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ABSTRACT Quantum computing has increasingly gained attention for decades since it can surpass classical
computing in various aspects. A crucial issue of quantum computing is how to protect information from
noise interference such that the error rate during quantum information processing can be limited within
an acceptable bound. The technique to address this issue is quantum error correction (QEC). Developing
QEC technologies needs to define noise as formal error models and design QEC approaches for these
error models. Discrete error models and continuous error models are two kinds of definitions of noise. The
former assumes noise occurs independently and can be discretized into a set of basic errors. The former
also has a tool, named quantum operations, to describe a specific error model. The latter describes that
noise is continuous in time by using differential equations. In this paper, we categorize QEC approaches
into three types according to the different error models: discrete error models, specific error models, and
continuous error models. We also analyze the state-of-the-art QEC approaches and discuss some future
directions. Furthermore, we propose the perturbed error models and their possible definitions, aiming to
find the effect of the perturbation during quantum information processing.

INDEX TERMS Quantum computing, quantum error correction, quantum information processing, discrete
error models, continuous error models, quantum operations.

I. INTRODUCTION

Quantum computing has provided great potentiality
compared to classical computing. For instance, Shor’s
algorithm [1] is nearly exponentially faster than the most
efficient classical factoring algorithm. Therefore, it is sig-
nificant to ensure the accuracy of quantum information pro-
cessing. Otherwise, any computing would be unreliable. The
theory developed for protecting fragile information against
noise is quantum error correction (QEC). QEC is one of
the foundations to build large-scale and fault-tolerant quan-
tum computers. With the development of quantum theory
and practice, building quantum circuits and experimenting
with QEC approaches are achievable on platforms such
as IBM Q Experience.'

The common model of quantum information processing
in quantum computers includes three main steps, encoding
information, transmitting through channels and decoding
information, as shown in Figure 1. Information in quan-
tum computers is stored as quantum states of quantum
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FIGURE 1. Quantum information processing.

bits (qubits). Since noise can occur anytime and anywhere,
QEC approaches should protect information all along the
processing way. In encoding procedures, QEC approaches
add redundancy to the initial information to resist possible
noise in advance. The noise during transmission should be
formed into proper error models, discretely or continuously.
In decoding procedures, QEC approaches need to correct
errors and perform encoding procedures backward, where
error correction includes error detection and recovery. In gen-
eral, designing QEC approaches should consider the follow-
ing two key points [16].
o Low Error Correction Cost. The ancilla qubits needed
and other resources to protect information shall be as few
as possible.
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« High Error Correction Accuracy. Error correction shall

be found to accurately recover the initial information;

Since Wootters and Zurek [2] addressed that a quan-
tum state can not be cloned in 1982, duplicating quantum
states as classical error correction schemes do is impossi-
ble. The difficulty of developing QEC remained unsolved
until the late 90s. When noise is discretized into basic error
sets, named the discrete error models, Shor [3] success-
fully invented a quantum code to protect one-qubit infor-
mation against one arbitrary error with nine qubits. Later,
Calderbank and Shor [4] and Steane [5] each constructed
quantum codes based on a special class of classical linear
codes. This method is named the CSS construction and quan-
tum codes constructed by it can be described using the sta-
bilizer formalism [6] uniformly. It was then presented in [7]
that the minimal number of qubits to protect one-qubit infor-
mation against one arbitrary error is five. Various advanced
quantum codes with lower error correction cost were further
constructed in the 21st century, such as entanglement-assisted
quantum codes [8] and nonadditive quantum codes [9].

Quantum codes focus on correcting arbitrary errors during
transmission. However, such generic approaches cost a large
number of ancilla qubits. What if the noisy channel to trans-
mit information is known at first? It turns out correcting errors
in an amplitude damping channel only needs four qubits [12]
while correcting arbitrary errors needs five qubits at least.
A specific error model can be described using a quantum
operation, which is a general tool to describe the changes of
quantum states. QEC approaches based on convex optimiza-
tion problems [13], named optimization-based approaches,
can find the optimal error correction procedures for specific
error models, thus have lower error correction cost. Operator
quantum error correction [14] aims to find the “error-free”
spaces for specific error models, in which the information
encoded is immune to noise. These approaches have lower
error correction cost than quantum codes since they only
correct targeted errors while maintaining accuracy.

The discrete error models that above approaches focus on
are idealized formalisms, which assume errors occur dis-
cretely and independently on qubits. More practical error
models consider errors occurring continuous in time, i.e.,
the continuous error models. Paz and Zurek [10] first pro-
posed the continuous-time QEC (CTQEC) that described both
errors and error correction procedures continuous in time by
using differential equations. The implementation of continu-
ous error correction procedures in small time intervals is an
essential issue of this approach, including directly acting on
the information (the direct CTQEC) or using ancilla qubits
(the indirect CTQEC). When the encoding procedures are
chosen as quantum codes and CTQEC is chosen for error
correction, Hsu and Brun [11] proved that the error correction
cost of CTQEC is comparable to pure quantum codes. The
error correction accuracy of CTQEC is related to the error
rate and the error correction rate.

We attempt to put forward our analysis for QEC
approaches from a more comprehensive perspective,
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FIGURE 2. QEC approaches for different error models.

as shown in Figure 2, while previous work only compared
the performance of stabilizer codes and nonadditive quan-
tum codes [15]. Note that the basic error sets and quan-
tum operations are two kinds of descriptions for discrete
error models. We categorize QEC approaches according to
the different error models. Each type has their respective
scope of application and makes progress hand in hand. For
discrete error models described using the basic error sets,
quantum codes are easy to implement and abundant methods
can be “transplanted” from the classical code theory. For
specific error models described using quantum operations,
optimization-based approaches and operator quantum error
correction provide better performance for these errors com-
pared to generic quantum codes. For continuous error models,
CTQEC can correct errors all along the processing way,
which fits the real situations better. Further, we will discuss
the case of perturbed errors while current work supposes
noise is constant. To what extent the information is perturbed
in perturbed error models remains to be explored. It is no
doubt that more efforts are needed towards more advanced
QEC approaches.

The rest of the paper is organized as follows. Section II enu-
merates some necessary concepts for QEC. Various advanced
quantum codes for discrete error models are summarized
in Section III. Section IV introduces optimization-based
approaches and operator quantum error correction for spe-
cific error models. Section V reviews CTQEC for con-
tinuous error models. Section VI discusses some future
QEC directions and presents the perturbed error models.
Finally, Section VII concludes the paper.

Il. PRELIMINARIES
This section briefly introduce some necessary quantum
mechanics concepts, error models, quantum codes and
fidelity. More concrete details about quantum computing can
be referred to in [16].

A. HILBERT SPACE

A Hilbert space H is a complex vector space equipped with an
inner product that is also a complete metric space. The dimen-
sion of H is denoted as dim(#H). A mapping A : H — H/,
where H and H’ are two Hilbert spaces, is called a linear
operator from H to H' if AQ ", Aivi) = ), MiA(V), Vv € H,
VA; € C. The set of all linear operators from H to H' is
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denoted as L(H, H) and L(H) is the shorthand for L(H, H).
Linear operators can be represented using matrices explicitly.
The trace of a matrix, abbreviated as #r(-), is the sum of its
diagonal elements.

B. QUANTUM STATE AND QUANTUM SYSTEM

The concepts of quantum mechanics are commonly intro-
duced in a two-dimensional complex vector space CZ.
An orthonormal basis of space C? can be [0) = (1,0)T and
[1) = (0, )T, where |-) is the Dirac notation. The basis
can be used to denote an arbitrary quantum state |yr) of a
qubit on C2, ie., |¥) = a|0) + B|1), where &, B € C and
jor® + B> = 1.

A quantum system consists of n qubits. A pure quan-
tum state of a quantum system is described using a vector
in (C*)®". A mixed quantum state of a quantum system is
described using a density matrix p, where p = 3~ pjl|y;) (]
and p; is the probability that the quantum system is in quan-
tum state |v;). Specifically, p is pure when the probability of
|[¥r) is 1, 1.e., p = |¢¥)(¥]. The set of all density operators on
a Hilbert space H is denoted by D(H).

A closed quantum system indicates that qubits are free
from the environment interference. An open quantum system
indicates that the principal quantum system is coupled to
the environment, thus noise exists. Let p%"@ be a quantum
state of a composite system Z2. The partial trace over a
subsystem Z returns the density matrix of subsystem 2

p? = tra(p”?) =Y (K| @ 17”2 (k") @ 1),
k

where {|k‘@)} is a set of basis of subsystem 2%, 12 s
a d-dimensional identity matrix and d = dim(Hg ).

C. QUANTUM STATE TRANSFORMATION

The evolution of a quantum system is described by the trans-
formation of its quantum state, and the transformation of
a quantum state is described using operators. Consider an
operator A. If A = AT, A is Hermitian. If AB— BA = 0 (AB+
BA = 0), A and B are commuting (anti-commuting) with
each other, denoted as [A, B] = 0 ({A, B} = 0). In a closed
quantum system, the evolution of a quantum state is described
using unitary operators, where a unitary operator U satisfies
UTU = I (the dimension of an identity matrix is omitted
in trivial cases). Four frequently-used unitary operators are
listed in Definition 1.

Definition 1: Pauli matrices are defined as

1 0 0 1
I= [0 1] X=[1 0}’

0 —i 1 0
Y:[i 0}’ Z:[o —1]’

A more general tool to describe the evolution of quantum
states in both closed quantum systems and open quantum
systems is a map £ : L(H) — L(H) named the quantum
operation, which acts on a quantum state p € L(H) as E(p).
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The operator-sum representation is an explicit form to rep-
resent quantum operations, written as £(p) = >, ExpE T,
where {E;} is a set of linear operators named as operator
elements.

Measurements {M,,} are specific quantum operations that
each M, acting on a quantum system in quantum state [i)
returns a corresponding outcome |¥,,) with probability p,,,
where pp, = (YIMAMyul¥) and [Wn) = Mult)//Pm.
POVM (positive operator-valued measure) measurements
{P,,} concern more about the probability p,, = (¥ |Py|¥)
rather than the corresponding outcome quantum state, where
each P, is named the POVM operator. Projective mea-
surements {P,} are a kind of POVM measurements with
P, = |m){m|, where P, is named the projector and
{|m)} is a set of orthogonal basis.

D. ERROR MODELS
Errors come from the interference with the environment in
open quantum systems. The discrete error models assume that
quantum errors can be discretized to linear combinations of
Pauli matrices and occur on different qubits independently.
It is sufficient to correct arbitrary errors by only correct Pauli
matrices, as shown in Theorem 10.2 in [16]. An error can
be written as W @ W.-- @ W, where W € {I,X,Y,Z}.
An alternate expression, Wi W5 - - - W,,, omits tensor product
for brevity, where the subscript means a Pauli matrix X, Y
or Z occurs on the i-th qubit. /; is not included since it does
not cause any error on the i-th qubit. For instance, an error
X ® I ® Z is equal to X1Z3. The weight of an error is the
number of places that are not /.

The set of Pauli matrices occur on n qubits can also
be denoted by X, Z and multiplicative factors uniformly
since Y = iXZ. Leta = (aj,a2,---,a,) € {0,1}*,

b = (b1, by, -+, b,) € {0, 1}". An error E is given by
E =iXyZy, c€{0,1,2,3}. €))
The weight of E is given by
w(E) =#{jll <j<n,a;Vbj=1}, 2

where # is the number of elements in a set.

A quantum operation £ with operator elements {Ey} is
a general tool to describe a specific error model since it
captures the discrete changes of quantum states. Operator
elements can be recognized as error operators that are linear
combinations of Pauli matrices. In addition, we often use £
to represent a noisy channel. For instance, the amplitude
damping channel &, has operator elements {E1, E»}, where

E‘=[<1) 10—r]’ E2=[8 \ﬂ

The continuous error models are derived from real situa-
tions using differential equations, where the evolution of open
quantum systems is continuous in time. The explicit form is
introduced in Section V.

VOLUME 8, 2020



J. Li: Some Progress on QEC for Discrete and Continuous Error Models

IEEE Access

E. QUANTUM CODES

QEC approaches originate from quantum codes, thus it is
necessary to bring up some basic knowledge about the code
theory.

Definition 2: Each K-dimensional subspace C of Hilbert
space (C*)®" is an (n, K) quantum code. If K = 2, C is an
[n, k] quantum code.

Consider a quantum operation £ that describes quantum
errors. An E-quantum error correcting code is a quantum
code that has a recovery operation for £ satisfying the error
correction condition in Theorem 1. Generally, the notation £
will be omitted since a quantum error correcting code can
correct arbitrary errors.

Theorem 1 (Knill-Laflamme Condition [17]): Let £ be a

quantum operation with operator elements {Ey} and C a
quantum code. A recovery operation R correcting € on C
exists if and only if (m|E;rEb|n) = WabSmn for all orthogonal
|m), |n) € C, where E,, Ep € {Ey}, agp are complex numbers
for a Hermitian matrix o and 8, = (m|n).
A quantum error correcting code C with code distance d
can correct errors of weight [(d — 1)/2] at most. In such
cases a quantum code C is denoted as an (n, K, d) or [n, k, d]
quantum error correcting code. We introduce a bound with
parameters n, k, d on the ability of quantum error correcting
codes to correct errors.

Lemma 1 (Quantum Singleton Bound [16]): Let C be an
[n, k, d] quantum error correcting code. The quantum Sin-
gleton bound states thatn — k > 2(d — 1).

Quantum error correcting codes that achieve the quantum
Singleton bound equality are named the maximum distance
separable (MDS) codes.

1) STABILIZER CODES

Stabilizer codes are an important class of quantum codes
and can be constructed from classical dual-containing linear
codes [18]. We present a brief introduction here since many
quantum codes is constructed based on the stabilizer formal-
ism. Stabilizer codes explored so far with good parameters
are listed in [19].

The group theory is the key to the stabilizer formalism.
We define a Pauli group P, on n qubits that consists of
all n-fold tensor products of Pauli matrices, together with
multiplicative factors =1, 4i. Consider a group S and a set
of elements g1, ---,g € S. g1, , g are the generators
of S, denoted as S = (g1, --- , &), if each element in S can
be written as a product of elements from gy, - - - , g;.

A vector space V is stabilized by group S if V|yr) € V,
Vg € S, g|l¥) = |¢) holds, where S is named the stabilizer
of V. It can be seen that a stabilizer S has properties —1 ¢ S
and [g;, g1 = 0, Vgi, gj € S, i.e., S is an abelian group. The
normalizer of stabilizer S in P,, denoted as N(S), is a set of
operators U such that UgUT = g, Vg € S.

Definition 3: Let S be an abelian subgroup of P,.
An [n, k] stabilizer code is a 2*-dimensional subspace of
Hilbert space (C*)®" that is stabilized by S.
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The error correction procedure with a stabilizer code
includes error detection and recovery. Error detection is done
by measuring the eigenvalues of the stabilizer generators,
which are initially all 4+1. The effect of an correctable error £
acting on the stabilizer code is equivalent to acting on the
stabilizer generators, i.e., for a quantum state |), E|Y) =
Egily) = EgiETE|1p), Vgi; € S. Some eigenvalues of the
generators will turn to —1 after being affected by errors.
For instance, the stabilizer generator of a quantum state |0)
is Z with an eigenvalue being +1. An error X turns the
state into |1), which is stabilized by Z with an eigenvalue
being —1. The outcomes of measuring the generators after
errors are error syndromes. Then, recovery operations are
chosen conditioned on the error syndromes.

Example 1: The [5, 1, 3] code encodes one-qubit informa-
tion in five qubits. According to the quantum Singleton bound,
it is known as the minimal size of a quantum error correct-
ing code to correct one arbitrary error. The stabilizer S of
the [5, 1, 3] code has generators g1 = X1Z2Z3X4, g0 =
X27374Xs, g3 = X1X3Z475 and g4 = Z1X2X4Zs. If error
X1 occurs, generator g4 will turn to X(Z1X2X4Z5)X| =
—Z1X2XuZs. g1, 82, g3 remain unchanged. Thus, the error
syndromes are +1, +1, +1, —1. The recovery operation is
chosen by applying X.

F. FIDELITY
The fidelity is a common tool to measure the difference
between quantum states. It will be used in optimization-based
approaches in Section I'V.

Definition 4: The fidelity of quantum states p and o is

F(p,0)=tryp'2opl/2, 3)
Specifically, the fidelity between a pure state |¢) and an
arbitrary state o can be calculated as

E(lY), 0) =V (¥loly). “

The channel fidelity to measure a noisy channel £ preserv-
ing a quantum state can be defined as the minimal fidelity
since the initial state may be unknown and we should consider
the worst-case quantum systems. The channel fidelity of
mixed initial states is guaranteed to be larger than pure initial
states by the joint concavity of fidelity. Thus, the minimal
fidelity is defined over pure states |{/),

Fuin([¥), &) = rﬁf?F(W)’ ENY) W) &)

When the average-case quantum systems are considered,
i.e., a system is in quantum state p; with probability p;, The
channel fidelity is defined as the ensemble average fidelity,
Fave(p, &) = 3, F(pj, E(p))?. The entanglement fidelity is
the lower bound of the ensemble average fidelity and has an
explicit form for calculation. Thus, the entanglement fidelity
is often applied for the average-case quantum systems. The
entanglement fidelity measures to what extent a noisy channel
& preserving the entanglement between systems when con-
sider the average-case of quantum systems. Let p be a quan-
tum state of system 2. A reference system Z is introduced
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such that p corresponds to a pure state |1//)%"@ in H” @ HZ
with p = trp,z(ll/f)‘%g‘%g (¥]). The entanglement fidelity is

defined as
Font(p, &) = F(W) 72, A7 @ E)X[Y) 7272 (y))*. (6)

Let £ be a noisy channel with operator elements {E;}. The
entanglement fidelity has an explicit form with | - | being the
complex norm,

Feni(p, &) =Y _ |tr(pEp)I*. (7)
k

1Il. ADVANCED QUANTUM CODES

Quantum codes are designed for discrete error models that
are described using Pauli matrices and stabilizer codes have
grounded the development of quantum codes. Then improved
approaches emerge to pursue lower error correction cost
and higher error correction accuracy. This section presents
some advanced quantum codes with different error correction
abilities. Entanglement-assisted quantum codes can be con-
structed from arbitrary classical linear codes using pre-shared
entanglement. Nonadditive quantum codes, analogous to
classical nonlinear codes, can encode more information than
stabilizer codes with the same number of qubits. Nonbinary
quantum codes, asymmetric quantum error correcting codes,
quantum burst error correcting codes, quantum convolutional
codes, concatenated quantum codes and topological quan-
tum error correcting codes consider modified discrete error
models that suit for various real situations. For instance,
in practice, errors occur predominantly in adjacent places
rather than random places assumed by discrete error models.

A. ENTANGLEMENT-ASSISTED QUANTUM CODES
Entanglement-assisted quantum codes, first designed for
quantum teleportation, use unlimited entanglement that is
prepared in advance and shared by the sender and the receiver
separately. The first example of entanglement-assisted quan-
tum codes [20] protects one-qubit information against one
arbitrary error with two pairs of maximally entangled states
&) = (]00) + |11))/\/§. The quantum state |¥) of two
qubits is named an ebit. The optimal stabilizer code for one
arbitrary error needs four ancilla qubits. Since experiments
showed that pre-shared entanglement is a weaker resource
than transmitting ancilla qubits [21], entanglement-assisted
quantum codes can have better performance than stabilizer
codes using the same number of qubits.

We introduce the formal definition of entanglement-assisted
quantum codes in the following.

Definition 5: Let o/ and % share c ebits, where </ has
another n — ¢ qubits and % holds its ¢ qubits noise-
lessly. An (n, K; c) entanglement-assisted quantum code C is
a K -dimensional subspace of (C*)®"+9) such that

ro (W) )) = 1/2°17,

IfK = 2k Cisan [n, k; c] entanglement-assisted quantum
code.

Vi) e C. ®)
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The definition is further explained here. Information is
encoded into Hilbert space (C?)®"*¢) on n+c qubits since .7
and & share ¢ ebits. Equation (8) ensures that the encoding
procedures only perform on .2/ and 4 is noiseless. If C cor-
rects errors of weight [ (d — 1)/2] at most, C is an (n, K, d; ¢)
or [n, k, d; c] entanglement-assisted quantum error correct-
ing code.

The error correction procedure using an entanglement-
assisted quantum code works as follows: a) a quantum state
|) is encoded with n — k — ¢ ancilla qubits prepared in
state |0) and c ebits |D), i.e. |[¢') = |¢)]0)®"K=)|p)®c,
b) o/ encodes its n qubits and transmits them through a noisy
channel, # holds its ¢ qubits noiselessly; ¢) % decodes n
qubits from o7 using its ¢ qubits, obtains error syndromes by
measurements, and corrects errors.

The construction of an entanglement-assisted quan-
tum code can be generalized from the stabilizer codes.
The stabilizer codes are constructed from classical
dual-containing linear codes where the corresponding sta-
bilizer generators are commuting with one another. How-
ever, entanglement-assisted quantum codes do not require
the dual-containing property of classical linear codes since
the non-commuting generators can be embedded into larger
commuting generators using ebits.

Among a certain ancilla qubits, applying more ebits to
the stabilizer codes can optimize the code distance [22].
The larger the code distance, the higher the error correction
accuracy. Thus, researchers began to explore the situation
with a maximal number of ebits, i.e., all ancilla qubits are
ebits, and codes with such parameters are named the maxi-
mal entanglement-assisted quantum codes. The duality in the
stabilizer formalism of entanglement-assisted quantum codes
can led to a linear programming bound that explore the code
distance [23]. A table of the upper and lower bounds on the
code distance of the maximal entanglement-assisted quan-
tum codes with n < 15 was also presented. Constructions
from quaternary zero radical codes improved the bounds of
entanglement-assisted quantum codes to n < 20 [24]. The
bounds were further progressed by generalizing linear pro-
gramming bounds to cases that apply ebits to non-stabilizer
codes [25].

Another direction to construct entanglement-assisted
quantum codes with good error correction abilities is to find
entanglement-assisted quantum MDS codes that achieve the
equality of entanglement-assisted quantum Singleton bound,
ie, K < 27tc=2@=D_ Eptanglement-assisted quantum
MDS codes can be constructed directly from classical MDS
codes [26], constacyclic codes [8] and so on. The up-to-date
families of entanglement-assisted quantum MDS codes were
summarized in [27].

The performance of entanglement-assisted quantum codes
we concern about other than error correction abilities is
the transmission rate and the complexity of encoding cir-
cuits. The transmission rate is defined to be k/n or net rate
(k — ¢)/n. In general, the net rate can be negative since the
number of pre-shared ebits is unlimited. The complexity of
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encoding circuits of entanglement-assisted quantum codes
is O(n(n — k + ¢)/ logn) [28].

The idealized quantum teleportation process assumes %
holds its ¢ qubits noiselessly. However, this cannot be assured
in real situations. The authors in [29] protected c¢ qubits
held by % with a stabilizer code. They also found that
given the same number of qubits n + ¢, an [n,k,d; c]
entanglement-assisted quantum code has better performance
than an [n + c, k, d] stabilizer code, which validates that
pre-shared entanglement is a weaker resource.

Entanglement-assisted quantum codes can also be used
against the time evolution of quantum states in quantum
computers, where .27 and % do not separate spatially. These
codes are named the catalytic QEC codes [21]. The trans-
mission rate of a catalytic QEC code should be positive
since ebits can not be prepared in advance with an arbitrary
amount as in quantum teleportation. Further, qubits held by
2 shall be sent through a noiseless channel, i.e., (£ ®1%)(p),
given p the encoded information and & the noisy
channel.

Exploring the optimal entanglement-assisted quantum
codes is a hot topic since a) they can be constructed
from arbitrary classical linear codes; b) entanglement is a
strictly weaker resource than quantum communication. The
entanglement-assisted method can also be applied to improve
quantum codes other than stabilizer codes, such as nonad-
ditive quantum codes that will be introduced in the follow-
ing subsection. We notice that the protection of ¢ qubits
held by Z in catalytic QEC codes draws our attention to
“error-free” spaces in Section IV. It is also interesting to
study the trade-offs of catalytic QEC codes between the
maximal number of pre-shared ebits and the cost of pro-
tecting these ebits, which reflects the error correction abil-
ities of entanglement-assisted quantum codes in quantum
computing.

B. NONADDITIVE QUANTUM CODES

Analogous to classical nonlinear codes, nonadditive quantum
codes can encode more information than stabilizer codes with
the same number of qubits. Two equivalent constructions
were presented in the same year. A union stabilizer code [30]
is a nonadditive quantum code based on stabilizer codes.
A codeword stabilized quantum code [31] is constructed from
so-called graph states [32], where a graph state corresponding
to an [n, 0, d] stabilizer code integrates a finite abelian group
with a graph. Here we introduce nonadditive quantum codes
using the union stabilizer code structure.

A stabilizer code C with stabilizer S is a joint +1
eigenspace of all elements in S, whose dimension is 2. It can
be noticed that the n — k generators in S having eigenvalues
+1 or —1 yield a decomposition of (C?)®" into 2"~ mutu-
ally orthogonal subspaces labeled by the eigenvalues of the
n — k generators. Based on this decomposition, union
stabilizer codes can be constructed from several mutually
orthogonal stabilizer codes so that the dimension to encode
information is larger than pure stabilizer codes.
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Definition 6: Let Cy be an [n, k] stabilizer code with
stabilizer Sy and Ty = {t1, - ,ts} a subset of the coset
representatives of N(Sp) in P,. A union stabilizer code C is
defined as C = @tie% £;Co.

The dimension K of C is s - 2K. The code distance d
of C is the minimal code distance of ;,Cp, V1 < i < s.
The parameters of a nonadditive quantum code are denoted
as (n, K, d).

It has been noticed that nonadditive quantum codes can
encode more information than stabilizer codes using the same
number of qubits. We may wonder how many errors can be
corrected with nonadditive quantum codes? The first example
of nonadditive quantum codes is the (5, 6, 2) code in [33].
Inspired by the optimal [5, 1, 3] stabilizer code Cy that cor-
rects one arbitrary error, the authors successfully constructed
the union stabilizer code with 6 dimensions. Since codes with
code distance 2 can detect one arbitrary error or correct one
erasure, where an erasure means the location of the error is
known, it is reasonable to explore codes with code distance 2.
Then, an infinite family of 2m + 1,3 - 22m=3 2} code was
presented in [34]. The (9, 12, 3) code [35] formulated by
graph states was first found to correct one arbitrary error.
The authors presented the (10, 24, 3) code [36] later through
a graphical approach.

We have seen that nonadditive quantum codes outperform
stabilizer codes with the same number of qubits and code
distance. The next question is how to find more nonadditive
quantum codes with better parameters? As shown in [31],
a key point to construct nonadditive quantum codes is to
find classical nonlinear codes that can correct desired errors.
This problem is equivalent to finding the maximum clique
of an induced graph, which is known to be an NP-complete
problem. Three structure theorems [37] were proposed to
reduce the search space when finding the maximum clique.
However, this approach is restrained by its algorithm com-
plexity and thus is hard to find nonadditive quantum codes
with n > 11. Yu et al. [9] found two infinite families
of nonadditive single-error-correcting codes that combined
some stabilizer codes with two known nonadditive quantum
codes.

Although nonadditive quantum codes can encode more
information than stabilizer codes, their constructions
lack a regular method and the encoding and decoding
circuits are complicated. We need more approaches to
construct nonadditive quantum codes with larger code dis-
tance. For instance, the entanglement-assisted method was
taken into consideration and a (7,4, 5;4) code was pre-
sented [38]. Constructions of union stabilizer codes and
codeword stabilized quantum codes have provided per-
spectives for searching nonadditive quantum codes, yet
pursuing better parameters are limited by search algo-
rithms. Particular methods such as constructions from
known nonadditive quantum codes or entanglement-assisted
methods also present some examples. However, a more
generic construction of nonadditive quantum codes remains
unknown.
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C. QUANTUM CODES FOR VARIOUS SITUATIONS

The aforementioned quantum codes are great improvements
compared to pure stabilizer codes. This subsection lists some
quantum codes that are suitable for various situations.

1) NONBINARY QUANTUM CODES
Nonbinary quantum codes [39] were developed right after
the binary stabilizer codes that generalized the code space
from 2-dimensional Hilbert space (C?)®" to (C9)®". Non-
binary quantum codes can complete the quantum code field
mathematically and can be applied to fault-tolerant quantum
computing.

Definition 7: A nonbinary quantum code C is a subspace
of (CH®" and a basis of C is denoted as

{letca-+-cp) (e, ca, -+, cn) € (F)®"},

where g = p™ is the power of an odd prime number p and
(Fy)®" is the g-ary finite field on n dimensions.

The code bounds such as Hamming bound and quantum
Singleton bound for high-dimensional cases were analyzed
in [40]. Various quantum codes can be generalized to the
nonbinary cases, such as nonbinary quantum cyclic codes
constructed using graph method [41], nonbinary codeword
stabilized quantum codes with nonadditive properties [42],
or nonbinary entanglement-assisted quantum codes [43].

2) ASYMMETRIC QUANTUM ERROR CORRECTING CODES

In standard discrete error models Pauli matrices occur with
the same probability. In real situations, however, the prob-
ability of phase-flip errors (Z) is much greater than bit-flip
errors (X). Thus, asymmetric quantum error correcting
codes [44] are more flexible for such cases. The probability
that error X and error Z occur is measured by the corre-
sponding error weight wx and wz. Let {Ey} be a set of errors
on n qubits, where Ey = i‘XpZp, ¢ € {0,1,2,3}, a =
(a1,a2,---,an) € {0, 1}, b = (b1, b2, -+, by) € {0, 1}",
then

wx(Ex) = #{jll <j < n,a; # 0},
wz(Ex) = #{jl1 <j < n, bj # 0}. €))

Definition 8: Let C be an (n, K) quantum code, {E}} a set
of errors on n qubits, where wx(Ey) < dy — 1, wz(E) <
d, — 1. C is an (n,K,d;/d,) asymmetric quantum error
correcting code if it corrects {Ey}.

The properties and construction approaches of asymmet-
ric quantum error correcting codes were presented in [45].
Bounds of asymmetric quantum error correcting codes were
analyzed in [46]. Some known asymmetric quantum error
correcting codes were constructed from nonadditive quantum
codes [47] and nonbinary quantum codes [48].

3) QUANTUM BURST ERROR CORRECTING CODES

Another kind of modified discrete error models aims for
errors occurring predominantly in adjacent positions since
entanglement in quantum circuits mainly exists among
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local qubits. The approach to correct such errors rather than
errors occurring in random places is the quantum burst error
correcting code [49]. The burst length bi(-) of an error E
is counted by the number of places that are nonidentity
consecutively.

Definition 9: Let C be an (n, K) quantum code, {E;} a
set of errors on n qubits, where bl(Ey) < 1. C is an (n, K)
quantum burst error correcting code if it corrects {Ey}.

Research problems are similar to asymmetric quantum
error correcting codes. Some known quantum burst error
correcting codes were constructed from cyclic codes and
quantum tensor product codes [50].

4) QUANTUM CONVOLUTIONAL CODES

Analogous to classical cases, initial information can be pre-
pared in streams rather than blocks. The quantum version for
such cases is the quantum convolutional codes [51]. Quantum
codes in the above sections are all block codes. One of the
main benefits of quantum convolutional codes is that infor-
mation can be transmitted in small pieces at any time while
block codes shall prepare a fixed amount of information in
advance. The encoding procedure of quantum convolutional
codes is related to the former information in the stream while
block codes encode information independently from block to
block. Thus quantum convolutional codes have higher error
correction accuracy.

5) CONCATENATED QUANTUM CODES

Concatenated quantum codes concatenate block codes [52]
or quantum convolutional codes with block codes [53] to
combine quantum codes with different error correction abil-
ities. The [9, 1, 3] Shor code is a common concatenated
quantum code that applies three-qubit phase-flip code as the
inner code and three-qubit bit-flip code as the outer code. The
concatenated quantum code can successfully correct one arbi-
trary error. Concatenating [5, 1, 3] code multiple times can
achieve higher fidelity [54]. Concatenating an asymmetric
quantum error correcting code with a stabilizer code for an
amplitude damping channel has a larger code distance than
the best-known stabilizer code [55].

6) TOPOLOGICAL QUANTUM ERROR CORRECTING CODES
All the above quantum codes assume that the encoding
and decoding procedures are noiseless. However, imple-
menting these procedures requires adding quantum gates,
which brings noise naturally. Thus, topological quantum error
correcting codes [56] that apply the stabilizer formalism
locally on topological structures were proposed to be fault-
tolerant. These codes are promising in building large-scale
and fault-tolerant quantum computers.

IV. QEC APPROACHES FOR ERRORS DESCRIBED USING
QUANTUM OPERATIONS

Quantum codes are powerful QEC approaches as they can
correct arbitrary errors. However, such generic approaches
can be inefficient when correcting specific error mod-
els, which are described using quantum operations.
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For instance, if a noisy channel is known to be the amplitude
damping channel in advance, there exists a four-qubit encod-
ing operation [12] while the optimal generic [5, 1, 3] quan-
tum code needs five qubits. This section first presents
optimization-based approaches to obtain optimal QEC oper-
ations for specific error models that have highest recovery
accuracy. The operator quantum error correction (OQEC) is
then presented to protect information into “‘error-free” spaces
such that the information can be immune to specific error
models.

A. OPTIMIZATION-BASED APPROACHES
Optimization-based approaches use numerical methods to
obtain optimal encoding and recovery operations for specific
error models. It is done by maximizing the channel fidelity of
the initial information and a noisy channel. This problem can
be transformed to optimization problems.

1) OPTIMIZATION PROBLEM TRANSFORMATION

Suppose a quantum state p is transmitted through a noisy
channel £ with a fixed encoding operation /. To find the opti-
mal recovery operation R, the objective function I'y based on
the fidelity f is

Ffzargméxf(,o,RoﬁoU), (10)

where arg refers to R such that I achieves the maximum and
f () refers to the minimal fidelity F,,;, or the entanglement
fidelity F,; as defined in equations (5) and (6).

To transform equation (10) into a convex optimization
problem, we need to overcome that £ has a variety of ele-
ments in operator-sum representations, which is inconvenient
during the calculation. Fortunately, there is a unique operator
for £, the Choi matrix. Before the definition of Choi matrix,
we introduce a representation that denotes an N x N density
matrix p into a single column vector |p)) of dimension N 2,
It is done by stacking columns of the matrix in right-to-left
order on top of one another.

Let L(H1, H2) be the set of operators from Hilbert space
Hito Hy and C = Zij cijli) (j| an operator in L(H1, H2),
where {|7)} and {|j)} are bases for H, and H; respectively,
cij = {i|Clj). Operator C is defined in ket form as a vector on
Hilbert space Hy ® H1,

1C)) = cyli) @ 1i). (11)
i

This yields three useful relations: a) ({(C1|C3)) = tr(CELCQ),

b) try, (IC1) ((C2]) = C1C2T € L(H2), ¢) (C1 ® C2)|C3)) =
|C2C3C1T)), where Cy, Co, C3 € L(H1, H2).

Definition 10: Let £ : L(H1) — L(H2) be a quantum
operation with operator elements {Ey}. The Choi matrix is
calculated from all operator elements {Ey} of £ as

Xe =Y 1E)(Exl, (12)
k

where Xg > 0 and try,Xe = 1.

VOLUME 8, 2020

Let p be a quantum state on H 1, £(p) can be rewritten using
the Choi matrix as

E(p) = Y ExpE]
k

=Y tryy, |Exp)) ((Ex|
k
=Y tra, [(pT ® DIER))((Ex|]

k
= 1r3,[(pT ® DXel. (13)

A quantum state p’ on H; that £(p) returns can be written
as an one-sided matrix operation |p")) = (3", Eff ® Ex)|p)).
Since tr(pEy) = tr(JEx)){{p|]) = {((p|Ek)), we can rewrite
the entanglement fidelity as

Fen(p, €) =Y _({plEx))((Ex|p))

k
= ((pXglp)). (14)

Inserting equation (14) into (10), where the encoding oper-
ation U : L(H1) = L(H>), the noisy channel £ : L(H;) —
L(H>) and the recovery operation R : L(Hz) — L(H1)
have operator elements {U;}, {E,,} and {R,} respectively,
we successfully transform the entanglement fidelity into a
convex optimization problem,

Cry = argmax y_(pIREnUN((REnUi1P))

mnl
Pry, = argmax Y~ (U} ELIR) ((Ral pU) E]))
mnl
P, = argmax Y ((pU/ E}IXRI0U] E})
Im
st.XR 20, try,(Xr)=1. (15)

2) MAXIMIZING THE ENTANGLEMENT FIDELITY
Finding the optimal encoding operations and recovery opera-
tions with entanglement fidelity being the objective function
was firstly solved by the power method [62]. The process
works as follows: a) fixes a random encoding operation and
optimizes the entanglement fidelity over recovery operations;
b) fixes the recovery operation and optimizes the entangle-
ment fidelity over encoding operations; c¢) proceeds itera-
tively until the entanglement fidelity is convergent to a thresh-
old. The explicit algorithm was proposed in [63] that applied
methods for solving the semidefinite programming (SDP)
problems.

It can be seen from equation (15) that the objective function
is linear in recovery operations with constraints Xg > 0.
However, the dimension of the optimization problem grows
exponentially with the number of qubits and the SDP problem
is a resource-intensive operation, thus it is hard to apply on
large cases [64]. Another difficulty states that the obtained
recovery operations are not constrained by the structure
of quantum operations, thus do not have intuitive physical
forms. Defining a recovery operation based on the projector
and a unitary operator can solve this problem, though this
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will lead to suboptimal results [65]. In terms of eigenanalysis,
the proposed greedy algorithm constructed a channel-adapted
recovery operation by successively choosing the syndrome
subspace that maximizes the entanglement fidelity. The per-
formance of obtained recovery operations was verified on the
amplitude damping channel, which is superior to quantum
codes [66].

Moreover, machine learning techniques were considered
in [67] to optimize the entanglement fidelity. Recovery opera-
tions are learned from tremendous known quantum states and
actual noisy channels.

3) MAXIMIZING THE MINIMAL FIDELITY

The entanglement fidelity considers the initial quantum states
in an ensemble notion, providing a relatively comprehensive
evaluation of the QEC performance. However, a quantum
computer should be able to protect the information in arbi-
trary quantum states. Thus, worst-case quantum systems shall
be considered, which are gauged by the minimal fidelity.

The recovery operation obtained from maximizing the
minimal fidelity was proposed in [68], which is a non-convex
optimization problem. Therefore, the authors relaxed the ini-
tial quantum states into a larger Hilbert space to convert
the problem to a typical convex optimization problem and
obtained suboptimal recovery operations. Later, they pre-
sented an exact solution in [69] when the initial information
is encoded on one qubit. In this case, the problem can be
perfectly converted into the SDP problem based on the sum of
squares (SOS) characterization. When the initial information
is encoded on multi-qubits, they relaxed the problem such
that the SOS characterization holds. The obtained recovery
operations are suboptimal.

Alternatively, maximizing the minimal fidelity can con-
sider recovery operations with different forms, i.e., the trans-
pose channel [70]. The authors proved that a recovery oper-
ation and a transpose channel are the same maps. Another
approach in [71] defined a complementary channel, which
cast the problem of finding optimal recovery operations to
a dual optimization problem of finding minimal noise caused
by the environment. Although both alternated approaches still
obtain the approximate recovery operations, they simplified
the solving process.

4) MINIMIZING THE CHANNEL NONIDEALITY

The channel nonideality [72] is an indirect approach to max-
imize the channel fidelity, which measures the ‘“distance”
between an actual channel R o £ o U and an ideal channel I,
where the encoding operation U/, the noisy channel £ and the
recovery operation R have operator elements {U;}, {E,,} and
{R,} respectively. Given the encoding operation I/ and the
noisy channel £ in advance, we aim to find the correspond-
ing optimal recovery operations. From the Knill-Laflamme
condition we obtain R,E,,U; = oyyu,l, indicating that the
recovery operation R for the noisy channel £ is perfect. Thus,
the objective function I'. to minimize the channel nonideality
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based on the Hilbert-Schmidt norm is

e = arg min > IRuEnUs = il |1, (16)
" lmn

where arg refers to the set of operator elements {R,} of the
recovery operation R.

A unique operator of R can be obtained by stacking the
operator elements on the right of one another. Transforming
the objective function I'. will also lead to convex optimiza-
tion problems [73]. This approach can further be applied to
entanglement-assisted QEC cases [74].

The advantage of optimization-based approaches is that
the obtained optimal encoding and recovery operations can
involve fewer ancilla qubits. As the cloud-based quantum
computers from IBM and Rigetti opening to the public,
optimization-based approaches in [73] was demonstrated
in [75] in 2019. The channel-adapted recovery operations
were decomposed into implementable quantum gates at the
expense of losing recovery accuracy. Thus the realization
of optimization-based approaches is a trade-off between low
error correction cost and high error correction accuracy.

B. OPERATOR QUANTUM ERROR CORRECTION
A significant application of the OQEC [76] is to find the
“error-free” spaces for specific error models such that the
information encoded in these spaces is immune to errors.
A decoherence-free subspace is a kind of “‘error-free” space
in which the information is affected by the noise unitarily
and can be recovered easily. A noiseless subsystem is another
kind of “error-free’” space that requires the noise acting on it
to be identity. The advantage of the OQEC is that it “‘hides”
information into the “‘error-free” spaces and thus do not need
error correction after transmission.

The formal definition of ‘‘error-free”” spaces is given
below.

Definition 11: Let
decomposition

H be a Hilbert space with

H=PH U)K, (17

1

& be a noisy channel on HP @ HZ. HP is a noiseless
subsystem if Vp* € DH), Vo%i e D(HZ), 3o ¢
D(H), s.t.,

£ ® p”) =0 ® p”i. (18)

When dim(H”) = 1, HZ isa decoherence-free subspace.
Subsystem H%i can be named as the subsystem codes. The
self-correcting property was shown explicitly without exter-
nal QEC approaches. The stabilizer formalism of subsystem
codes requires us to transform some stabilizer generators to
gauge operators, which are designed to leave the encoded
quantum states unaffected. For instance, the Bacon-Shor
code [77] is a subsystem code transformed from the Shor
code. Although reducing the number of stabilizer generators
will lead to fewer error syndromes, gauge operators can make
up for this by preserving quantum states passively. Thus,
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subsystem codes and stabilizer codes are equivalent in code
distance with the same number of total qubits.

A necessary and sufficient error correction condition for
the OQEC can be developed from the Knill-Laflamme con-
dition [78]. Let P be the projector onto HY @ H? and
£ a noisy channel with operator elements {Ey}. The OQEC
is feasible when a noisy channel & satisfies

PE.E}P = Ul @ 1% VE,, Ey € {Ey). (19)

where Uff is an operator on H7 and I% is an identity
matrix on H%i. Thus, the OQEC is suitable for specific error
models with symmetry properties on subsystems ;.

The key issue of the OQEC is to find the ‘“‘error-free”
spaces for a specific error model. Consider a unital noisy
channel £ with operator elements {Ey}, where unital means
E(I) = I, the “error-free” property states that £(p) = p.
Thus, [p,Ex] = 0 for all k. Choi and Kribs [79]
proposed a method to find &-invariant subspaces using
C*-algebra. The algebraic structure induces a decomposition
of the corresponding Hilbert space. Then noiseless subsys-
tems are obtained. The explicit algorithm was developed
in [80]. The authors in [81] proposed a numerical method to
block-diagonalize C*-algebra with Wedderburn decomposi-
tion, which is inspired by semidefinite programming.

The OQEC suits for specific error models with symmetry
properties. The information encoded into the ‘‘error-free”
spaces does not need error correction procedures. Up to now,
methods to find decoherence-free subspaces or noiseless sub-
systems mainly aim for unital noisy channels while general
noise may be non-unital.

V. CONTINUOUS-TIME QUANTUM ERROR CORRECTION
In real situations, the noise of an open quantum system
comes from continuous interaction with the environment.
Thus the continuous error models are presented to describe
the evolution of open quantum systems continuously in time.
To correct errors in these models, the continuous-time quan-
tum error correction (CTQEC) is needed other than quantum
codes. The advantages of CTQEC are that a) it corrects
continuous errors, which fit the real situations better; b) it can
correct errors during transmission rather than after transmis-
sion. In this section, we introduce the continuous error model
and the error correction procedures for this model.

Continuous errors are described by the evolution of open
quantum systems, which is governed by the Schrédinger
equation

dp?(1) _
dt

—%[H, p? (1), (20)

where p? (1) is the state of an open quantum system at time ¢,
h is the Planck constant and operator H is named the Hamil-
tonian of the system. The solution of equation (20) returns
,Oﬁ(l‘) — e_iH’/hp/j(O)e_"Ht/h.

Most of the time we only want to track down the states
of the principal quantum system without the environment.
Let p(¢) be the state of the principal quantum system.
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The evolution of the principle system can be described using
a master equation in the Lindblad form [57], dp(t)/dt =
L(p(t)). The Lindblad master equation is modeled as Marko-
vian. The equation consists of the Hamiltonian H; of the
principle system, a set of Lindblad operators {L;} and the
corresponding error rate A;, written as

L(p()) = —i[Hy, p(1)]
1
+5 Z A,-(zL,»p(t)L]T _ LJTL,-p(r) - p(t)LjTLj).
J

21

CTQEC [10] described that both errors and error correction
procedures are continuous in time. A state o(¢) undergoes the
error correction procedures during a time step dr is

o(t +dt) — (1 — kdt)p(t) + kdtR(p(1)), (22)

where « is the error correction rate and R(-) is the error cor-
rection operation that consists of error detection and recovery.
In the limit of dr — 0, the continuous error correction
procedure Q(-) is

Q(p() = k(R(p(1) — p(1)) (23)

Then the full master equation for the evolution of a princi-
pal quantum system subject to Markovian noise plus the error
correction procedure is

d
% = L(p(®)) + Lp(1)). (24)

Example 2: Consider a one-qubit principal quantum sys-
tem with initial quantum state p(0) = |0)(0| and bit-flip
errors as noise, whose continuous error model is

L(p@) = MXp(D)X — p(1)). (25)

In any moment during CTQEC the state can be represented
by the fidelity F(t) = F(p(0), p(t)) as

pt) = F(0I0)O0] + (A — Fe)IH (|, F() € [0,1],  (26)
The error correction procedure is

Q(p(1)) = «(10){0[p()]0) (0] + [0) (1| p(1)[1){0] — p(7)).
27)

Applying equations (25) and (27) into (24), the evolution of
the system is thus
dp(1)

= [A 4k — X + ) F(1)]110) (0]

+[RA + ) F(@) — A —«]|1){1]. (28)
An alternative way to describe the evolution of the system can

be obtained from equation (26) as
dp(t) dF(@) dF (1)
= 1)(1]. 29
I 7 7 [1)(1] (29)
It is obviously from equations (28) and (29) that
dF(t)
dt

10)(0] —

= A+ K —Qr+i)F() (30)
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with solution F(t) = (1 — 0)e™ @+ 4 9 where § =
1 —1/2+ r)and r = k/A is the ratio between the error
correction rate and error rate. We see that the fidelity F(t)
is confined above its asymptotic value 6 and 0 can be made
arbitrarily close to 1 for sufficiently large r.

CTQEC for continuous error models applies quantum
codes in the encoding procedures and considers continuous
error correction procedures. In real situations, however, it is
impossible to implement error correction procedures contin-
uously during infinite small time. Thus weak measurements
are needed that only cause small changes to a quantum state
and obtain little information. It is known that each POVM
operator can be decomposed into a sequence of weak mea-
surements [58]. A weak measurement operator can be written
as P; = p;(I + W), where 0 < p; < 1 and |W| « 1. The
following example describes how to implement CTQEC with
weak measurements.

Example 3: Consider the quantum system in Example 2
and a sequence of weak measurement{P1, Py}, where

_ I +eX _ I —eX
1= 2= =5
POVM operators are defined as Py = MlTMl, P, = M2TM2,

where
I +eX I —eX
My =,/ > My =,/ o (32)

Based on the outcomes of P, Py, the corresponding weak
recovery operators Ry, Ry are given by,
I +itY 1 —itY
Rl = —7 R2 = —’
V1+ 12 V14172
Then the evolution of quantum state p(t) during the error
correction procedure Q(p(t)) is
dp(t)
Qp(1) = == = RiMip(OM1R] + RaMap(1)M2R}.
(34)
Weak measurements in the above example directly act on
the quantum state and weak recovery operations only con-
dition on the most recent measurements, thus historical mea-
surement outcomes are discarded. We name this approach the
direct CTQEC. The indirect CTQEC implements weak mea-
surements on the stabilizer generators [59]. For a quantum
state in Example 2, its stabilizer generator is Z, the corre-
sponding weak measurements are {P/, P,}, where

e < 1. 31)

1. (33)

I+€Z , 1—€Z

=—, Ph=—"
2 2

Weak recovery operators are applied based on the outcomes
of measuring stabilizer generators. The evolution of the
principle quantum system subject to the indirect CTQEC
is described using a stochastic differential equation. Weak
recovery operators can also be applied based on the difference
between outcomes from two weak measurements [60].

Weak measurement implementation can be described on
the Bloch sphere explicitly. Consider Example 2 again.

P , €<l (35
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The initial quantum state is on the z-axis. Bit-flip errors will
transform it towards the center of the sphere, i.e., the max-
imally mixed state. Weak measurements on quantum states
cause a rotation around the y-axis. Thus the corresponding
weak recovery operators in equation (33) are also designed
with a rotation around y-axis. Weak measurements on stabi-
lizer Z cause a rotation around the x-axis and weak recovery
operators are designed as weak X operators.

Physical operations such as weak measurements make a
discretization for interactions between the principal system
and the environment. More implementation details can be
found in [61]. It is proved that implementing CTQEC with
weak measurements needs n — k 4 1 ancilla qubits when
the encoding procedure is chosen as an [n, k] stabilizer code.
Thus, the error correction cost of CTQEC is comparable to
quantum codes and the error correction accuracy is higher
than quantum codes with a high error correction rate.

VI. DISCUSSIONS AND FUTURE DIRECTIONS

The above sections have reviewed the state-of-the-art work
of QEC. In the beginning, quantum codes are designed for
discrete error models that are described using Pauli matri-
ces. Then Optimization-based approaches and the OQEC
are introduced that had better performance for specific error
models that are described using quantum operations. Further,
CTQEC is proposed to correct errors continuously. In this
section, we first summarize the features of each approach and
discuss some future directions. We then propose some likely
definitions of the perturbed error models, aiming to explore
the relation between the perturbation on an error model and
information preservation.

Table 1 summarizes how these approaches work in each
step during quantum information processing and their respec-
tive features. Each approach has different error correction
ability and it is up to the researchers to choose what they
interest most for further study.

A. ADVANCED QUANTUM CODES

The development of quantum codes is promising since the
digital error correction is easy to implement and it is closely
related to the classical code theory. There remains certain
work to complete the quantum code theory, such as a) con-
structing quantum codes with better parameters from classi-
cal codes using the CSS construction, b) combining known
quantum codes that have different error correction abilities,
¢) finding more code structures beyond the scope of known
quantum codes.

Entanglement-assisted quantum codes and nonadditive
quantum codes are two main approaches that expand the
scope of pure stabilizer codes. The former uses pre-shared
entanglement so that quantum codes can be constructed from
arbitrary classical linear codes. The latter, analogous to clas-
sical nonlinear codes, aims to encode more information than
stabilizer codes with the same number of qubits. Various
quantum codes such as asymmetric quantum error correcting
codes are proposed to fit the real situations in discrete form.
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TABLE 1. Summarization of QEC approaches.

Approaches

Encoding

Error Models

Decoding

Features

Stabilizer codes

Entanglement-assisted
quantum codes

Nonadditive quantum
codes

Quantum codes for
various situations

Quantum codes

Discrete error models
described using Pauli
matrices

Error syndrome
measurements and
recovery operations

Can be constructed from classical
dual-containing linear codes

Can be constructed from arbitrary
classical linear codes using entangle-
ment

Can encode more information than
stabilizer codes with the same number
of qubits, which is analogous to clas-
sical nonlinear codes

Have respective scope of application
(includes fault-tolerance, asymmetric
errors and burst errors)

Optimization-based

Quantum codes/Optimal

Optimal recovery operations

Numerically return the optimal oper-

Approaches encoding operations Specific error models ations, which are not directly imple-
described using quantum mentable quantum gates though
OQEC “Error-free” spaces operations None Hides information passively rather
than actively corrects errors
Direct CTQEC Directly applies weak measurements
Quantum codes/Optimal . Weak measurements and on information
- . . Continuous error models h - -
Indirect CTQEC encoding operations weak recovery operations Applies weak measurements on the

stabilizer generators

In the future, combining entanglement with known quantum
codes can lead to better code parameters. A more generic
construction of nonadditive quantum codes also remains
an open issue. Besides, more code structures can be pre-
sented to fit the real situations discretely. Further, a table
of best-known stabilizer codes [19] can be kept updated by
constructions from various classical dual-containing linear
codes.

B. QEC APPROACHES FOR ERRORS DESCRIBED USING
QUANTUM OPERATIONS

As pointed out in [15], the performance of a QEC approach
for different errors models varies and there should be a match-
ing between a noisy channel and a QEC approach. Thus,
approaches for specific error models that are described using
quantum operations were proposed. Optimization-based
approaches are numerical methods that find optimal encoding
and recovery operations given the initial information and a
noisy channel. However, the obtained optimal encoding and
recovery operations are not unitary and cannot be directly
implemented through quantum gates. Thus, future work shall
solve it while maintaining the near-optimal quantum error
correction performance.

The OQEC encodes information into the “error-free”
spaces for specific error models such that the information
is preserved without active error correction procedures. Thus
this approach is widely applied in QEC. To apply the OQEC,
the symmetry property of error models is particularly impor-
tant. If a perturbation breaks the symmetry of an error model,
can these “error-free” spaces still work? This question leads
to our perturbed error models in subsection VI-D.
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C. CTQEC

CTQEC is a theoretically optimal choice for QEC when the
error correction rate is high enough. However, continuous
error correction procedures still need to be implemented with
discrete physical operations, i.e., weak measurements and
weak operations, in small time intervals. The direct CTQEC
applies weak measurements on information directly, which
changes the information itself. Since all former measurement
outcomes are discarded, weak recovery operators can only
condition on the most recent weak measurements. The indi-
rect CTQEC applies weak measurements on the stabilizer
generators. Weak recovery operators depend on the outcomes
of the last weak measurements. Physicists will keep pur-
suing wiser feedback choices for recovery, aiming towards
more accurate error correction. Further, exploring whether
CTQEC can be fault-tolerant may have wider applications in
quantum computing.

D. PERTURBED ERROR MODELS
There has been abundant work for discrete or continuous
error models. Further, our main concern is the perturbed
error models. One of the main applications of perturbed error
models is exploring to what extent perturbed errors will affect
the information in the “error-free” spaces. The “error-free”
spaces correspond to error models with symmetry property
and the perturbation on these models will break the sym-
metry. Thus, it is meaningful to obtain a relation between
the perturbation and information preservation and design
QEC approaches to correct perturbed errors.

Previous work considered the following two kinds of
perturbations. Continuous errors are described by the time
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evolution of an open quantum system, which is generated by a
Hamiltonian H. Perturbation H¢, which is added to the initial
system Hamiltonian as H' = H + €H€, on decoherence-
free subspaces have been proved in [82] that there is no
term proportional to the perturbation parameter ¢ when mea-
suring the distance between before-perturbation fidelity and
after-perturbation fidelity.

While the Hamiltonian describes errors over the whole
open quantum system, the Lindblad operators focuses on the
errors that only act on the principal quantum system with-
out the environment. Perturbations L are discussed using
Lindblad operators in equation (21) as Ljf =L+ eLjE or
Lj = LfLLST [14].

Other than the Hamiltonian and the Lindblad operators,
the quantum operation is also an powerful tool to describe
errors. Thus it is worthy to discuss the perturbation using
quantum operations. We raise the question: Let £ be an error
model with operator elements {£;}. What kind of perturbation
is worthy discussed? Analogous to the Lindblad operators,
we may consider {E;} is perturbed by {E; + M;}, where M, is
the perturbation matrix, |M; —1||, < €, and |- |, is a suitable
norm. The perturbed error model is denoted as £’. Applying
the completeness relation, we can obtain

> (Ei+ M) E + M) =1

1
> &M+ ME+ M) = 0. (36)

The evolution of a quantum state p going through &’ is
E'(p) = Y (Ei+ Mp)p(E; + M)
i
=&(p)+C, (37

where C = Y ((EipM; + MipE] + MipM)).

Information preservation can be calculated by the fidelity
of before-perturbation quantum state and after-perturbation
quantum state F(E(p), £'(p)). When the before-perturbation
quantum state p = [{) (Y| is pure, the fidelity is

F(E(p), E'(p) = 1+ (YICIY). (3%)

A second way to perform the perturbation is a perturbed
error model £” with operator elements {M;E;(¢)}. Applying
the completeness relation, we can obtain

N ElMiME =1 (39)
i
The evolution of a quantum state p going through £” is
€"(p) = Y MiEipE; M]. (40)
i

The fidelity with pure before-perturbation quantum state is

F(E(p), E"(p) = Y _(WIME]Y). (41)

k

A third way to perform the perturbation is inspired by the
quantum process tomography. The vector space of a single
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qubit has dimension d = 2 with 2 x 2 density matri-
ces. The vector space of n qubits has dimension d = 2"
with d x d density matrices. Thus the operator elements on
a d-dimensional vector space have a basis {Ei}, 1<i<d?
and each E; can be written as

E,’ = Zwij‘Ej, (42)
J

where complex numbers wy; are elements of matrix W. Then
a perturbation matrix 7 acting on W will lead E; to

E =Y vk, (43)
J

where complex numbers v;; are elements of matrix 7. W. The
completeness relation states that

SN vivElE =1 (44)
i

The difficulty of analyzing such perturbations is that the
number of variants involved could be 2d* 4 d?.

There are other perturbed error models to be discovered.
We aim to find out which ones can deduce intuitive relations
between the perturbation and information preservation and
further propose approaches to correct these perturbed errors.

VII. CONCLUSION

In this paper, we analyze some progress on QEC approaches
according to the different error models. We attempt to
explain how these approaches work and then discuss their
respective features. Quantum codes for discrete error mod-
els are promising since they only focus on correcting Pauli
matrices. Optimization-based approaches and the OQEC can
achieve better performance for specific error models that are
described using quantum operations. CTQEC for continuous
error models corrects errors all along the processing way,
where errors and error correction procedures are described
using different equations. We also discuss some challenging
open issues. With the development of quantum computing,
it is necessary to design QEC approaches with lower error
correction cost and higher error correction accuracy.

We also propose likely definitions of the perturbed error
models and discuss the evolution of quantum states caused
by the perturbation. The perturbed error models are described
using quantum operations. In the future, we will validate if
these definitions can deduce intuitive relations between the
perturbation and information preservation. Further, we hope
to find the corresponding error correction procedures for the
perturbation. The perturbed error models may open up new
possibilities towards robust QEC approaches.
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