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ABSTRACT Deep learning methods provide a platform to segment boundaries within the retina and choroid
in OCT images of the posterior eye, with the ultimate goal of having a robust model that works well across
a wide range of different datasets. However, since most studies of deep learning methods use datasets
exhibiting similar image quality for both training and evaluation, the effect of varied image quality on
such methods is not normally explored in the context of OCT image segmentation. An understanding of
the effects of image quality factors is vital to determine the robustness of the methods and their ability to
be applied in clinical practice where images exhibiting a range of different qualities are encountered. This
study examined a range of factors that can affect standard OCT image quality and determined how and
why the performance of an existing neural network based segmentation method can subsequently degrade
as a result. Three image quality factors (noise, contrast reduction, and gamma correction) all had a negative
impact upon performance, while more robust performance was maintained in the presence of both JPEG
and JPEG2000 image compression. Improving the method’s robustness to each of these degradations is also
demonstrated with marked performance improvements identified by applying a fine-tuning approach to the
network. This study improves our understanding of the effect of OCT image degradation on neural network
performance, the effect that fine-tuning with poor-image quality data has on the network and highlights the
benefit and importance of training resilient models using data augmentation.

INDEX TERMS Image segmentation, machine learning, optical coherence tomography.

I. INTRODUCTION
Changes in the posterior ocular tissues (e.g. the retina and
choroid) occur over the course of the day [1], [2], through-
out normal ocular development in childhood [3] and over
a lifetime [4], [5], and in association with the develop-
ment of myopia [3], [6], [7] and numerous posterior eye
diseases [8]–[11]. The quantification of these changes is
fundamental for both clinical and research tasks. In partic-
ular, the segmentation of the chorio-retinal layers and sub-
sequent measurement of layer thickness is often required
for comparison to age-matched data or previously measured
patient data, for the detection and management of disease and
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documenting the eye’s normal aging changes. In recent years,
the introduction of optical coherence tomography (OCT)
has allowed for non-invasive, high-resolution images of the
retina and choroid to be captured for such analyses. However,
the manual image segmentation and analysis of large data sets
of OCT images by human experts is a time consuming task,
and has necessitated the development of automated analysis
methods.

Previously, several methods for the automatic segmenta-
tion of chorio-retinal layers have been introduced. Initial
methods used standard image processing techniques, which
predominantly relied upon handcrafted algorithms follow-
ing a predefined set of rules. Such algorithms involved:
active contours [12], graph theory [13]–[15], energy mini-
mization [16], diffusion maps [17], Chan-Vese models [18],
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Markov models [19], and kernel regression filtering [20].
A potential downside of many of these approaches is their
lack of robustness and generalization, particularly in the pres-
ence of noise and artefacts.

To address some shortcomings of these approaches,
machine learning (ML) basedmethods have become common
for the automatic segmentation of OCT images. These have
included the use of random forests [21], [22] and support
vector machines [23]. However, deep learning with neural
networks, in particular, is frequently used for OCT image
segmentation. A number of different methods have been uti-
lized including patch-based classification [24]–[27], seman-
tic segmentation [28]–[34], adversarial learning [35], and
transfer learning [36]. Additionally, some methods [37], [38]
have used volumetric input data, consisting of multiple image
slices instead of a standard single image. The performance
of these methods is heavily dependent on the quality of the
image data used for training. In particular, it is important that
the training data is representative of the testing data to ensure
a correct and fair evaluation of machine learning method
performance.

Several prior studies, not involving ocular OCT image
analysis, have examined the effect of various image qual-
ity degradations and their effect on the performance of
machine learning models [39]–[44]. Dodge and Karam [41]
investigated the effect of image quality distortions (blur,
contrast, noise, JPEG compression) on the performance of
existing neural networks. Using a subset of the ImageNet
2012 dataset, they showed that the networks were susceptible
to quality distortions, particularly blur and noise. Similarly,
Roy et al. [42] experimented with a number of types of
degradation including three types of noise (Gaussian, col-
ored Gaussian, salt and pepper), two types of blur (motion,
Gaussian) as well as JPEG compression. Using support vector
machines, da Costa et al. [43] analyzed the effects of different
types of noise (Gaussian, Poisson, salt & pepper) on the Corel
and Caltech101-600 datasets. Likewise, Franceschi et al. [44]
examined the robustness of various classifiers to both uniform
and Gaussian noise. Overall, these studies found that such
image quality degradations had a negative impact on the
performance of machine learning models.

Some work has also examined the effect of image quality
on the performance of non-machine learning retinal seg-
mentation algorithms for ocular OCT images. Somfai et al.
[45] reported that the performance of their retinal segmen-
tation algorithm, incorporating standard image processing
techniques, degraded in the presence of OCT image artefacts
such as defocus, depolarization and decentration. In another
study analyzing the effect of scanning distance onOCT image
analysis, Varga et al. [46] showed that using a sub-optimal
scanning distance increased retinal boundary detection error.
Speckle noise and artefacts also affect OCT image quality
and the subsequent efficiency and accuracy of segmentation
algorithms [14], [47]. Balasubramanian et al. [48] analyzed
the effect of image quality on tissue thickness measurements
obtained directly from three different SD-OCT instruments

and noted that the presence of noise in low quality images
may negatively affect the performance of a segmentation
algorithm.

To compensate for poor image quality, a few studies in
the context of deep learning for OCT image segmentation
perform preprocessing on the images for de-noising or con-
trast enhancement purposes. For instance, image filter-
ing [14] or image registration and scan averaging [47], can
be used to reduce speckle noise in OCT images. However,
most deep learning segmentation studies do not perform any
pre-processing leaving many of these methods susceptible to
reduced performance in the presence of poor quality data.
Additionally, the effect of image compression on perfor-
mance has not been explored previously.

Thus, there is no existing analysis of the impact of image
quality factors on OCT boundary segmentation with deep
learning methods and, as a result, the effect of the relevant
image degradations is poorly understood. An examination
of performance in the presence of degraded image quality
is important to evaluate the generalizability of such deep
learning methods and their ability to be applied as useful
segmentation tools in clinical practice. By using a previously
proposed network and methodology, which has demonstrated
good performance on OCT chorio-retinal layer segmenta-
tion [28], this study aims to focus exclusively on analyzing
the effect that OCT image quality degradation has on seg-
mentation performance. The contributions of this paper are
as follows:

• We provide a comprehensive simulation of the effects
of degraded OCT image quality and present a detailed
analysis for the segmentation performance of testing
on such data, for a range of image quality factors and
parameters.

• Using fine-tuning, we demonstrate the feasibility of
improving the method’s robustness in the presence of
variable image quality data. Thus, providing a demon-
stration of training regimes to provide robust deep learn-
ing OCT segmentation methods.

• The results of network changes provide a greater under-
standing of the underlying neural network behavior
when exposed to OCT image degradations.

II. METHODS
A. DATA
A dataset consisting of SD-OCT images from healthy eyes
was used for this study and has been described in detail
elsewhere [49]. The data consists of images from 101 healthy
participants collected at four visits over an 18-month period.
At each visit, two sets of six cross-sectional foveal-centered
radial chorio-retinal scans were acquired. Each image has
a pixel dimension of 1536 × 496 (width × height) which
is approximately equivalent to a real physical dimension
of 8.8 × 1.9 mm (vertical scale of 3.9 µm per pixel
and a horizontal scale of 5.7 µm per pixel). The images
were acquired using the Heidelberg Spectralis (Heidelberg
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FIGURE 1. Overview of the general method and the neural network model, including an example of the use of the trained model output for
segmentation of OCT chorio-retinal layers. Bold numbers (1-7) and dashed arrows indicate the order that the steps are performed. 1: Raw OCT image
(grayscale 1536× 496) input. 2: Neural network architecture. 3: Area probability maps output from network. Grey dashed box corresponds to cropped
region of interest. Each area is drawn in a different color. 4: Edge detection performed using Sobel filter. 5: Probability maps constructed for each
boundary. 6: Shortest path graph search performed on each boundary probability map. 7: Image segmented and error calculated. Grey dashed boxes
correspond to cropped region of interest. For visualization, dashed lines (predictions) and solid lines (ground truths) are overlaid on the image. Each
boundary is drawn in a different color.

Engineering, Heidelberg, Germany) SD-OCT instrument
with the Enhanced Depth Imaging mode enabled. Automatic
real time tracking was utilized, with 30 frames averaged
for each image to improve the signal to noise ratio. Due
to the similarity and redundancy of data between visits and
sets for each participant, only data from the first visit and
from one set is used. Segmentations, labelled manually by
a trained observer, are provided for the eight chorio-retinal
layer boundaries including the chorio-scleral interface (CSI),
the outer boundary of the retinal pigment epithelium (RPE),
the inner boundary of the inner segment ellipsoid zone
(ISe), the inner boundary of the external limiting membrane
(ELM), the boundary between the outer plexiform layer and
inner nuclear layer (OPL/INL), the boundary between the
inner nuclear layer and the inner plexiform layer (INL/IPL),

the boundary between the ganglion cell layer and the nerve
fiber layer (GCL/NFL), and the inner boundary of the inner
limiting membrane (ILM).

Throughout this work, a training dataset, a validation
dataset, and a testing dataset are used, each consisting of a
subset of these OCT scans (with different individual subjects
across the different dataset). The training dataset contains
240 images from 40 randomly selected participants (6 scans
from each) while the testing dataset contains 294 images
from 49 randomly selected participants (6 scans from each)
and the validation dataset contains 60 images from 10 ran-
domly selected participants (6 scans from each). A roughly
40/10/50 split, chosen empirically, is used between the train-
ing, validation and testing sets as a trade-off between provid-
ing sufficient training data, calculating representative testing
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FIGURE 2. Example of image quality factors evident in real OCT data. The white dashed box in the top image indicates the common
region of interest corresponding to the four subplots. The ‘‘Increased Noise’’ subplot demonstrates the effect of scan averaging with
a higher level of noise present compared to the baseline as a result of fewer averaged scans. The ‘‘Intensity’’ subplot depicts the
effect of image acquisition conditions resulting in a change in the intensity/contrast of the baseline image. The ‘‘JPEG compression’’
subplot shows the baseline image exported from the instrument using the lossy JPEG file format as opposed to a lossless bitmap.

results and performing accurate model selection. An individ-
ual participant’s scans were not included in more than one of
the datasets and with six different radially oriented scans per
participant, there is an equal distribution of scan orientations
within each dataset. All images are grayscale with an intensity
range of 0-255 (inclusive). The manufacturer’s mean image
quality for the training, validation and testing datasets were
32.3 dB, 32.1 dB and 32.5 dB respectively. Overall, the image
quality was not statistically significantly different between
the three datasets (all p>0.05).

B. SEGMENTATION METHOD
The segmentation method employed in this work consists
of a two-stage process with the objective of delineating

eight chorio-retinal layers. The first stage involves training
a fully-convolutional neural network for semantic segmenta-
tion. Here, the input is an OCT image and the outputs/labels
are area probability maps. These areas are defined between
the respective layer boundaries and the edges of the image.
By applying the Sobel filter, edge detection is performed
on each area probability map to extract the corresponding
boundary probability map. Using this acquired map, a short-
est path graph search is then performed to delineate the
position of each boundary. The graph search component of
the method has been described in detail previously [25].
By comparing the predicted boundary position to the actual
manually segmented boundary position provided in the data,
the overall performance on an image is evaluated by measur-
ing the mean absolute error (MAE) (in pixels) for each layer
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FIGURE 3. Example of performance degradation with the original networks (no-fine-tuning) as a result of Gaussian noise (variances of 0, 50, 250,
500, 750, 1000) applied to a section of an OCT image. Here the raw images correspond to a variance of 0. Top: augmented OCT images. Bottom:
corresponding predictions.

boundary. For the whole testing dataset, the overall median
absolute error (median mean absolute error) is used to assess
performance. Here, the median is used to prevent outliers
from skewing the results. An illustration of the second stage
process to segment an OCT image using a trained network is
shown in Fig. 1.

C. NEURAL NETWORK MODEL
The neural network architecture examined here is similar
to that presented previously for OCT chorio-retinal layer
segmentation [28] which has shown promising results for this
problem. This network is inspired by the U-net architecture
[50] for medical image segmentation exhibiting an encoder-
decoder structure with skip connections between the contract-
ing and expanding path. However, unlike the U-net, residual
learning [51] is also incorporated. The network consists of
four layers with convolutional blocks containing eight filters
in the first layer. The number of filters is doubled at each
subsequent pooling layer to allow a greater level of feature
encoding. In an effort to improve training performance and
assist convergence, batch normalization [52] is used within
each convolutional block while 50% dropout [53] is added
to the bottleneck (between the encoder and decoder) of the
network to prevent overfitting. The details of the overall
structure of the network are illustrated in Fig. 1.

The network was trained for 100 epochs using the training
dataset (240 images) while validation was performed using

the validation dataset (60 images). A batch size of three was
chosen as a trade-off between computational resources and
training speed. Training was performed using the Adam opti-
mizer [54], and all parameters were set at their recommended
default values (α = 0.001, β1 = 0.9, β2 = 0.999, ε =
1 × 10−8). This optimizer was chosen based on its docu-
mented performance for training deep neural networks [54].
The loss function utilized here consists of the unweighted
sum of binary cross-entropy loss and dice loss. This is similar
to the weighted sum approach used in previous work [28].
For model selection purposes, the epoch with greatest dice
overlap percentage on the validation dataset was selected.
The programming environment used for this study consisted
of Keras 2.2.4 [55] with Tensorflow [56] backend in Python
3.6.4. To examine any variability associated with random
initialization, four networks were trained identically with the
exception of their initial random weights.

D. IMAGE QUALITY FACTORS
In this work, we aimed to examine how various image quality
factors affect the performance of a neural network trained
purely using raw images. It is worth noting that these ‘‘raw
images’’ represent an equivalent ‘‘optimal’’ image quality as
these were acquired using frame-averaging to reduce noise,
data was exported using a lossless image format and no ocular
pathologies were present. Using the segmentation method
and data outlined above, each trained neural network is
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FIGURE 4. Median mean absolute error (pixels) for each boundary of interest as Gaussian noise is applied to the test images. The solid
colored line in each plot represents the mean of the four original networks (no fine-tuning) while the surrounding shaded region depicts
the range of median errors exhibited by these networks. Likewise, the dashed grey line and corresponding shaded region represents the
mean and range respectively of the networks fine-tuned using Gaussian noise augmented data. Here, the raw images (baseline
performance) correspond to a variance of 0. The grey shaded rectangular region indicates where the mean error (for the original networks)
becomes practically significant (+1 pixel error compared to baseline).

used to evaluate the raw testing images in addition to these
same images augmented with four different image quality
factors. Here, the effect of image compression (JPEG and
JPEG2000), noise, and image intensity (contrast reduction
and gamma correction) are considered. Fig. 2 provides an
example of such image quality factors evident in real OCT
data. Note that the networks used for evaluations are trained
on just the raw training data (‘‘optimal’’ quality with no
degradation).

The output file format of OCT instruments and related
software may vary. For example, JPEG is one of the data
export options for the instrument used in this study. It is
therefore important to evaluate the effect on performance for
the case where a lossy image format, such as JPEG, may
be present. To do this, image compression may be applied
to the lossless testing images and evaluated using the net-
work trained on lossless images. In this work, two image
compression algorithms are utilized: JPEG and JPEG2000.
The standard JPEG compression algorithm is applied to an
image using an image quality parameter with lower values
corresponding to a higher level of compression but decreased
image quality. Each of the four identically trained networks
were used to evaluate the testing dataset with each image
augmented by applying JPEG compression. In this work,
image quality values from 2 to 50 (inclusive) in steps of 2 are
considered for experimentation. Image quality values above
50 are not considered as there is little to no performance

degradation present in this range. JPEG2000 compression is
applied to an image using a compression ratio parameter.
This parameter determines the ratio of the original file size
to the compressed size with higher values corresponding to
a higher level of compression but decreased image quality.
The compression ratios used in the experiments throughout
include values of the form 2x with x taking all integer values
in the range 1 to 7 (inclusive). Additionally, values of the
form 128+ 32x are also considered with x taking all integer
values in the range 1 and 12 (inclusive). Values above 512 are
not considered as degradation is already well advanced at
this point. The other parameters for the JPEG2000 algorithm
are held constant throughout including the number of quality
layers and the number of reduction (wavelet decomposition)
levels which are set at 1 and 4 respectively.

OCT scans acquired under sub-optimal conditions (e.g.
poor image alignment and focus or incorrect scanning dis-
tance) or in the presence of various ocular pathologies
can affect the image intensity and contrast. For example,
the presence of a cataract can cause light scattering which
can affect the intensity and contrast of whole or part of an
OCT scan [57]. Due to the low level of contrast associated
with some OCT scans, it is important to examine how the
trained network generalizes in such cases. Here, contrast
reduction is applied to the testing images by blending them
with a constant intensity grayscale image. Here, a blending
factor (alpha) [0-1] is used to determine the weighting of
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FIGURE 5. Example of performance degradation with the original networks (no fine-tuning) as a result of gamma correction (gamma values of 0.3,
0.7, 1.0, 2.0, 2.8, 3.5) applied to an OCT image. Here, the original images correspond to a gamma of 1.0. Top: augmented OCT images. Bottom:
corresponding network predictions.

the grayscale image [41]. For example, a blending factor
of 0.1 indicates that, for each pixel, 10% of the constant
grayscale image intensity and 90% of the raw OCT image
intensity is combined to produce the output. To ensure that the
effect of contrast reduction is tested in isolation by avoiding
any overall brightening or darkening, the intensity of the
grayscale image is set to be equal to the average intensity of
the raw OCT image on an image-by-image basis. Each of the
four identically trained networks were used to evaluate the
testing dataset with each image augmented by applying con-
trast reduction. For this study, blending factors/alpha values
of 0.01 to 0.60 (inclusive) in steps of 0.01 are considered.
Blending factors greater than 0.60 were not considered given
the severe level of degradation already present at this point.
With respect to image intensity, differences in the gamma of
OCT images is also a factor that may be considered. To eval-
uate the effect of this, gamma correction is applied to the
normalized [0-1] raw OCT images by raising the input image
intensities to a specified power (gamma). Each of the four
identically trained networks were used to evaluate the test-
ing dataset with each image augmented by applying gamma
correction. The gamma values used in the experiments here
include values of 0.3 to 3.5 (inclusive) in steps of 0.1 as well
as values of the form 1/x with x taking values from 1.1 to
3.0 (inclusive) in steps of 0.1. Gamma values outside of this
range (< 0.3 and > 3.5) are not considered as degradation is
already severe at these points.

Speckle noise in OCT images, a property inherent to coher-
ent imaging, commonly degrades the image quality as well as
the accuracy of subsequent analysis [58]. Additionally, poor
fixation and various ocular pathologies can exacerbate this.
One option to help reduce such noise is to use frame- averag-
ing as is the case with the raw data in this study. However, this
is not always possible and is impractical for dense volumetric
imaging protocols given the number of scans required. Alter-
natively, a number of other techniques to minimize speckle
noise have also been proposed. Because of this, the noise
present in OCT images may vary considerably depending on
the instrument, conditions, noise reduction techniques used
and any ocular pathologies present. To model noise in our
study here we utilize a Gaussian distribution which provides
a good approximation for speckle noise after logarithmic
compression of the signal [59]. To analyze the network’s
robustness to speckle noise in this study, noise is introduced to
the raw images by adding a random value to each individual
pixel. These values are sampled from a Gaussian distribution
with a mean of zero and specified variance (> 0) with larger
variances corresponding to ‘‘noisier’’ images. Each of the
four identically trained networks were used to evaluate the
testing dataset with each image augmented by applying Gaus-
sian noise. For these experiments, variances of 50 to 1000
(inclusive) in steps of 50 are used. Larger variances (> 1000)
are not considered here as significant degradation is already
evident at this point.
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FIGURE 6. Median absolute error (pixels) for each boundary of interest as a result of gamma correction applied to the test images. The
solid colored line in each plot represents the mean of the four original networks (no fine-tuning) while the surrounding shaded region
depicts the range of median errors exhibited by these networks. Likewise, the dashed grey line and corresponding shaded region
represents the mean and range respectively of the networks fine-tuned using data augmented with gamma correction. Here the raw
images correspond to a gamma of 1.0 (marked by a solid vertical black line). The grey shaded rectangular regions indicates where the
mean error (for the original networks) becomes practically significant (+1 pixel error compared to baseline).

To examine the statistical significance of changes in seg-
mentation performance, a repeated measures ANOVA was
performed to assess the effect of each image quality fac-
tor. This analysis showed a highly statistically significant
degradation of segmentation performance (increased error)
for all image quality factors (all p < 0.001). In many cases
statistical significance was reached with only very low mag-
nitude increases in segmentation error, which may be of
limited practical significance for segmentation performance.
Therefore, to consider the practical impact of image quality
factors on segmentation performance and to allow a stan-
dardized comparison across factors and layers, an increase
in boundary error of 1 pixel or more above the baseline value
for that particular boundary, was chosen in this work to be a
threshold representative of a practically significant reduction
in segmentation performance.

E. FINE-TUNING METHOD
Increasing the robustness of the networks in the presence of
these image degradations is important in practice. One possi-
ble method for doing so is to train (or fine-tune) the existing
networks on degraded images. In this work by fine-tuning the
existing network we aimed to: (i) increase robustness in the
segmentation performance by using image-quality degraded
augmentations and (ii) understand the network changes after
the fine-tuning is applied.

For all experiments, each individual image in an epoch was
augmented with the corresponding image quality factor with
a 50% probability. Additionally, each image also had a 50%
chance to be flipped horizontally, similar to the initial training
of the networks. The choice of parameter value for each
image quality factor was randomly selected (uniformly from
a predefined range or subset) each time for every image. For
fine-tuning, the Adam optimizer with default parameters was
used with the exception of the learning rate which was instead
set an order of magnitude below the default at 0.0001. Note
that images for both training and validation are augmented.
Due to randomness within training, each network was fine-
tuned four times on each image quality factor.

An additional aim of fine-tuning these networks was to
further analyze their behavior and gain further insight into
the differing performance between layer boundaries, image
quality factors and inter-network variability. To achieve this,
the original networks and their fine-tuned variants were com-
pared by calculating the mean absolute difference for each set
of weights in every convolutional layer. For a fair comparison,
the fine-tunedmodels were compared to their original version
after ten epochs to avoid problems such as overfitting and to
minimize bias as a result of variable training times.

A gamma correction augmentation was performed by
either decreasing or increasing the gamma value. As the
two cases may exhibit different behavior it was proposed
to treat these separately with gamma < 1 and gamma
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FIGURE 7. Example of performance degradation with the original networks (no-fine-tuning) as a result of contrast reduction (blending factors/alphas
of 0.0, 0.2, 0.3, 0.4, 0.5, 0.6) applied to an OCT image. Top: augmented OCT images. Bottom: corresponding predictions.

> 1 augmentations. For gamma< 1, the value was randomly
chosen each time as one of 0.3, 0.5, or 0.7. For gamma > 1,
each augmentation was selected to be one of 1.6, 2.2, 2.9,
3.2, or 3.5. For Gaussian noise augmentations, the variance
was randomly chosen as any decimal value between 50 and
1000 (inclusive). For contrast reduction, the alpha value was
randomly chosen as any decimal value between 0.1 and
0.6 (inclusive). For JPEG compression, the image quality
value was randomly selected as any integer value in the
range 2 to 20 (inclusive) while for JPEG2000 compression,
the compression ratio was chosen randomly as one of 128,
256, 384, or 512. These particular sets and ranges of values
here were chosen empirically with the goal of improving
segmentation performance but do not necessarily represent
the most optimal selection.

For analyzing segmentation performance improvement,
each fine-tuned network was only evaluated at a subset of
the points used previously. This was due to computational
reasons as well as the expected performance improvements.
The evaluation points were chosen to highlight the improve-
ment in segmentation performance across the whole range
but also to emphasize that good baseline performance is
retained. Therefore, all fine-tuned networks were evaluated
on the baseline raw images. Additionally, for gamma < 1,
evaluation points included gamma values of 0.3, 0.5 and
0.7 while, in the case of gamma > 1, these were 1.6, 2.2,
2.9 and 3.5. Equally spaced points were used for noise (vari-
ances of 250, 500, 750 and 1000), contrast (alpha values

of 0.15, 0.3, 0.45 and 0.6) and JPEG2000 (compression
ratios of 128, 256, 384 and 512). For evaluating using JPEG
compression, image quality values of 2, 5, 10 and 50 were
selected. Unlike the weight difference comparison, model
selection here is performed by choosing the epoch with the
highest validation dice overlap percentage.

III. RESULTS AND DISCUSSION
A. OVERVIEW
The baseline performance (evaluation of images with non-
altered image quality) demonstrated a high level of consis-
tency across the four networks. Here, a median absolute error
below 0.70 pixels for the retinal boundaries and 2.30 pixels
for the choroid/scleral interface was obtained, which matches
well with previously published results [24]–[26], [28].

Using both the original networks (no fine-tuning) and
their fine-tuned variants, the performance was evaluated for
each of the image quality factors over their corresponding
parameter range. An example from a section of an OCT scan
exhibiting performance degradation on one of the original
networks is provided for Gaussian noise (Fig. 3), gamma cor-
rection (Fig. 5), contrast reduction (Fig. 7), JPEG (Fig. 9), and
JPEG2000 (Fig. 11). Likewise, the relationship between the
segmentation error (median absolute error) and variance for
both the original (solid colored lines) and fine-tuned networks
(gray dashed lines) is illustrated for Gaussian noise (Fig. 4),
gamma correction (Fig. 6), contrast reduction (Fig. 8), JPEG
(Fig. 10) and JPEG2000 (Fig. 12).
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FIGURE 8. Median mean absolute error (pixels) for each boundary of interest as a result of contrast reduction applied to the test images.
The solid colored line in each plot represents the mean of the four original networks (no fine-tuning) while the surrounding shaded region
depicts the range of median errors exhibited by these networks. Likewise, the dashed grey line and corresponding shaded region
represents the mean and range respectively of the networks fine-tuned using data augmented with contrast reduction. Here, the raw
images (baseline performance) correspond to a blending factor/alpha value of 0. The grey shaded rectangular region indicates where the
mean error (for the original networks) becomes practically significant (+1 pixel error compared to baseline).

B. EFFECT OF ALTERED IMAGE QUALITY
Overall, the results show that three of the image quality
factors (Gaussian noise, contrast reduction and gamma cor-
rection) appear to have a considerable effect on the segmen-
tation error of the chorio-retinal layer boundaries of interest,
withmore severe image degradations generally causing larger
increases in error as expected. With similar baseline perfor-
mance, there appears to be a range of values of smaller degra-
dations for which the performance between networks remains
similar. However, for larger values of image degradation,
the magnitude of these effects generally tend to increase and
vary between the four networks. Although the four networks
were trained identically and exhibited similar baseline per-
formance, each was initialized with a different set of random
weight parameters. As a result, the combination of weight
parameters can differ considerably between the four trained
networks, which may explain the variable generalization per-
formance in the presence of degrading factors.

In general, the performance degradation (with no fine-
tuning) was not similar between boundaries or for the same
boundary across different image quality factors. Indeed,
the boundaries that reached practical significance varied
considerably between the factors. However, the CSI boundary
generally appeared to be the least robust to each of the image
quality factors and was the only boundary that exhibited
a practically significant reduction in performance for all
five of the image quality factors. The practically significant

threshold of performance degradation for the CSI was also
generally reached at a lower level of image degradation than
observed for other boundaries. This inferior performance
is possibly due to its comparatively lower baseline perfor-
mance, and often reduced contrast and increased noise in the
choroidal region in the raw images.

For Gaussian noise, the performance (no fine-tuning) on
four boundaries (ILM, ELM, ISe, RPE) was significantly
more robust then for the other boundaries (Fig. 4). Observ-
ing Fig. 3, a possible explanation is that these boundaries
are located at the transition between layers which possess
a higher level of contrast relative to one another. For such
layers, it appears that larger changes (greater variance) are
needed in the pixel values before the transition between the
two layers deteriorates sufficiently. Additionally, it appears
that adding noise to the vitreous causes it to more closely
resemble the sclera and as a result, the network is prone to
misclassifying these regions. This is evident when observing
Fig. 3 where part of the vitreous is instead classified as sclera
when the variance of noise is increased.

For gamma < 1, the performance on all boundaries dete-
riorated sharply near the extremity (Fig. 6). This may be
explained by analyzing the example in Fig. 5 which clearly
shows that, with a gamma correction of 0.3, all layers increase
in intensity with the contrast between them significantly
reduced. It is likely that the performance degrades because the
network has not learnt to distinguish between layers at such
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FIGURE 9. Example of performance degradation with the original networks (no fine-tuning) as a result of JPEG compression (image quality values
of 2, 4, 6, 8, 50, Raw) applied to an OCT image. Top: augmented OCT images. Bottom: corresponding predictions.

small intensity differences. For gamma> 1, three boundaries
(ELM, ISe, RPE) do not degrade as severely as the others
(Fig. 6). This result can be understood through observation of
the example in Fig. 5.With a gamma correction of 3.5, the ISe
and RPE retain a very strong gradient across them while,
despite fading into the background, the networks appear to
have learnt to identify the IS and its top boundary (the ELM)
relative to the RPE and ISe. For the other boundaries the
networks struggle as they have clearly not learnt to identify
the layers with such small intensity differences between them.
In fact, with a gamma correction of 3.5, the intensity of
the upper retinal layers decreases to the point where parts
become indistinguishable from the vitreous and are there-
fore classified as such. For contrast reduction, all boundaries
appear to degrade significantly as illustrated in Fig. 8. Like
gamma correction, a possible explanation is that the networks
have become hyper-tuned to identify the layers at particular
levels of intensity difference and have not needed to learn
the layer transitions in these conditions (Fig. 7). However,
the variability between networks was noticeably greater than
that observed for gamma correction suggesting a greater sen-
sitivity to the particular combination of model weights.

The results for JPEG compression (Fig. 10) are somewhat
different to the three aforementioned factors (noise, gamma,
contrast) with minimal decrease in performance across the
majority of the range of tested values. Here, a small increase
in error was only observed for very low image quality
values (< 10). Additionally, there was little spread in the

performance of the networks for most image quality val-
ues. Likewise, JPEG2000 compression also demonstrated
a high level of consistency between the four networks
(Fig. 12) albeit with somewhat different behavior than that
for JPEG. Within the tested ranges, the degradation of
JPEG2000 occurred earlier and more gradually than that
of standard JPEG compression where degradation instead
occurred in a more pronounced fashion only near the lower
extremity. These differences are apparent despite the two
algorithms sharing a similar name and purpose. However,
the differing behavior makes sense when analyzing the exam-
ple degraded image sections for JPEG (Fig. 9) and JPEG2000
(Fig. 11). Here, clear differences are apparent with the JPEG
compressed images appearing ‘‘blocky’’ or ‘‘discretized’’
while JPEG2000 causes a ‘‘blurring’’ or ‘‘smoothing’’ effect.
Overall though, important features such as the boundary tran-
sitions and the relative intensity of the adjacent layers appear
to be well preserved by both of these image compression
algorithmswhich potentially explains their greater robustness
compared to the other three factors.

C. EFFECT OF FINE-TUNING
It is evident that OCT image quality is an important consider-
ation when designing intra-chorio-retinal layer segmentation
methods using neural networks. One possible approach to
create a network that is robust and resilient to these factors,
is to train the network using images with degraded quality
incorporated into the training dataset. Such data may be
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FIGURE 10. Median mean absolute error (pixels) for each boundary of interest as a result of JPEG compression applied to the
test images. The solid colored line in each plot represents the mean of the four original networks (no fine-tuning) while the
surrounding shaded region depicts the range of median errors exhibited by these networks. Likewise, the dashed grey line
and corresponding shaded region represents the mean and range respectively of the networks fine-tuned using data
augmented with JPEG compression. Here, the raw images (baseline performance) are marked at the rightmost end of the
scale as ‘Raw’. For the JPEG compression algorithm, it should be noted that an image quality of 100 does not correspond to an
uncompressed raw image. The grey shaded rectangular region indicates where the mean error (for the original networks)
becomes practically significant (+1 pixel error compared to baseline).

FIGURE 11. Example of performance degradation with the original networks (no-fine-tuning) as a result of JPEG2000
compression applied to an OCT image (compression ratios of 1, 128, 256, 384, 448, 512). Top: augmented OCT images.
Bottom: corresponding predictions.

additional real data acquired using different acquisition
parameters, instruments or techniques. Alternatively, this
may be artificial data constructed using a range of represen-
tative augmentations as was the case in this study. By fine-
tuning the existing networks, we have demonstrated the

feasibility of such a method since significant improvements
to the segmentation performance in the presence of each of
the five image quality factors was observed. In most cases,
the performance across the entire parameter range closely
matched the baseline performance. Importantly, the baseline
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FIGURE 12. Median mean absolute error (pixels) for each boundary of interest as a result of JPEG2000 compression applied to the test
images. The solid colored line in each plot represents the mean of the four original networks (no fine-tuning) while the surrounding
shaded region depicts the range of median errors exhibited by these networks. Likewise, the dashed grey line and corresponding shaded
region represents the mean and range respectively of the networks fine-tuned using data augmented with JPEG2000 compression. Here,
the raw images (baseline performance) correspond to a compression ratio of 1. The grey shaded rectangular region indicates where the
mean error (for the original networks) becomes practically significant (+1 pixel error compared to baseline).

performance did not deteriorate as a result of fine-tuning in
any of our experiments. It can be noted that there were a
few cases where the performance, despite improving, still
failed to reach the baseline level. This may be as a result
of unrecoverable information loss (e.g. from image compres-
sion) or simply that the problem was significantly harder to
learn in some of these extreme cases.

The differing behavior across networks, boundaries and
image quality factors is notable. Fig. 13 demonstrates that the
change in weights between the original and fine-tuned net-
works varies between image quality factors suggesting that
the process for learning each augmentation differs. However,
for all image quality factors, the more prominent changes
in the encoder appear to occur in the earlier layers and less
so towards the bottleneck. This suggests that changes occur-
ring in the fine-tuning process are with respect to low level
features. This is logical as each of the degradations applied
to the images result in visual changes at a low level and do
not modify the overall structure, positioning, scale or shape
of the chorio-retinal layers. A previous study noted similar
results for contrast as a low level visual feature when ana-
lyzing the weight differences of fine-tuned networks [60].
Unlike the encoder, the changes within the decoder did not
clearly appear to correspond in a symmetric way. There was
a similar trend observed across all image quality factors with
the largest differences for each level of the decoder generally
occurring within the second convolutional layer. This may

be because these particular layers receive input from two
places: the output of the previous layer as well the output
of the corresponding encoder layer and therefore undergo a
greater level of tuning. The exception to this rule was the very
final convolutional layer at the output which exhibited much
larger changes than almost all other layers in the networks.
The inter-network variability for each image quality factor
(Fig. 14) illustrates that a level of inconsistency between
networks may also be present for each image quality factor as
was observed in the results. Here, the ranges for each factor
and for each convolutional layer also differ considerably from
one another suggesting that these inconsistencies may also
vary between factors. As highlighted previously, the results
showed this was the case with notable dissimilarities in the
inter-network variability across image quality factors and
boundaries. Overall though, due to the highly complex nature
of deep neural networks, we note the difficulty in determining
specific conclusions, correlations and explanations from the
network weights on a per boundary, per network, or per factor
basis.

D. FUTURE WORK
This study analyzed five representative image quality factors
that are very relevant to OCT imaging of the eye. Thus pro-
viding a framework for robust image quality model training.
However, there are other image quality factors that may be
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FIGURE 13. Mean absolute weight difference for each convolutional layer between the original networks and their fine-tuned versions on each
image quality factor. For each factor the results for each of four runs across each of the four networks are all averaged together. Each dot
corresponds to a convolutional layer with these grouped into their corresponding level in the network.

FIGURE 14. Inter-network range of mean absolute weight differences for each convolutional layer between the original networks and their
fine-tuned versions on each image quality factor. Here, the shaded region indicates the range of the means of the four networks. Note that the
four runs for each network are averaged together. Each dot corresponds to a convolutional layer with these grouped into their corresponding level
in the network. E# corresponds to encoder layer number #, B corresponds to the bottleneck layer, and D# corresponds to decoder layer number #.

considered in future for different imagemodalities or imaging
of different human tissues. In our current analyses, we exam-
ined each image quality factor in isolation, in order to observe
the individual impact of each factor. A limitation of our

work is that combinations of such image quality factors were
not considered. In particular, increasing noise will inherently
reduce image contrast and this is not taken into account
within our study. Future work may also explore the effect
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of such image quality factors on a patch-based segmentation
approach and provide a comparison to the semantic segmen-
tation approach analyzed here. Another option is to consider
the possibility of exploring network models which are inher-
ently more resilient to noise. Future analyses which compare
these effects for a range of different OCT instruments would
also be useful but this is beyond the scope of this particular
study.

IV. CONCLUSION
This is the first study to provide an in depth analysis on
the effect of image quality factors on the performance of a
semantic segmentation approach to delineate chorio-retinal
layer boundaries using neural networks. Data were aug-
mented to simulate different types of image degradation
commonly observed in OCT images. For noise, contrast
reduction and gamma correction, the results suggest that the
method is susceptible to these degradations with an increase
in boundary errors observed. On the other hand, the method
is somewhat more robust in the presence of both JPEG
and JPEG2000 image compression. In several cases, notice-
able variability was observed between identically trained
networks (with different initial weights) indicating that the
behavior is sensitive to the particular combination of weight
parameters. A method to improve network robustness was
also developed and demonstrated, with significant perfor-
mance improvements observed when fine-tuning the original
networks with augmented data. The results and analysis pre-
sented here provide insights into and direction for creating
and testing more robust machine learning methods for OCT
image analysis.
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