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ABSTRACT Smoothing the multi-scale textures with strong gradient while maintaining the weak structures
is still a challenging work for the existing texture filtering methods. In this paper, we propose a variant of the
bilateral filter to address this issue. Unlike the classical bilateral filter, which usually uses a fixed range kernel
for texture filtering, the variant uses an adaptive range kernel, that is, if a pixel is located near a structure,
the range kernel assigned to the pixel is small, otherwise, the range kernel is large. This mechanism ensures
the preservation of sharp edges. In order to perform structure measurement, we propose a local histogram
operator, which can identify structures from textures by comparing the difference in color distribution
between the left and right half neighboring windows centered on the pixel of interest. In addition, after once
bilateral filtering, instead of multiple iterations, a novel anisotropic filter is designed to remove residual
textures, which can avoid edge blurring to some extent. Experimental results demonstrate the effectiveness
of our method by comparing it with the state-of-the-art methods in preserving weak structures as well as
suppressing textures with strong gradient or varying scales.

INDEX TERMS Texture filtering, bilateral filter, structure measurement, local histogram operator, adaptive
range kernel, anisotropic filter.

I. INTRODUCTION
Texture filtering is a fundamental and important research
direction in computational photography and computer vision.
The goal of texture filtering is to suppress textures as much
as possible while preserve the main structures, which is of
immediate use for a variety of applications in the fields of
detail enhancement [1], image segmentation [2], optical flow
estimation [3], super-resolution reconstruction [4], and high
dynamic range compression [5], etc. However, it is still a
challenge due to the variety and complexity of image textures
(as shown in Fig. 2).

In recent years, many methods for texture filtering have
been proposed, of which bilateral filtering algorithm [6] is
widely used because of its good performance. The bilateral
filter algorithm is based on Gaussian filtering, which uses
the spatial kernel along with the range kernel. That is, when
calculating the filtering weight, the algorithm not only con-
siders the influence of spatial distance on the filtering weight,
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but also uses the intensity difference between the pixel of
interest and its neighbors. The neighboring pixel farther from
the pixel of interest is given a small weight, otherwise, given
a large weight. Similarly, the neighboring pixel having a large
intensity difference (e.g., the pixels are from different sides of
an edge) with the pixel of interest is given a small weight, oth-
erwise, given a large weight. This mechanism, which avoids
the mixing of pixels with large intensity differences, ensures
the edge pixels with continuous intensity gradation can be
preserved to some extent.

In [7], the bilateral filter was extended by substituting a
texture description image in the range kernel, which is called
joint bilateral filter. Since the standard bilateral filter usually
adopted a fixed range kernel, it cannot perform sharpen-
ing, as shown in Fig. 3. Then in [8], [9], an adaptation of
range kernel was used to handle images of high complexity,
where features of multiple scales coexist. The basic idea is
to discriminate structures from textures in advance, then give
small smoothing weights to pixels at texture edges to ensure
the preservation of sharp edges and give large smoothing
weights to pixels inside textures to avoid texture residue.
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FIGURE 1. Results and comparison on the mosaic art ’fish’. (a) Input image, (b) RGF [σs = 4, σr = 0.05, niter = 5], (c) RTV [λ = 0.015, σ = 2, εs = 0.02,
niter = 4], (d) BTF [k = 2, niter = 5], (f) RegCov [k = 15, σ = 0.2, Model 1], (g) SaTF [σ = 3, σr = 0.1, niter = 3], (h) TF [σ = 0.01, σs = 3], and (i) our
method. In this example, the input image contains textures and small structures, such as teeth of fish and the details of shrimp. Our method outperforms
the methods of RGF, RegCov, and SaTf in terms of both image structure preservation and texture smoothing. In the method of RTV, some shading is lost in
their results where the back of the fish looks flat, which is effectively restored by our method. The method of TF over-blurs some small structures, such as
the palate teeth of the fish, which are preserved better in our method.

FIGURE 2. Examples of textures with different patterns. Images with
(a) small details, (b) high-contrast textures, (c) irregular textures, and
(d) multi-scale textures.

These methods heavily rely on the effect of structure mea-
surement, which is still a challenge. In addition, in order to
smooth textures with high-contrast and large-scale texture
patterns, multiple iterations of bilateral filtering are neces-
sary, which inevitably leads to edge blurring.

Local histograms of images contain a great deal of use-
ful information, which can be used in texture filtering.
Since a variety of popular image filters can be expressed as
functions of the local histogram, they can be classified as
histogram-based filters, such as median filter, bilateral filter,
and mean-shift. For these histogram-based filters, the com-
putation is still a challenge work when dealing with large

neighborhoods. To solve this problem, [10] present an effi-
cient and practical computing method, which is based on
look-up table and well suited to modern GPU hardware.
Similarly, [11] propose a new joint-histogram representation
and other schemes to accelerate the weighted median solver
or filter, which can reduce the computation complexity from
O
(
r2
)
to O (r), where r is the kernel size.

In this paper, instead of accelerating the calculation of
filters, we use the local histogram to design a novel structure
measurement operator, which distinguishes structures from
textures by calculating the difference in color distribution
on the left and right half neighboring windows centered on
each pixel and in multiple directions. Then, the structure
measurement result of the local histogram operator is used
to design the smoothing weights of the joint bilateral filter.
In addition, to avoid edge blurring by multiple iterations of
bilateral filtering, a variant of anisotropic filter is proposed to
optimize filtering results.

The experimental results show the effectiveness of our
improvements compared with the state-of-the-art methods,
particularly with regard to smoothing out textures with high
contrast while preserving small structures, prominent edges
and shading well. The main contributions of this paper are
follows: (1) we introduce a structure measurement operator
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FIGURE 3. Texture filtering using the classical bilateral filter and ours. If we use the former, small enough range kernel σr is needed to preserve the strong
edges; however, this causes coarse textures to not be smoothed out, as shown in (b). On the other hand, as shown in the enlarged box in (c), a large σr
causes the edges to get blurred. As shown in (d), our method with adaptive σr achieves both objectives, and the distribution of σr is shown in (e).

based on local histogram, which can separate structures from
textures effectively; (2) we improved the classical joint bilat-
eral filter by setting the range kernel and guidance image
adaptively, which enables the filter to smooth multi-scale
textures; and (3) we propose a variant of anisotropic fil-
ter to remove the residual textures with strong gradient by
changing the patch size and simply designing the diffusion
coefficient.

The rest of this paper is organized as follows. In Section II,
we review some other related works. In Section III, we briefly
explain the technical background associated with our work.
In Section IV, we introduce our proposedmethod; the scheme
of structure measurement, the adaptive bilateral filtering,
the anisotropic filter, and other details regarding our filtering
technique are provided. Section V gives our experimental
results and comparisons with the state-of-the-art and demon-
strates the applicability of our method on many tasks, such
as edge detection, detail enhancement, image segmentation,
and stereo matching. Finally, a summary is provided in
Section VI.

II. RELATED WORK
The existing texture filtering methods can be roughly divided
into local texture filtering and global texture filtering.

Bilateral filtering is a classical local texture filtering.
In order to achieve edge-preserving while denoising, it intro-
duces a range kernel based on Gaussian filtering and takes
spatial information and color similarity into account, but
the method cannot filter out textures with strong gradient.
Based on the framework of bilateral filtering, various efficient
texture filtering methods are proposed. The method proposed
by Zhang et al. [12] continuously updates the guidance infor-
mation through iterative bilateral filtering to restore the main
structure of the image. But with the increasing of iterations,
the structure will appear fuzzy and color cast, and even pas-
sivation phenomenon. Ham et al. [13] proposed the idea of
patch offset on the framework of bilateral filtering, and gen-
erated a smooth image based on patch offset as the guidance
image, but it could not suppress textures with strong gradi-
ent. Karacan et al. [14] proposed a block similarity texture
filtering method based on regional covariance. Gastal

and Oliveira [15] proposed the idea of domain transfor-
mation to achieve a certain improvement in smoothing
results. Li et al. [16] used the Gaussian pyramid mixing and
smoothing to improve the effect of structure-preserving.
Hua et al. [17] design a filtering framework for local dif-
fusion in the gradient domain to preserving structures.
Jeon et al. [8] proposed a scale-aware structure-preserving
texture filtering (SaTF), which uses directional relative total
variation (dRTV) to identify texture from structure and
finds an optimal per-pixel smoothing scale for the guidance
image. In order to better denoise the piece-wise smoothness
image, [18] proposed an iterative range-domain weighted
filter method combined with Gaussian filtering, which per-
forms better performance on structural information preser-
vation in image smoothing and can be applied into many
applications.

The global-based filtering method is based on the idea of
global optimization. It usually defines an objective function,
including data items and smoothing items. The data item
requires that the difference between the filtering result and the
original image is as small as possible, and the smoothing item
requires the texture region to be smoothed. The total variation
method proposed by Rudin et al. [19] is a classical model
of global filtering. It uses image gradient as constraints to
smooth, but it only has a certain smoothing effect on textures
and noiseswith smaller gradients. Farbman et al. [3] proposed
a weighted least squares (WLS) method to process images
with multi-scale textures, but this method cannot suppress the
texture of strong gradients, and color rendering problemsmay
occur. Zang et al. [20] proposed a directional adaptive image
smoothing method based on anisotropic structure measure-
ment. Ham et al. [13] designed an iterativemethod combining
dynamic and static. Although good results can be achieved,
the termination conditions are difficult to set. Xu et al. [21]
proposed a method for L0 gradient minimization, which
obtains global optimization filtering results by controlling
the number of non-zero gradients; Xu et al. [22] proposed
the RTV method by improving the total variation model to
further improve the filtering quality, but the parameters are
difficult to set, and the texture with strong gradient cannot
be filtered out. Inspired by the RTV method, [23] proposed
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a local activity-driven RTV method (LAD-RTV) for image
smoothing and scale representation, which adopts the way of
gradient product and the local activity measurement. Mag-
nier et al. [24] proposed a smoothed rotation filter that can
discriminate textons and combines anisotropic diffusion to
obtain the texture filtering results of the preserved structure,
but this method is not suitable for images with strong gradient
textures. Based on iterative global optimization, [25] pro-
posed a scale-aware filtering technique, which performs the
scale-aware measure by finding the local extrema of the RTV
within a neighboring window. The method has the advan-
tages of avoiding halos and preventing from over-sharpening
of edge.

III. TECHNICAL BACKGROUND
A. JOINT BILATERAL FILTER
Following the state-of-the-art methods for texture filtering,
we adopt joint bilateral filter as our underlying framework to
obtain the initial texture filtered result, written as:

Jp =
1
k

∑
q∈Ωp

gσs (p, q) gσr
(
Gp,Gq

)
Iq (1)

where, k is the normalizing term, Ωp is the spatial neighbor-
hood with pixel p at its center,G is the guidance image, gσs (·)
and gσr (·) give spatial and range weights with corresponding
Gaussian kernel sizes σs and σr , respectively.

The guidance image G is generated by employing varying
scale isotropic Gaussian smoothing on the input image I ,
written as:

Gp =
1
k

∑
q∈Ωp

exp

(
−
‖p− q‖2

2K 2
p

)
(2)

where ‖·‖ is the Euclidean distance. The output Gp at pixel
p is a weighted average of the input image in the spatial
neighborhood Ωp.

B. ANISOTROPIC FILTER
Anisotropic filtering has been widely used in image process-
ing since Perona and Malik [26] applied the anisotropic dif-
fusion model to image filtering. The basic idea of anisotropic
filtering is to smooth the interior region and preserve the edge
region by estimating the gradient of the image. To implement
it on a computer, this model can be discretized using the P-M
equation [27] as follows:S t+1p = S tp +

λ∣∣Np∣∣ ∑q⊂Np
g
(
OSp,q

)
OSp,q

S0 = J
(3)

where, J is the initial input image, p is the pixel coordinates,
Sp is the value at pixel p, ∇Sp,q = S tq − S tp, t is the number
of iterations, λ is the constant that determines the diffusion
rate, Np describes the neighborhood of pixel p, and

∣∣Np∣∣ is
the number of pixels in the neighborhood of pixel p (except
for the edge of the image,

∣∣Np∣∣ is usually set to 4 or 8).

FIGURE 4. Overall process and intermediate images of our method.

The essence of the P-M model is to solve the nonlinear
diffusion equation with the initial image as the initial value
and adjust the diffusion intensity according to the gradient.
g (x) plays an essential role in controlling the filter and it is
a bounded nonnegative decreasing function: if x →∞, then
g (x) → 0, this ensures that the diffusion stops at the edges
of the image to maintain edge features; and if x → 0, then
g (x)→ 1, this is equivalent to a smoothing filter.
The ideal diffusion coefficient should make the equation

produce forward diffusion in the flat region to facilitate the
elimination of noises/textures, and produce backward diffu-
sion in the edge region to facilitate edge sharpening. Although
anisotropic diffusion can smooth the image while maintain-
ing the edge characteristics, the nonlinear partial differential
equation of the P-M equation, in addition to being difficult
to solve, may not be able to obtain stable solutions in some
cases.

IV. PROPOSED METHOD
In this section, the proposed method is introduced in detail.
The method includes the following three parts: (1) struc-
ture measurement, (2) adaptive bilateral filtering, and (3)
anisotropic filtering.

A. STRUCTURE MEASUREMENT
1) COLOR QUANTIZATION
Color quantization is the basic process of the subsequent
structure measurement. The process reduces the color com-
plexity of the original image yet keeps a sufficient number
of representative colors. It not only reduces the computa-
tional cost but also makes our proposed method more robust
for noise. Color quantization algorithms mainly contain two
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parts, i.e., palette design and pixel mapping. In this paper,
the mean-shift (MS) algorithm [28] is used in the palette
design and pixel mapping. That is, the clustering centers are
the palette, and the clustering process is the pixel mapping,
which is performed to find the closest color from the palette
to represent the pixel in the original image with minimum
distortion.

2) LOCAL HISTOGRAM OPERATOR
In order to find the optimal filter scale for each pixel, it is nec-
essary to distinguish structures from textures firstly. In this
section, a local histogram operator is designed to perform
the structure measurement. Suppose the input image is I ,
the color quantized image is I with N colors, the local his-
togram (LH) operator is defined as:

L
(
hLp , hRp

)
=

∑N
i=1 hLp (i) · hRp (i)√∑N

i=1 hLp (i) · hLp (i) ·
√∑N

i=1 hRp (i) · hRp (i)
(4)

where, Lp and Rp are the left and right halves of the circular
neighborhood centered on the pixel p of I , which are shown
in the white and gray sections in Fig. 5 (a); hLp and hRp denote
the local histograms of the left and right halves of the circular
neighborhood, respectively; hLp (i) denotes the i-th element
of hLp .

FIGURE 5. Illustration of the LH operator.

The LH operator only along one direction is not enough
to obtain all the structure information of images, which may
be in any direction. Considering this problem, we define the
directional local histogram operator as:

L
(
hϕ(Lp), hϕ(Rp)

)
(5)

where, ϕ (·) is the angle rotation operator, ϕ
(
Lp
)
and ϕ

(
Rp
)

represent semi-circular windows on both sides after a certain
rotation angle, which is shown in Fig. 5 (b).
For each pixel, we find θp, which we call structure

direction, in the direction the LH operator has the smallest
value, which we define as structure possibility and is obtained
as:

Bp = argmin
θp

(
L
(
hϕ(Lp), hϕ(Rp)

))
(6)

for 0 ≤ θp < 2π . In our implementation, we compared
8 different directions to efficiently find structure direction θp.

FIGURE 6. Results of LH operator with varying radius r . (a) Input image;
(b) structure impossibility map and (c) filtered image using LH operator
when r = 1; (d) structure impossibility map and (e) filtered image using
LH operator when r = 2.

FIGURE 7. Comparison of SaTF and ours. Red color indicates large value
while blue color indicates small value. For dRTV, the pixels with higher
values are likely to be in texture regions, while the pixels with lower
values are on structure edges. For the LH operator, the situation is
reversed.

The LH operator can quantify the difference in color dis-
tribution between the left and right half neighboring windows
centered on the pixel of interest. Intuitively, if the pixel is
around texture edges, the color distributions of the two half
neighborhood windows are different and the structure possi-
bility is high. Otherwise, the color distributions are similar
and the structure possibility is low. The LH operator has only
one parameter r , which controls the maximum scale of the
texture to be removed. As shown in Fig. 6, when r is larger,
more small details can be smoothed out. Therefore, our LH
operator can be used to obtain multi-scale image structures.
Fig. 7 (b, e) compare the structure measurement results gen-
erated by the method of SaTF and ours, which shows that our
method delivers better texture-structure separation.

B. ADAPTIVE BILATERAL FILTERING
In section III, we have briefly reviewed the joint bilateral
filtering. In this section, we propose an adaptive bilateral
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FIGURE 8. Results of the joint bilateral filtering with various iterations and our method. Through multiple iterations, the joint bilateral filtering can
smooth the textures with strong gradient, while causing small structures blurring simultaneously.

filtering by setting the parameters of joint bilateral filtering
adaptively. It can be seen from equation (1), the effect of joint
bilateral filtering is decided by the three parameters, namely,
the spatial/range kernel sizes σs and σr , and the guidance
image G. The spatial neighborhood size σs determines the
smoothness of the filter output and is set to σs = r , where
r is the radius of the LH operator. As for σr , unlike the
classical joint bilateral filtering, we propose the adaptive
bilateral filter by adjusting σr per-pixel, that is, σr (p) = 2Bp,
where Bp is the structure possibility and comes from the LH
operator. As shown in Fig. 7, Bp is high for the pixel within
flat or texture regions, and low for the pixel around texture
edges. Therefore, σr (p) is high whenever Bp is high and vice
versa. This ensures that aggressive smoothing is performed in
texture regions, but without excessively blurring the texture
edges.

The effect of the joint bilateral filtering also heavily
depends on the guidance image G. We use equation (2) to
generate the guidance image. An ideal guidance image must
satisfy the following two conditions, namely suppressing
textures as much as possible and guarantying structures not
to be blurred. Therefore, the filtering weight assigned to the
pixels within flat or texture regions should be large, and small
to the pixels around texture edges. In this regard, we use the
structure possibility B to design the kernel scale K of the
guidance image G, which is defined as:

Kp = 0.05Bp + 1 (7)

Fig. 7 (c, f) compares the guidance images generated by the
method of SaTF and ours, which shows that ours performs
better in texture suppression and structure preservation.

C. ANISOTROPIC FILTERING
As shown in Fig. 8, most textures can be removed through
once bilateral filtering, while there are still some residues for
textures with strong gradient. The existing methods usually
adopts multiple iterations to improve the filtering results.
However, as shown in Fig. 8, this inevitably leads to the small
structures blurring due to the isotropic nature of the bilateral
filter. In order to solve this problem, we propose a novel

anisotropic filter based on the basic mechanism of anisotropic
filter. In the follows, the proposed filter is introduced in
details.

The RGB color space is usually used to perform the phys-
ical encoding of color images but it does not fit with human
vision; therefore, the LAB color space is used to represent
the image in our anisotropic filter, where the structural com-
ponent of pixel p in the given image J is computed by:S

t+1
p =

∑
q∈Np f

t
q S

t
q∑

q∈Np f
t
q

S0 = J

(8)

where, the range coordinates Sp =
(
Lp,Ap,Bp

)
, S t denotes

the filtering results with t iterations, Np denotes a squared
neighborhood centered at p and of patch size w × w pix-
els, and f tq denotes diffusion coefficient function, which is
defined as:

f tq =

{
1, ‖S tq − S

t
p‖ < d0

0, ‖S tq − S
t
p‖ ≥ d0

(9)

where, ‖·‖ is the Euclidean distance in the LAB color space,
and d0 denotes the edge threshold and is used to determine
whether pixel p is in the edge or texture/flat regions.

It can be seen from equation (8) and equation (9): when
‖S tq−S

t
p‖ ≥ d0, pixel p is in the edge region, a small diffusion

coefficient is assigned to the filter to achieve edge-preserving;
when ‖S tq − S tp‖ < d0, pixel p is in the texture/flat region,
a large diffusion coefficient is assigned to the filter to achieve
textures/noise removal. This mechanism can overcome the
defect of Gaussian filter. In addition, equation (8) can also
be written as:

S t+1p =

∑
q∈Np f

t
q S

t
q∑

q∈Np f
t
q

= S tp +

∑
q∈Np,q6=p f

t
q

(
S tq − S

t
p

)
1+

∑
q∈Np,q6=p f

t
q

= S tp +

∑
q∈Np,q6=p f

t
q∇Sp,q∑

q∈Np f
t
q

(10)
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FIGURE 9. Results of anisotropic filtering with varying parameters: (from left to right) bigger scale textures are removed with the increasing of d0; (from
top to bottom) smoother results are obtained with the increasing of t0.

By comparing equation (3) and equation (10), it can be
seen that our proposed filter is a variant of anisotropic filter
and the differences are two-fold: one is the patch size and
the other is the diffusion coefficient. In the variant, the patch
size is flexible, and is no longer limited to 4 neighborhoods
or 8 neighborhoods. In addition, the simplified design of the
diffusion coefficient makes the variant easier to be solved.

The anisotropic filtering comes with its original parame-
ters; patch size w, edge threshold d0 and iterations t0. Patch
size w determines the size of the region to perform filtering.
Larger patch size can help to remove larger textures, but
more small detailed structures may be damaged and jaggy
artifact will appear around the edges. Thus, patch size w
is fixed to 3, which is enough to yield good results. The
anisotropic filtering can work with d0 and t that control the
degree of smoothness; larger value of d0 can help to remove
textures with strong gradient and the increasing t0 yieldsmore
smoothing effects. We show the results with various values of
d0 and t in Fig. 9. In this paper, d0 ∈ {0.6, 0.8, 1.0} and t0 ∈
{1, 2, 3} are used for most examples. Table 1 summarizes
the entire process of our method, and its intermediate images
are shown in Fig. 4.

V. EXPERIMENTS
A. COMPARISON WITH THE STATE-OF-THE-ART
In this section, we compare our method with the state-of-
the-art texture removal methods, including rolling guidance

TABLE 1. Structure-aware texture filtering.

filter (RGF) [12], RTV texture smoothing [22], bilateral tex-
ture Filtering (BTF) [7], region covariance filter (RegCov)
[14], scale-aware texture filtering (SaTF) [8], and tree fil-
tering (TF) [29]. They are representative as both local- and
global- schemes are included and the effect of smoothing,
sharpening, and texture removal can be produced. For fair
comparison, we used the implementations provided online
by the authors and carefully tuned the parameters manually
to generate results from these techniques. Since there is no
reasonable objective evaluation index in the field of texture
filtering, the subjective evaluation is used to compare the
effects of different texture filtering methods in this paper.
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FIGURE 10. Filtered results for comparison on graffiti on brick wall. (a) Input image, (b) RGF [σs = 4, σr = 0.1, niter = 5], (c) RTV [λ = 0.02, σ = 3,
εs = 0.02, niter = 4], (d) BTF [k = 3, niter = 4], (e) RegCov [k = 13, σ = 0.4, Model 2], (f) SaTF [σ = 3, σr = 0.1, niter = 3], (g) TF [σ = 0.025, σs = 6],
and (h) our method.

FIGURE 11. Filtered results for comparison on graffiti on brick wall. (a) Input image, (b) RGF [σs = 4, σr = 0.05, niter = 5], (c) RTV [λ = 0.015, σ = 4,
εs = 0.02, niter = 4], (d) BTF [k = 2, niter = 5], (e) RegCov [k = 19, σ = 0.2, Model 1], (f) SaTF [σ = 3, σr = 0.1, niter = 3], (g) TF [σ = 0.02, σs = 3], and
(h) our method.

Fig. 10 shows the filtered results on a graffiti image,
where the graffiti is the structures and the bricks are the
background textures. It can be seen that all the texture fil-
tering methods can extract the prominent structure of the
graffiti rightly. However, the methods of RGF, RegCov
and SaTF cannot completely smooth the brick textures as

shown in Fig. 10 (b, e, f). The methods of RegCov and TF
may over-blur structural detailed edges such as eyes shown
in Fig. 10 (e, g). Themethods of RTV andBTF can efficiently
smooth the brick textures while maintain the main structures
of the graffiti. However, they also undergo unsatisfactory
edge-preserving performance, causing the slender structures
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FIGURE 12. Filtered results for comparison on graffiti on brick wall. (a) Input image, (b) RGF [σs = 5, σr = 0.05, niter = 4], (c) RTV [λ = 0.015, σ = 4,
εs = 0.02, niter = 4], (d) BTF [k = 3, niter = 5], (e) RegCov [k = 19, σ = 0.2, Model 1], (f) SaTF [σ = 4, σr = 0.1, niter = 3], (g) TF [σ = 0.08, σs = 3], and
(h) our method.

to be blurred as shown in the enlarged boxes in Fig. 10 (c, d).
In contrast, as shown in Fig. 10 (h), our method can properly
remove the brick textures while preserve the graffiti without
damaging it.

To further demonstrate the effectivity of our method in pre-
serving small details and removing textures, Fig. 11 shows the
texture removal results of an ancient mosaic image fromPom-
peii, which contains textures with strong gradient and com-
plex structures with small detailed structures, such as eyes
and eyebrows of fishes. Although all the methods can extract
the prominent image structure, there are some differences.
As shown in Fig. 11 (b, e, f), the methods of RGF, RegCov,
and SaTF cannot effectively filter out high-contrast mosaic
textures in the background. The methods of RGF, BTF, Reg-
Cov, and TF have problem of preserving fine and complex
structures andmay over-blur structural detailed edges to a cer-
tain extent, such as the enlarged boxes in Fig. 11 (b, d, e, g).
In addition, in Fig. 11 (b, e), the methods of RGF and Reg-
Cov may cause the ringing phenomena. In Fig. 11 (c, d),
jaggy artifact appears around the edges, since they are over-
sharpened by the method of RTV. Fig. 11 (d) displays the eye
of the small fish disappeared by the method of BTF, because
it is smaller than the patch size. The pixel-based TF method
may misidentify some pixels as being in regions that do not
belong to them, thus producing discrete pixels around the
edge, as shown in the enlarged boxes in Fig. 11 (g). Compared
to the state-of-the-art texture filteringmethods, ours generally
performs better in terms of preserving small detailed struc-
tures while removing textures with strong gradient.

Fig. 12 (a) shows an image whose cobbled ground are
textures and the scales of the textures are different because
of the perspective. Since the existing texture filter methods
usually adopt fixed-scale kernels for structure-texture sepa-
ration, it is a challenge for them to preserve salient but small-
scale structures when remove large-scale textures shown in
the enlarged boxes in Fig. 12 (b, c, d, e, f, g). The perfor-
mances on suppressing the large-scale textures are unsatis-
factory and the bird-like structure is destroyed to a varying
extent. In contrast, as shown in Fig. 12 (d), since our method
automatically identifies the smoothing scale per pixel, small

FIGURE 13. Examples of the scale-space representation obtained by.
(a) WLS[(from left to right) λ = α = 2,4,8], (b) RGF [(from left to right)
σs = 4,30,70, σr = 0.05, niter = 4], (c)SaTF [(from left to right)
σ = 3,20,40, σr = 0.1, niter = 3], (d) LAD-RTV [(from left to right)
λ = 0.003,0.08,0.3, niter = 4], (e) ours [(from left to right)
r = σs = 4,10,30].

but salient structures (bird-like structures) are well preserved
even when large textures are smoothed out. This experiment
demonstrates that our method outperforms other methods in
filtering out multi-scale textures.

In order to further validate the efficiency of our method in
scale-space filtering, Fig. 13 shows examples of the scale-
space representation obtained by WLS [3], RGF, SaTF,
LAD-RTV [23], and our method. As shown in Fig. 13 (a),
the method of WLS has a certain ability to remove details,
but it cannot preserve structures at coarse scales. The method
of RGF does not consider the structural information of the
input image, and uses the isotropic Gaussian kernel to con-
trol the filtering scale, which results in poor performance
in preserving structures and boundary localization at coarse
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FIGURE 14. Detail enhancement. (a) Input image. (b) Our filtered image.
(c) Edge detection of the input image. (d) Edge detection of the filtered
image.

FIGURE 15. Detail enhancement. (a) Input image. (b) Our filtered image.
(c) The enhancement result.

scales (Fig. 13 (b)). Although the method of SaTF still uses
the isotropic Gaussian kernel to control the filtering scale,
the scheme that using the structural information to obtain the
guidance image enables it to coarsely represent an image in
different scales and preserve the structures, but poor boundary
localization is still a problem for the method (Fig. 13 (c)).
As shown in Fig. 13 (d, e), the method of LAD-RTV and
ours performs well in in scale-space filtering, because object
boundaries are sharp and coincide well with the meaningful
boundaries at each scale.

B. APPLICATIONS
Texture filtering has been widely used in different fields.
In the following, we briefly show several applications, which
will highlight the effectiveness of our proposed filter. Because
of the structure measurement property, the most intuitive
application of our method would be edge detection.

Edge detection is an application often used in image pro-
cessing. However, in many cases it is difficult to detect pure
structural edges due to the interference of textures in the
image.As shown in Fig. 14, our filter is first used for tex-
ture/noise removal, which makes the result of edge detection
very clear and reasonable.

FIGURE 16. Stereo matching. (a) Input left images. (b) Our filtered image.
(c) Ground truth. (d) Our result.

FIGURE 17. Texture image segmentation. (left) Input images. (middle)
filtered results. (right) Segmentation results.

Fig. 15 demonstrates the application of ourmethod in detail
enhancement, which could generate much clearer details of
images and obtain distinct visual effects. The texture informa-
tion of the image is obtained by subtracting the filtered image
from the original image. And then through superimposing the
texture information on the original image, we can obtain the
result of enhanced detail.

Fig. 16 shows an application of stereo matching. Cost
aggregation is an important step in stereo matching. In this
application, we use the image filtered by our method to guide
cost aggregation, which can ensure better matching results.
In the obtained disparity map, the surface of the same object
is smoother and the edges between different objects are clear.

Fig. 17 shows some texture image segmentation results
based on our proposed filter. The texture interference is
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removed by our method, which makes the main structure
of the image more obvious. The super-pixel segmentation
is performed on the filtered image first, and then the region
fusion is performed to obtain the final segmentation result.

VI. CONCLUSION
In order to smooth the multi-scale textures with strong gra-
dient while maintaining the weak structures, we propose a
structure-aware bilateral filter, which uses an adaptive range
kernel. Since texture filtering depends on high-quality tex-
ture measurement, the texture edge operator based on the
local histogram is designed to separate structures from tex-
tures. In addition, to avoid edge blurring because of multi-
ple iterations of bilateral filtering, a novel anisotropic filter
is designed to remove residual textures after once bilateral
filtering. A lot of experimental results demonstrate the supe-
riority of our method in maintaining the weak structure while
removing the texture with strong gradient and varying scales.
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