. The system presented
3.27% of word error when the environment was free of noise
and 19.66% when experienced in an environment with noise.

Table 13 shows the results of the three main voice com-
mands used for system interaction in both environments.

Only by applying the LinearMaximumLikelihood Regres-
sion (MLLR) algorithm, the variations for the same spoken
instruction indicated an error rate of 25%, even in a noiseless
environment. This error rate reflected a delay in the user’s
navigation or confusion in receiving the wrong information.
The application of Gaussian averages to the data in each itera-
tion reduced this error rate to about 1% for the Auto Location
command and 2% for the Enable System command. The use
of the Gaussian average shows a gain in the performance
of speech recognition, even with the use of larger and more
complex sentences to be recognized.

We compared the system built in this study with some
related works to assess the impact of the physical and logical
choices used.

The evaluation process used a set of previous works that
brought information related to algorithms, hardware, and
databases in their publications, and the results obtained on
errormargins and information delivery time. This cautionwas
necessary for the evaluation to reflect as much as possible the
behaviors between similar research.

Bolat, Chen, Leppäkoski, Pradeep, and Kealy wrote the
works chosen for this evaluation [13], [24], [11], [17],
[16]. The authors used equivalent strategies, equipment with
the same technologies, and test scenarios that brought in
their physical structures the same factors to be treated.
Figure 31 shows a comparative assessment of these related
works, and this study in question graphically.

Bolat proposed an indoor navigation solution for pedestri-
ans using a collaborative technology scheme to address the
deficiency of the other through a particle filter [13]. Com-
paring with Bolat’s work, the results showed greater stability
due to the decision to apply a preprocessing step before the
construction of the markers, thus reducing the noise present
in the raw data [13].

Chen associated a visual data set of an RGBD camera and
inertial sensors with a Kalman filter to generate a 3D perspec-
tive [24]. Compared to Chen’s work, the model constructed
and described in this paper reduced the computational costs
of processing and memory consumption by dealing with 3D
information in two 2Dmatrices. This reduction enabled faster
delivery of information to the user.

Leppäkoski associated RSSI signals with inertial sen-
sor data to record the scenario in more extensive areas
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FIGURE 31. Comparison of the margin of error of the hybrid model and the related works.

(Wi-Fi signals) and subareas (inertial markings) to allow a
better indication of location [11]. The data were combined
with complementary and extended Kalman filters (CEKF)
and a particle filter and nonlinear Bayesian algorithms. This
work also used the combination of Kalman filters and Par-
ticulate Filter, however, the implementations linearized the
formulations to reduce the processing cost, reducing the
information waiting time. Error compensation is achieved by
the iterative approach of the i-PDR algorithm, which corrects
the data.

Pradeep’s scheme for building its markers and maps had
a performance impact caused by the nearest k-neighbor
algorithm (KNN), configured to observe eight neighbors of
each candidate [17]. In this scheme, the system acted as
visual odometry, but the map had a static feature (once
built, changing any record required the full reconstruction
of the map). The approach given to the system developed
and described in this paper used a linear strategy called
LWPL, which allowed us to observe each candidate’s neigh-
bors more quickly and dynamically update the neighbor-
hood degrees, without the need to reconstruct the entire
structure.

Kealy built an inertial indoor positioning system to not
interfere with any physical structure in the scenario [16]. The
author opted for a direct positioning search, using several
iterations to find a recorded position. The i-PDR model asso-
ciated with the Kalman linear filter allowed us to achieve a
higher level of accuracy from the first iteration, reducing the
waiting time for information.

V. CONCLUSIONS AND FUTURE WORK
This work proposes the construction of a hybrid indoor posi-
tioning system capable of being used in environments with
different characteristics such as open and unobstructed spaces
and closed spaces and with the presence of fixed and mobile
obstacles. The system combined data from three various sen-
sors types and linear and linearized algorithms to improve the
accuracy level without affecting the maximum delivery time
of the results.

The development of hybrid systems brings as a significant
concern the need to have mastery over the physical and
logical elements used so that failure of one of the components
does not contaminate the result.

Another relevant aspect is to know the device characteris-
tics used to run the application. Although newmobile devices
have shown higher processing power and memory, hybrid
indoor positioning algorithms still require features, which
can exceed the physical limits available. Therefore, for the
execution of this work, it was proposed and built a wearable
mobile device that had more processing power and more
versatility of sensor application.

Indoor positioning systems should have architecture and
robustness closer to the already consolidated model for out-
door environments to become a useful resource for various
audiences and classes of problems [4], [9].

This study has thrown a new look at the problem described
in several localization and navigation projects in an indoor
environment: How to develop an IPS that has an acceptable
relationship between the level of accuracy and speed to be
used in a wearable device?

Briefly, the answers obtained were:
(1) The time of data collection is different for the mapping

and navigation processes. For the mapping, it is tolerable that
there has been a lot of time in collecting data and constructing
the markers so that they are more accurate. For navigation,
the time spent in the collection and identification of a candi-
date position is the least possible, so that the delivery of the
information occurs within the tolerable limits of insurance to
guide the user.

(2) The IPS accuracy still depends on the sensors types
andmathematical approaches used, because, due to the differ-
ent characteristics of the indoor environments, each strategy
presents its limitations and may even make it unfeasible in
some contexts [17].

An intermediate solution, using linearized algorithms,
allows establishing tolerable levels of precision and process-
ing time in the development of IPS for visually impaired
people.
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Research on IPS has been driven by the pursuit of improved
accuracy levels, creating new possibilities in user interaction
with its indoor environments. Thus, this work also brings its
contributions.

Among the contributions, a dynamic mapping scheme was
presented that combines cells of different sizes in macro-
regions or subregions to meet the demands of each localiza-
tion step.

The combination of data from inertial sensors to visual data
has allowed us to improve ground level perception, allowing
us to report elevation changes such as ramps and stairs as well
as to identify curves and lines.

The proposed and tested hybrid indoor positioning model
combined sensors, data, and algorithms to increase system
accuracy and reduce response time. In this model, two algo-
rithms played an important role: the LWPL and the i-PDR.
LWPL has streamlined the mapping process to decrease data
collection time and maintain a high quality of information.
The i-PDRminimized the error margins of the PDR algorithm
and allowed safer and more reliable indoor navigation.

The proposed hybrid model, which combines Wi-Fi loca-
tion, inertial sensors, and computer vision, presented robust
results when confronted with Wi-Fi location systems, inertial
sensors, and computer vision. The hybrid system also showed
lower position variation, providing a stable average precision,
around 0.11 m.

This paper also introduced obstacle detection by a stereo-
visual combination and a musical sound scheme. In this
method, the stereo vision system extracts the protruding
regions of obstacles placed in front of the user, triggering
the sound corresponding to the suspect’s visual region. Tests
with stereo vision show that this method can detect obstacles
effectively and correctly. However, by offering a new audio
language, a training process is required to reduce users’
learning time and make the proposed solution more visually
impaired.
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