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ABSTRACT In this paper, finite-time stability of switched linear time-delay systems has been addressed.
By constructing a class of time-dependent common (multiple) Lyapunov functions, new explicit conditions
for finite-time stability of the system under arbitrary switching and average dwell-time switching are
established respectively. Compared with most of existing results in the literature, our results are easily
verifiable by solving several linear matrix inequalities rather than complex matrix Riccati differential
equations. The effectiveness of the proposed method is demonstrated by numerical examples.

INDEX TERMS Finite-time stability, switched linear time-delay system, average dwell-time switching,
time-dependent Lyapunov function.

I. INTRODUCTION
Switched system contains a number of subsystems described
by continuous or discrete dynamics, as well as the switching
signal regulating the switching between subsystems at each
switching time. Switched systems can be used to describe
many practical systems with wide applications. In recent
decades, switched system has attracted extensive attention
in control theory and engineering practice. So far, there
are many achievements on Lyapunov stability of switched
systems [1]–[3].

Lyapunov stability reflects the state estimation of dynam-
ical systems in infinite time. However, in many practical
applications, the state estimation in a short period of time
usually needs to be concerned. As a result, the concept of
finite-time stability (FTS) was put forward. That is, when the
initial state of a dynamic system is within a certain boundary,
its state does not exceed a certain threshold in a limited time
interval. On the other hand, time delay is an inherent feature
of the system, which usually has a positive or negative impact
on the performance of the system. Therefore, the research on
FTS of time-delay systems is also a field of great concern.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jin-Liang Wang.

Since Kamenkov first proposed the concept of finite-time
stability, a large number of results have been obtained in the
study of FTS of various of systems [4]–[15]. For FTS of
switched systems, there are also many important results [9],
[16]–[19]. It is worth noting that the chosen Lyapunov func-
tion in [9], [16]–[19] is independent of time, which usually
leads to conservative results of FTS.

Finite-time stability based on time-dependent Lyapunov
functions was studied in [20]–[27]. The concept of FTS was
extended to interconnected pulse switching systems in [20],
where sufficient conditions for FTS of the interconnected
pulse switching system were proposed for the first time. FTS
criteria for a class of switched linear systems were given by
constructing a multiple Lyapunov function in [22]. Based on
the state transition matrix of the system, sufficient conditions
for FTS and uniform FTS of switched linear systems were
established in [23]. It was shown that FTS of switched linear
systems is related not only to subsystems, but also to switch-
ing signals in [24]. Although time-dependent Lyapunov func-
tions may lead to less conservative FTS criteria, they also
result in unsolvable matrix Riccati differential equations,
which is not convenient for the application of the results.

In this paper, we further consider FTS of switched linear
systems with time delay by constructing a class of time-
dependent Lyapunov functions. New FTS criteria for the
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system under arbitrary switching and average dwell-time
switching will be established. Compared with the results
obtained in the literature, the conditions given in this paper
do not contain the unsolvablematrix Riccati differential equa-
tion, and hence they are easily verifiable by solving several
LMIs.

The structure of this paper is as follows. In Section 2,
necessary preparations and problem statements are given.
Section 3 establishes the main results of this paper. Numerical
examples are presented in Section 4. Finally, we present a
summary of this paper in Section 5.

II. PROBLEM DESCRIPTION AND PRELIMINARIES
Throughout this paper, Rn stands for the vector space of all
n-tuples of real numbers, Rn×n is the space of n× n matrices
with real entries. For a vector x ∈ Rn, denote x � 0 (x ≺ 0)
if its each entry xi > 0 (xi < 0) for i ∈ {1, 2, · · · , n}. For a
matrix A ∈ Rn×n, A> is the transpose of A. For a symmetric
matrix P ∈ Rn×n, P > 0 (P < 0) means that P is positive
definite (negative definite).

Consider the following switched linear time-delay system{
ẋ(t) = Aσ (t)x(t)+ Bσ (t)x(t − τ ), t ∈ [0,T ],
x(t) = φ(t), t ∈ [−τ, 0],

(1)

where x(t) ∈ Rn is the state vector, the switching signal
σ (t) : [0,∞) → {1, 2, . . . ,N } is a piecewise constant
function, Ai ∈ Rn×n and Bi ∈ Rn×n are system matrices of
the ith subsystem for i ∈ {1, 2, . . . ,N }, τ > 0 is a constant
delay, φ(t) : [−τ, 0] → Rn is the continuous vector valued
initial function.

In the sequel, denote the switching times by 0 < t1 <

t2 < · · · < tm−1 < T , t0 = 0 and tm = T , where m is
a positive integer. The following two well-known definitions
are derived from [15] and [27].
Definition 1: Given positive scalars T , c1 < c2 and a

positive definite matrix U , system (1) is said to be finite-time
stable with respect to (T ,U , c1, c2) if

sup
t∈[−τ,0]

x>(t)Ux(t) ≤ c1 ⇒ x>(t)Ux(t) ≤ c2, t ∈ [0,T ].

(2)

Definition 2: For 0 < t ≤ T , let Nσ (0, t) denote the
number of switching of σ (t) over (0, t). If there exists a
constant τa > 0 such that Nσ (0, t) ≤ T−t

τa
holds, τa is called

an average dwell time (ADT) of the switching signal σ (t) over
the time interval [0,T ].

III. MAIN RESULTS
In this section, the main results of this paper are given.
We first present an explicit FTS criterion for system(1) under
arbitrary switching.
Theorem 1: Given positive scalars T , c1 < c2, and a posi-

tive definite matrix U , system (1) is finite-time stable with
respect to (T ,U , c1, c2) under arbitrary switching, if there
exist positive definite matrices P and R, symmetric matrices

Q and W and real scalars α > 1 and β > 0 such that for
i ∈ {1, 2, · · · ,N },(

A>i P+ PAi + R− Q PBi
B>i P −R− τW

)
< 0, (3)(

0i (P− TQ)Bi
B>i (P− TQ) −R+ (T − τ )W

)
< 0, (4)

P < αU , R < βU , R+ τW < βU , (5)

U < P, U < P− TQ, (6)

0 < R+ τW , 0 < R− TW , (7)

(α + τβ)c1 ≤ c2, (8)

where

0i = A>i (P− TQ)+ (P− TQ)Ai + (R− TW )− Q.

Proof: Define a special time-dependent Lyapunov func-
tion of the form

V (t, x(t)) = x>(t)G(t)x(t)+
∫ t

t−τ
x>(s)F(s)x(s)ds,

where

G(t) = P− tQ, t ∈ [0,T ],

and

F(t) = R− tW , t ∈ [−τ,T ].

For any t ∈ [0,T ), denote σ (t) = i ∈ {1, 2, · · · ,N } which is
dependent of t . The derivative of V (t, x(t)) with respect to t
along the trajectory of system (1) yields

V̇ (t, x(t)) = ẋ>(t)G(t)x(t)+ x>(t)Ġ(t)x(t)

+ x>(t)G(t)ẋ(t)+ x>(t)F(t)x(t)

− x>(t − τ )F(t − τ )x(t − τ )

≤ x>(t)(A>i G(t)+ G(t)Ai − Q)x(t)

+ 2 x>(t)G(t)Bix(t − τ )

+ x>(t)F(t)x(t)

− x>(t − τ )F(t − τ )x(t − τ )

= y>(t)�i(t)y(t),

where y(t) = (x>(t), x>(t − τ ))> and

�i(t) =
(
A>i G(t)+ G(t)Ai + F(t)− Q G(t)Bi

B>i G(t) −F(t − τ )

)
.

Next we show that �i(t) < 0 for i ∈ {1, 2, · · · ,N } and t ∈
[0,T ]. Note that

�̇i(t) =
(
−A>i Q− QAi −W −QBi

−B>i Q W

)
,

which is independent of time t . Therefore, for any z ∈ Rn,
z>�i(t)z is monotone with respect to t on [0,T ]. It implies
that�i(t) < 0 for i ∈ {1, 2, · · · ,N } and t ∈ [0,T ] if�i(0) <
0 and �i(T ) < 0, which is an immediate result of conditions
(3) and (4). Consequently, we have that V̇ (t, x) ≤ 0 for
t ∈ [0,T ]. Since the last two inequalities of (5) imply that
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R− tW < βU for t ∈ [−τ, 0], we further conclude from (5)
that

V (t, x(t)) ≤ V (0, x(0))

= x>(0)Px(0)

+

∫ 0

−τ

x>(s)(R− sW )x(s)ds

≤ αx>(0)Ux(0)+ β
∫ 0

−τ

x>(s)Ux(s)ds, (9)

where t ∈ [0,T ].
Based on the same analysis mentioned above, (6) and (7)

imply that G(t) > U for t ∈ [0,T ] and F(t) > 0 for t ∈
[−τ,T ]. Therefore, if sup

t∈[−τ,0]
x>(t)Ux(t) ≤ c1, we can get

from (8) and (9) that

x>(t)Ux(t) ≤ V (t, x(t))

≤ (α + τβ)c1
≤ c2, t ∈ [0,T ].

That is, system (1) is finite-time stable with respect to
(T ,U , c1, c2). The proof of Theorem 1 is finished. �
Remark 1: In Theorem 1, we do not assume that R and W

are positive definite matrices, which reduces the conserva-
tiveness of the given result. On the other hand, conditions (3)
and (4) are dependent of time delay τ , which also leads to a
less conservative result.
Remark 2: Conditions (3)-(7) are guaranteed by the exis-

tence of common positive definite matrices P and Q and
symmetric matrices R and W . For the case when it does not
exist such common matrices P,Q,R andW , we will design a
time-dependent multiple Lyapunov function to derive another
explicit FTS criterion for system (1).

Next, we consider FTS of system (1) under the average
dwell time switching.
Theorem 2:Given positive scalars T , c1 < c2 and a positive

definite matrixU , system (1) is finite-time stable with respect
to (T ,U , c1, c2) under the switching with ADT τa > 0,
if there exist positive definite matrices Pi and Ri, symmetric
matrices Qi and Wi, constants µ > 1, a ≥ 0, α > 1 and
β > 0 such that for i, j ∈ {1, 2, · · · ,N },(

8i PiBi
B>i Pi −Rj − τWj

)
< 0, (10)(

9i (Pi − TQi)Bi
B>i (Pi − TQi) −Rj − (T − τ )Wj

)
< 0, (11)

Pi < µPj, (Pi − QiT ) < µ(Pj − QjT ), (12)

U < Pi, U < Pi − TQi, (13)

0 < Ri + τWi, 0 < Ri − TWi, (14)

Pi < αU , Ri < βU , Ri + τWi < βU , (15)

eaTµ
T
τa

(
α + β

1− e−aτ

a

)
c1 ≤ c2, (16)

where

8i = A>i Pi + PiAi − aPi + e
−aτRi − Qi,

9i = A>i (Pi − TQi)+ (Pi − TQi)Ai − a(Pi + TQi)

+ e−aτ (Ri − TWi)− Qi.

Proof: Choose the following time-dependent Lyapunov
function

Vσ (t)(t, x(t)) = x>(t)Gσ (t)(t)x(t)

+

∫ t

t−τ
ea(t−s−τ )x>(s)Fσ (s)(s)x(s)ds,

where

Gσ (t)(t) = Pσ (t) − tQσ (t), t ∈ [0,T ],

Fσ (t)(t) = Rσ (t) − tWσ (t), t ∈ [−τ,T ],

and σ (t) ≡ σ (0) for t ∈ [−τ, 0]. The proof will be divided
into the following three steps.
Step I: For any t ∈ [tk , tk+1) with k = 0, 1, · · · ,m − 1,

where t0 = 0, tm = T , and tk (1 ≤ k ≤ m − 1) is the
switching time, we first prove that

Vσ (t)(t, x(t)) ≤ ea(t−tk )Vσ (tk )(tk , x(tk )). (17)

Without loss of generality, denote σ (t) = i and σ (t − τ ) = j.
Then, the derivative of Vi(t, x(t)) with respect to t ∈ [tk , tk+1)
along the trajectory of system (1) yields

V̇i(t, x(t)) ≤ x>(t)(A>i Gi(t)+ Gi(t)Ai − Qi)x(t)

+ 2x>(t)Gi(t)Bix(t − τ )

+ a
∫ t

t−τ
ea(t−s−τ )x>(s)Fσ (s)(s)x(s)ds

+ e−aτ x>(t)Fi(t)x(t)

− x>(t − τ )Fj(t − τ )x(t − τ ).

Then, we obtain

V̇i(t, x(t))− aVi(t, x(t))

≤ x>(t)(A>i Gi(t)

+Gi(t)Ai − Qi)x(t)

+ 2x>(t)Gi(t)Bix(t − τ )

− ax>(t)Gi(t)x(t)+ e−aτ x>(t)Fi(t)x(t)

− x>(t − τ )Fj(t − τ )x(t − τ )

= y>(t)�i(t)y(t),

where y(t) = (x>(t), x>(t − τ ))>,

�ij(t) =
(

2i(t) Gi(t)Bi
B>i Gi(t) −Fj(t − τ )

)
,

and

2i(t) = A>i Gi(t)+ Gi(t)Ai − aGi(t)+ e
−aτFi(t)− Qi.

Following the same discussion given in the proof of Theo-
rem 1, we have that�ij(t) < 0 for t ∈ [tk , tk+1] if�ij(0) < 0
and �ij(T ) < 0. Therefore, conditions (10) and (11) imply
that

V̇i(t, x(t))− aVi(t, x(t)) ≤ 0, t ∈ [tk , tk+1).
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By solving the above differential inequality, it is not difficult
to derive (17).
Step II: Next, we show that for any switching signal σ (t),

it holds

Vσ (tk )(tk , x(tk )) ≤ µVσ (tk−1)(tk , x(tk )), (18)

where k = 1, 2, · · · ,m− 1.
According to the definition of the Lyapunov function

Vσ (t)(t, x(t)), it is sufficient to verify

Gi(t) ≤ µGj(t), i, j ∈ {1, 2, · · · ,N }, t ∈ [0,T ],

which can be derived from (12) based on the same analysis
mentioned above.
Step III: Combining (17) and (18), for t ∈ [tk , tk+1),

we have

Vσ (t)(t, x(t)) ≤ ea(t−tk )Vσ (tk )(tk , x(tk ))

≤ µea(t−tk )Vσ (tk−1)(tk , x(tk ))

≤ µea(t−tk−1)Vσ (tk−1)(tk−1, x(tk−1))

≤ · · ·

≤ eatµNσ (0,t)Vσ (0)(0, x(0)).

Noting that a ≥ 0, Nσ (0, t) ≤ Nσ (0,T ), µ > 1 and
Nσ (0,T ) ≤ T

τa
, it implies that

Vσ (t)(t, x(t)) ≤ eaTµ
T
τa Vσ (0)(0, x(0)), t ∈ [0,T ]. (19)

Following the same discussion as that given in Theorem 1,
conditions (13) and (14) yield

Vσ (t)(t, x(t)) ≥ x>(t)Ux(t), t ∈ [0,T ], (20)

and condition (15) implies that

Vσ (0)(0, x(0)) ≤ αx>(0)Ux(0)

+β

∫ 0

−τ

ea(−s−τ )x>Ux(s)ds

≤

(
α + β

1− e−aτ

a

)
c1. (21)

This together with (16) and (19)-(21) yields that
x>(t)Ux(t) ≤ c2 for t ∈ [0,T ]. Consequently, system (1)
is finite-time stable with respect to (T ,U , c1, c2). This com-
pletes the proof of Theorem 2. �

IV. NUMERICAL EXAMPLES
In this section, two illustrative examples are presented.
Example 1: Consider system (1) with n = N = 2, τ = 1.5,

A1 =

 0 0.003 0.001
0.002 0 0.003
0.002 0.002 0

,
A2 =

 0 0.003 −0.003
0.004 0 0.003
0.003 −0.004 0

,
B1 =

 0.003 0.001 −0.002
−0.004 0.003 0.001
0.001 −0.002 0.001

,

FIGURE 1. The chosen switching signal.

FIGURE 2. The state trajectory of system (1).

B2 =

 0.001 0.002 0.001
0.003 −0.001 0.004
0.002 0.003 −0.002

.
For givenU = I , T = 60, c1 = 7.7 and c2 = 21.7, solving

inequalities (3)-(8), we get α = 2.9, β = 0.028, and

P =

 2.8960 −0.1491 0.1619
−0.1491 2.7227 −0.0612
0.1619 −0.0612 2.8992

,
Q = 10−2

 4.5951 −0.1649 0.2871
−0.1649 4.4116 −0.0955
0.2871 −0.0955 −4.7396

,
R = 10−2

 2.7835 −1.2940 0.0005
−1.2940 2.2403 −0.2437
0.0005 −0.2437 2.5687

,
W = 10−4

 0.0652 −1.9103 −0.2759
−1.9103 −0.5690 −0.2880
−0.2759 −0.2880 −0.2816

.
Therefore, by using Theorem 1, system (1) is finite-time

stable with respect to (T ,U , c1, c2). Choose the switching
signal shown in Fig. 1 and the initial condition x(0) =
(1.6, 1.5, 1.7)>. The state trajectory of system (1) and the
system response from 0 to 60s are shown in Fig. 2 and Fig. 3,
respectively.
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FIGURE 3. The system response from 0 to 60s.

Example 2: Consider system (1) with n = N = 2, τ = 2,

A1 =

 0 0.005 0.001
0.004 0 0.003
0.002 0.005 0.001

,
A2 =

 0 0.003 0.003
0.004 0 0.003
0.003 0.004 0

,
B1 =

 0.03 0.001 0.002
−0.04 0.001 0.001
0.001 −0.002 0.01

,
B2 =

 0.001 0.004 0.01
0.003 −0.001 −0.004
0.002 0.03 −0.002

.
For given U = I , T = 50s, a = 1.5, µ = 1.29, c1 = 7.1 and
c2 = 59.5, solving inequalities (10)-(16), we get α = 1.47,
β = 0.5, and

P1 =

 0.54648 0.00286 −0.00055
0.00286 0.54252 −0.00072
−0.00055 −0.00072 0.54945

,
Q1 =

−0.08050 0.00154 0.00005
0.00154 −0.08045 0.00021
0.00005 0.00021 −0.07931

,
R1 =

 0.38936 0.00013 −0.00104
0.00013 0.38207 0.00014
−0.00104 0.00014 0.38876

,
W1 =

−0.37921 0.00083 0.00036
0.00083 −0.38620 −0.00045
0.00036 −0.00045 −0.38389

,
P2 =

 0.98817 0.03231 −0.00284
0.03231 0.98820 0.00048
−0.00284 0.00048 1.03184

,
Q2 =

−0.09264 −0.00016 0.00029
−0.00016 −0.09068 0.00028
0.00029 0.00028 −0.09206

,
R2 =

 0.70449 0.01848 −0.00328
0.01848 0.70437 −0.00041
−0.00328 −0.00041 0.73725

,

FIGURE 4. The chosen switching signal.

FIGURE 5. The state trajectory of system (1).

FIGURE 6. The system response from 0 to 50s.

W2 =

−0.24829 0.00272 0.00072
0.00272 −0.32478 −0.00060
0.00072 −0.00060 −0.31705

.
Therefore, by using Theorem 1, for any switching signal

with average dwell time τa = 5, system (1) is finite-time
stable with respect to (T ,U , c1, c2). Choosing the switching
signal shown in Fig. 4 and the initial condition x(0) =
(1.8, 1.1, 1.6)>, the state trajectory of system (1) and the
system response from 0 to 50s are shown in Fig. 5 and Fig. 6,
respectively.

V. CONCLUSION
In this paper, finite-time stability of switched linear time-
delay systems is studied by constructing a time-dependent
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Lyapunov function. New explicit conditions for finite-time
stability of the system under arbitrary switching and average
dwell time switching are presented in terms of LMIs, which
are easily verifiable and less conservative. For finite-time
stability of the switched system with time-varying delay,
it will remain for further study.
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