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ABSTRACT This paper addresses the offset-free model predictive control (MPC) for the intermittent
transonic wind tunnel (ITWT). The offset-free property holds by introducing the controller state equation
which introduces an integral action, while the controller state can keep as the decision variable. The
infinite-horizon control moves are parameterized as a sequence of degrees of freedom followed by a control
law. The terminal constraint set and terminal control law are designed based on the asymptotic invariance
ellipsoid in which physical constraints are satisfied. The previous dual-mode MPC is appropriately modified
withholding the closed-loop stability. Simulation results verify the effectiveness of the proposed methods.

INDEX TERMS Model predictive control, offset-free control, stability, wind tunnel.

I. INTRODUCTION
Wind tunnel is a kind of pipeline equipment being utilized to
manually generate and control airflow in order to investigate
flow behaviour of objects [1]–[3]. It is the most commonly
used and effective tool for aerodynamic experiments. In the
experiment, the object model is fixed in wind tunnel for
blowing repeatedly, and test data are obtained by measuring
and controlling instruments. The parameters, such as Mach
number, total pressure and total temperature, are the key
indexes to evaluate the quality of flow filed. With the devel-
opment of aerospace technology and the requirement from
modern military, the control system of wind tunnel plays an
important role in the wind tunnel construction.

In view of control system design, the wind tunnel is a com-
plicated system with nonlinearity, time-varying behaviour,
time-delay, state coupling and uncertainties in the flow char-
acteristics. The stability, robustness and offset-free prop-
erty naturally become the key issues to be considered in
the control strategies. Inspired by theses problems, a large
number of researchers and institutes devote to investigating
effective control strategies to guarantee the control perfor-
mance (see.,e.g. [4], [5] and the reference therein). In the
early design of control system for wind tunnel, the classical
proportion-integration-differentiation (PID), linear quadratic
regulation (LQR) were widely applied. For instance, based on
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a linear model, the author in [6] designed a PID controller for
a transonic blow down to regulate the Mach number. In [7],
the authors made a performance comparison of a H∞ con-
troller with that of a LQR for regulating the pressure inside
of the settling chamber of a hypersonic wind tunnel. However,
the parameters of PID are determined through thousands of
blower debugging, and it is difficult to achieve optimal con-
trol. In order to improve operation efficiency, other advanced
modeling and control methods have been introduced, includ-
ing but not limited to various neural networks, robust control,
model predictive control (MPC). The recent works can be
found in [8]–[10].

In practice, MPC is one of the most promising methods
to a wide range of industrial processes, such as chemical,
petrochemical, pulp, gas pipeline and metallurgical [11],
[12]. At each sampling time, the controller computes an
optimal control sequence and implements the first control
input, then the entire optimization is repeated at subsequent
sampling time [13]–[15]. Distinguishing from other conven-
tional control methods, one of the most appealing features
of the MPC is that it can drive the plant to the most prof-
itable operating condition with constraint satisfaction [16].
For tracking problem, various MPC approaches for linear
systems have emerged [17], [18]. The work of [19] stud-
ies the tracking of a piecewise constant reference for linear
time-invariant (LTI) system subject to state constraint and
bounded disturbance. In [20], a robust MPC tracking algo-
rithm is proposed for uncertain linear time-varying systems.
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The authors in [21] addressed an offset-free MPC algorithm
for the constrained linear systems with unmeasured and
bounded disturbances. In [22], the authors presented a novel
MPC for constrained linear systems to track piecewise con-
stant references, where the controller ensures feasibility by
adding an artificial steady-state and input as decision variable
of the optimization problem. The authors in [23] investigated
the problem of offset-free MPC for linear system tracking
an asymptotically constant reference. For a constrained lin-
ear system with additive uncertainties, the authors in [24]
proposed a novel robust MPC method to track changing
targets. The designed controller steers the uncertain system
to (a neighborhood of) the desired steady-state and maintains
these properties under any change of reference. Recently in
[25], the author studied an MPC tracking algorithm for linear
dynamic system subject to input constraint, where an inte-
grator is inserted into the feedback loop to track the setpoint.
Reference [26] considers the tracking problem of MPC for
linear system under time-varying input constraints, and the
proposed control law consists of a dual-mode MPC law and a
target recalculation mechanism. In [27], the tracking problem
for linear parameter-varying (LPV) systems, described by
affine parameter-dependent state-space model with additive
stochastic uncertainties, is addressed.

For a wind tunnel experiment, it usually requires the flow
field parameters to maintain at a desired test condition, which
implies that the flow, Mach number, pressures and temper-
ature offset-freely track the steady-state targets. However,
the practical features of wind tunnel limit the applications of
other methods in modeling and controller design. In addition,
the research on tracking MPC method for linear system is
becoming mature, but approaches of MPC for tracking prob-
lem of wind tunnel are rare. To the author’s best knowledge,
an initial work of offset-free MPC for intermittent transonic
wind tunnel (ITWT) was addressed in [10], which focused
on handling the problem of variance of angle of attack in the
presence of external disturbances. Therefore, this paper fur-
ther contributes to investigate the offset-free MPC strategies
for ITWT to guarantee flow filed control performance.

The aim of this paper is to study the offset-free tracking
problem for ITWT based onMPC techniques. The main ideas
can be summarized as follows:

1) an identification procedure is taken to obtain a linear
model to describe the dynamics of wind tunnel around
its steady-state working condition;

2) an MPC controller is designed by solving a
finite-horizon tracking optimization problem, where
the cost function is composed of a finite input and state
horizon cost and a terminal cost;

3) the controller state not only introduces integral action,
but also can consistently serve as a decision variable;

4) the infinite-horizon input constraints are explicitly
handed by using terminal invariant set and Lyapunov
approach.

In the controller design, we consider two methods for control
move, which result in different offset-free MPC strategies.

TABLE 1. Notations.

FIGURE 1. Intermittent transonic wind tunnel.

The distinguishing difference between two methods is that,
the former incorporates controller state into the open-loop
control sequence optimization in order to improve the control
performance, while the latter considers a general formulation
of closed-loop system in order to enlarge the feasibility range
of the overall optimization problem.

This paper is organized as follows. Section 2 briefs the
ITWT and its model description. The tracking MPC algo-
rithm for linear system with controller optimization, and
the general offset-free MPC tracking method, are detailed
in Sections 3 and 4, respectively. In Section 5, a numerical
simulation on ITWT is given to illustrate the effectiveness of
the proposed algorithm. Section 6 concludes this paper. The
notations used in this paper are shown in Table 1.

II. PROBLEM FORMULATION
A. FACILITY DESCRIPTION FOR INTERMITTENT
TRANSONIC WIND TUNNEL
The schematic of ITWT is shown in Fig. 1, which consists
of a cascade of several ducts with physical devices. The
operation of ITWT and the function of its components are
introduced briefly. First, air injected from the storage tank
is accelerated by the fan. Then, air flows through diffuser to
reach a lower velocity before it reaches the first two corners.
The corner contains turning vanes in order to avoid rotation of
the flow. The objective of diffuser is to convert dynamic pres-
sure (kinetic energy) into static pressure (potential energy).
In the stilling chamber, the potential energy of air is translated
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to kinetic energy in a contraction cone with straightening
elements so that air accelerates to a high speed and satisfy the
flow quality requirement. Lastly, the flow rapidly passes over
and around the tested object in the test section, and air flows
over the choke finger and corner. A part of air is exhausted
through the main exhaust valve and the rest circles in the
tunnel.

B. MATHEMATICAL MODEL OF INTERMITTENT
TRANSONIC WIND TUNNEL
For a wind tunnel experiment, the feature of the flow field can
be characterized by total pressure P0 and Mach number Ma,
to a certain extent. The two parameters, in the test process,
requires to keep at certain set-valueswithin a certain precision
range. Therefore, the main control goal of wind tunnel is how
to guarantee the total pressure P0 and Mach number Ma to
arrive at steady-state without offset.

In the wind tunnel control system, the manipulate vari-
ables (MVs) are the displacement variables Dme and Dcf .
In reality, the scale of wind tunnel determines and restricts
the size of a tested model. The test process always works
around the nominal state, which indicates that MVs vary with
small amplitudes. Therefore, in a nominal working-point, it is
reasonable to utilize a linear model to represent the wind
tunnel model.

Considering the coupling relationship between the total
pressure P0 and Mach number Ma, the multivariable sys-
tem is theoretically transformed into a dual-input dual-output
systems, which is described by

[
y1
y2

]
=

 −
0.08
3s+1

e−0.5s −
0.02

(0.8s+1)3
e−0.4s

−
6.5×10−4

(1.5s+1)2
e−0.4s −

6×10−4

(0.7s+1)2
e−0.4s

[u1u2
]
,

(1)

where y1 = P0−P0,eq, y2 = Ma−Maeq, u1 = Dme−Dme,eq
and u2 = Dcf − Dcf ,eq.

C. STATE-SPACE MODEL DESCRIPTION
Consider the linear model

x(k + 1) = Ax(k)+ Bu(k),

y(k) = Cx(k), (2)

where x(k) ∈ Rnx , u(k) ∈ Rnu , y(k) ∈ Rny are the state,
the input and the output, respectively; A, B and C are known
constant matrices of appropriate dimensions.

In order to achieve offset-free tracking, an effective
approach is to introduce an integral action in the controller
design. Hence, we define

xc(k + 1) = xc(k)+ ys(k)− y(k), (3)

where xc(k) ∈ <nc is the controller state, and ys(k) ∈ <ny is
a reference signal.

In this way, the model (2)-(3) can be formulated as

x̃(k + 1) = Ax̃(k)+ Bu(k)+ Dys(k), (4)

y(k) = Cx̃(k), (5)

where

x̃(k) =
[
x(k)
xc(k)

]
, A =

[
A 0
−C I

]
, B =

[
B
0

]
,

C =
[
C 0

]
, D =

[
0
I

]
.

Without loss of generality, throughout this paper, the fol-
lowing assumptions are given.
Assumption 1: The system state x is measurable.
Assumption 2: The pair (A,B) is stabilizable.
Assumption 3: Themodel (2) is subject to input constraint,

i.e.,

−u ≤ u(k) ≤ ū, k ≥ 0, (6)

where u := [u1, u2, · · · , unu ]
T and ū := [ū1, ū2, · · · , ūnu ]

T

with uj > 0, ūj > 0, i = 1, 2, · · · , nu.
In this paper, the problem we consider is to design an MPC

controller to track a changing reference and steer the tracking
error to the origin while satisfying the input constraint (6).

At each time k , the controller solves an optimization prob-
lem that minimizes a given performance index, to yield an
optimal control sequence.

The following of Section II is suitable for the case with
ys(k + i|k) = ys(k) = 0. Solve the following optimization
problem:

min
ũ(k)

J (k) =
N−1∑
i=0

[
‖x̃(k + i|k)‖2Q + ‖u(k + i|k)‖

2
R
]

+ ‖x̃(k + N |k)‖2P, (7)

s.t. x̃(k + i+ 1|k)= Ax̃(k + i|k)+ Bu(k + i|k)
+ Dys(k), i = 0, . . . ,N − 1, (8)

− u ≤ u(k + i|k) ≤ ū, i = 0, . . . ,N − 1, (9)

x̃(k + N |k) ∈ EN (k), (10)

where ũ(k) = [u(k|k)T , u(k+1|k)T , · · · , u(k+N −1|k)T ]T ,
Q ≥ 0 and R ≥ 0 are the weighting matrices. P is
the positive-definite weighting matrix for the terminal cost.
N denotes the prediction horizon and EN (k) is the terminal
set that needs to be designed as a controlled invariant set
in the neighborhood of the origin. The terminal constraint
guarantees that the predicted state reaches the terminal set
after N steps, then converges towards the origin by applying
the terminal control law.

In a standard MPC method, in order to guarantee the
stability of closed-loop system, it should satisfy the following
conditions:

‖x̃(k + i|k)‖2P − ‖x̃(k + i+ 1|k)‖2P
≥ ‖x̃(k + i|k)‖2Q + ‖u(k + i|k)‖

2
R, i ≥ N , (11)

u(k + i|k) = Fx̃(k + i|k), i ≥ N , (12)

x̃(k + N |k) ∈ EN (k), i ≥ N . (13)
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Lemma 1 [28]: Consider the system (4)-(5) under
Assumptions 1-3. Using the terminal control law (12), sup-
pose there exist a positive scalar γ2, a positive-definite matrix
S = γ2P−1, and a matrix Y = FS, such that

S ? ? ?

AS + BY S ? ?

R1/2Y 0 γ2 I ?

Q1/2S 0 0 γ2 I

 ≥ 0, (14)

[
S ?

Y Z

]
≥ 0, Zjj ≤ ū2j,inf , j = 1, 2 . . . , nu, (15)

where ūj,inf = min{u, ū}. Then (11) is satisfied, and

−u ≤ u(k + i|k) ≤ ū, i ≥ 0

i.e., the input constraint is satisfied in the terminal set.
The feedback gain matrix F can be determined by mini-

mizing γ2 subject to (14)-(15).
Based on Lemma 1, we can further conclude the following

proposition.
Proposition 1: Consider the feedback gain matrix F and

positive-definite matrix P satisfying (14) and (15). Then,
1) the set EN (k) = {ξ ∈ <nx+nc |‖ξ‖2P ≤ γ2} is an

invariant set;
2) V (x̃(k + i|k)) = x̃(k + i|k)TPx̃(k + i|k) serves as a

Lyapunov function of closed-loop system (4)-(5) in the
terminal set E(P, γ2), i.e., V (x̃(k + i+ 1|k))−V (x̃(k +
i|k)) ≤ −x̃(k + i|k)T (Q + FTRF)x̃(k + i|k) for any
i ≥ N .

In the following sections, we give details on the offset-free
MPC tracking methods by handling the optimization problem
(7)-(10) including ys(k + i|k) 6= 0.

III. OFFSET-FREE MPC STRATEGY WITH CONTROLLER
STATE OPTIMIZATION
In this section, based on the previous work [25], we design
an offset-free MPC tracking method by optimizing both
open-loop optimal control sequence and controller state.

Assume that ys(k + i|k) = ys(k). For the system (4),
defining e(k + i|k) = ys(k)− y(k + i|k), one has

x̃(k + i+ 1|k)=Ax̃(k+i|k)+Bu(k+i|k)+Dys(k), (16)

e(k + i|k)= Cx̃(k + i|k)+ Eys(k), (17)

with C = [−C 0] and E = I .
Before proceeding, in order to guarantee the solvability of

output regulation problem, the following assumption is made.
Assumption 4: There exist matrices 8 ∈ <n×ny , 9 ∈
<
nu×ny satisfying

A8+ B9 + D = 8, (18)

C8+ E = 0. (19)

By defining z(k+i|k) = x̃(k+i|k)−8ys(k) and v(k+i|k) =
u(k + i|k)−9ys(k), (16) and (17) can be rewritten as

z(k + i+ 1|k) = Az(k + i|k)+ Bv(k + i|k), (20)

e(k + i|k) = Cz(k + i|k). (21)

A. OPEN-LOOP CONTROL SEQUENCE OPTIMIZATION
For the closed-loop system (20) and (21), the cost function for
the control sequence ṽ(k) = [v(k|k)T , v(k+1|k)T , · · · , v(k+
N − 1|k)T ]T is given by

JN−10 (k) =
N−1∑
i=0

{‖z(k + i|k)‖2Q + ‖v(k + i|k)‖
2
R}, (22)

where the predictions of z(k + i|k), i = 0, 1, . . . ,N − 1 is
described by

z̃(k) = Az(k)+ ABṽ(k), (23)

with

z̃(k) =


z(k)

z(k + 1|k)
...

z(k + N − 1|k)

 , A =


I
A
...

AN−1

 ,

AB =


0 0 · · · 0
B 0 · · · 0
...

. . .
. . .

...

AN−2B · · · B 0

 .
Let

N−1∑
i=0

{‖z(k + i|k)‖2Q + ‖v(k + i|k)‖
2
R} ≤ γ1, (24)

where γ1 gives an upper bound of JN−10 (k).
By using the Schur complement, (24) is guaranteed by γ1 ? ?

Az(k)+ ABṽ(k) Q−1 ?

ṽ(k) 0 R−1

 ≥ 0, (25)

where Q = diag{Q, · · · ,Q} and R = diag{R, · · · ,R}.
The input constraint (6) for i = 0, 1, ..,N − 1 can be

expressed as

−u ≤ ṽ(k)+ 9̃ys(k) ≤ ū, (26)

where 9̃ = [9T , 9T , · · · , 9T ]T .

B. TERMINAL CONTROL LAW AND TERMINAL
CONSTRAINT
For the system (20)-(21), we adopt the predictive control law
for any i ≥ N in the following form:

v(k + i|k) = Fz(k + i|k). (27)

Similarly to the conditions (11)-(13), the terminal control
law v(k + i|k) = Fz(k + i|k) for i ≥ N can be determined by
Lemma 1 with the closed-loop system (20)-(21).

Based on Proposition 1, the terminal set E(P, γ2) is pos-
itively invariant. Applying the Schur complement on z(k +
N |k) ∈ E(P, γ2) with P = γ2 S−1 yields[

1 ?

AN z(k)+ ÃBṽ(k) S

]
≥ 0, (28)

where ÃB = [AN−1B, . . . ,AB,B].
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In summary, at each time k , the on-line offset-free MPC
tracking problem is approximated as

min
ṽ(k),γ1,γ2,Y ,S,Z ,xc

γ1 + γ2,

s.t. (14), (15), (25), (26) and (28). (29)

Note that the optimization problem (29) is composed of a set
of LMIs, which can be easily solved by LMI toolbox.
Remark 1: In the problem (29), the controller state xc(k)

is selected as a decision variable, which can accelerate the
decreasing of cost function and improve the tracking per-
formance. In [25], when the cost function becomes small,
the controller state is not optimized but acts as an integral
action to eliminate the offset. However, under Assumption 4,
the output tracking problem essentially becomes a regulation
problem. Therefore, compared with ‘‘Algorithm 1’’ of [25],
in this paper the controller state is always optimized.

C. MPC PROPERTIES: FEASIBILITY AND CLOSED-LOOP
STABILITY
In the following, the feasibility and stability by applying the
problem (29) will be discussed.
Theorem 1: For the system (20)-(21), if the optimization

problem (29) is feasible at time k , then it is feasible for any
t > k , and limk→∞ e(k|k) = 0 holds.

Proof: Without loss of generality, it is assumed that there
exists a feasible solution to (29) at time k . In the following
we show that, at the next time k+1, a feasible solution to the
optimization problem is guaranteed to exist by invoking the
optimal solution calculated at time k . Firstly, let

v(k + i+ 1|k + 1)=

{
v∗(k + i+ 1|k), 0 ≤ i ≤ N − 2
Fz∗(k + i+ 1|k), i = N − 1,

(30)

and let xc(k+1) be calculated by (3). Then, (26) is guaranteed
when k shifts to k + 1.

Based on (30), it is shown that

J̄ (k + 1)

=

N−1∑
i=1

{‖z(k + i+ 1|k + 1)‖2Q + ‖v(k + i+ 1|k + 1)‖2R}

+ ‖z(k + N + 1|k + 1)‖2P(k+1)

=

N−1∑
i=1

{‖z∗(k + i|k)‖2Q + ‖v
∗(k + i|k)‖2R}

+ ‖z∗(k + N |k)‖2Q + ‖F
∗(k)z∗(k + N |k)‖2R

+‖z∗(k + N + 1|k)‖2P∗(k). (31)

Since (14) guarantees that ‖z(k + i + 1|k)‖2P(k) − ‖z(k +
i|k)‖2P(k) ≤ −‖z(k + i|k)‖2Q − ‖v(k + i|k)‖2R for all i ≥ N ,
the following relation is satisfied:

‖z∗(k + N + 1|k)‖2P∗(k) − ‖z
∗(k + N |k)‖2P∗(k)

≤ −‖z∗(k + N |k)‖2Q − ‖F
∗(k)z∗(k + N |k)‖2R. (32)

Note that

J̄∗(k) ≤ η∗(k) , ‖z(k)‖2Q + γ
∗

1 (k)+ γ
∗

2 (k),

J̄ (k + 1) ≤ η(k + 1) , ‖z∗(k + 1|k)‖2Q + γ1(k + 1)

+ γ2(k + 1).

Following from (31) and (32), it is concluded that

γ2(k + 1)= γ ∗2 (k)− ‖z
∗(k + N |k)‖2Q

−‖F∗(k)z∗(k + N |k)‖2R,

γ1(k + 1)= γ ∗1 (k)− ‖v
∗(k)‖2R−‖z

∗(k+1|k)‖2Q
+‖z∗(k+N |k)‖2Q+‖F

∗(k)z∗(k+N |k)‖2R,

{Y , S,Z }(k + 1)=
γ2(k + 1)
γ ∗2 (k)

{Y , S,Z }∗(k),

are the feasible choices to (29) when k shifts to k + 1.
The optimization problem is re-solved at k + 1, which

results in γ ∗1 (k+1)+γ
∗

2 (k+1) ≤ γ1(k+1)+γ2(k+1). Hence,
the relation η∗(k+1)−η∗(k) ≤ −‖z(k)‖2Q−‖v

∗(k)‖2R holds,
and η∗(k) can serve as the Lyapunov function. It is concluded
that limk→∞ z(k) = 0 and limk→∞ e(k) = 0. The proof is
complete.

IV. GENERAL OFFSET-FREE MPC STRATEGY
In this section, we propose a variant general offset-free MPC
method for system (2) subject to input constraint (6). The
following assumption and definition are made.
Assumption 5: For system (2), the following condition

holds:

rank
[
I − A −B
C 0

]
= nx + ny. (33)

Proposition 2 (Controllability of Augmented System [21]):
The augmented system (4)-(5) is said to be controllable if and
only if the controllability of (A,B), and rank condition (33)
in Assumption (5), hold.

It is easier to satisfy Assumption 5 than to Assumption 4.
Hence, the following designed method is a more general
offset-free method.

A. DYNAMIC PREDICTIVE CONTROLLER DESIGN
For the augmented system (4)-(5), the following control move
is applied:

u(k) = Fx̃(k)+ v(k), (34)

where F is a stabilizing controller gain, which will be
designed later. v(k) is a free perturbation item to be deter-
mined by a finite-horizon MPC optimization problem.

Under the feedback control law (34), the predictions of the
augmented system (4)-(5), for any i = 0, 1, . . . ,N − 1, are

x̃(k + i+ 1|k) = (A+ BF)x̃(k + i|k)+ Bv(k + i|k)
+Dys(k),

x̃(k + i|k) =
[
x(k + i|k)
xc(k + i|k)

]
. (35)
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The control objective of the proposed offset-free MPC
method in this section is achieved by

1) designing a stabilizing linear time-invariant controller
and computing an invariant set for the closed-loop
system (4)-(5) with v(k) = 0, while guaranteeing the
satisfaction of input constraint;

2) calculating the free perturbation items v(k+i|k) for any
i = 0, 1, . . . ,N − 1 in a finite-horizon optimization
problem with constraint satisfaction.

B. TERMINAL CONSTRAINT AND TERMINAL COST
Consider the optimization problem (7)-(10) with closed-loop
system (35). Let ys(k) ≡ 0. The terminal control law
u(k + i|k) = Fx̃(k + i|k) can be determined by Lemma 1.
Hence, based on the predictions of x̃(k + N |k), applying

the Schur complement on the terminal constraint

‖x̃(k + N |k)‖2P ≤ γ2

yields [
1 ?

AN x̃(k|k)+ ÃBũ(k) S

]
≥ 0. (36)

where ÃB = [AN−1B, . . . ,AB,B].

C. THE OVERALL OFFSET-FREE MPC OPTIMIZATION
PROBLEM
Based on the above discussions, at each time k , the general
offset-free MPC method can be summarized as

min
ṽ(k)

J (k) =
N−1∑
i=0

[
‖x̃(k + i|k)‖2Q + ‖v(k + i|k)‖

2
R
]

+ ‖x̃(k + N |k)‖2P, (37)

s.t. (35), (36), u ≤ u(k + i|k) ≤ ū, i = 0, 1, . . . ,N − 1,

(38)

where ṽ(k) = {v(k|k), v(k + 1|k), . . . , v(N − 1|k)}. There-
fore, at time k , the controller solves the optimization prob-
lem (37)-(38) and updates the optimal control sequence ṽ∗(k)
in a receding horizon way. The real control move is calcu-
lated by u∗(k) = Fx̃(k) + v∗(k|k) and implemented to the
system (2).
Remark 2: Compared with (29), the optimization prob-

lem (37)-(38) is a quadratic programming (QP) with respect
to decision variable ṽ(k), which can be solved by the mature
algorithms such as the interior point algorithm.
Theorem 2: If the closed-loop, to which the control

input (34) is applied, is stable, then the steady-state out-
put of the system (2) will converge to the equilibrium yeq
asymptotically.
Proof: The closed-loop system reaching to a steady-state

means that x̃ss(k + 1) = x̃ss(k) = x̃ss as k →∞. Therefore,
at steady-state, (3) becomes

xssc = xssc − Cx
ss
+ ys(∞) = xssc − y

ss
+ ys(∞),

which means yss = ys(∞) as k → ∞. Hence, yss + yeq =
ys(∞)+ yeq = yeq, and the proof is complete.
Remark 3: The closed-loop stability mentioned in Theo-

rem 2 can be proved by referring to [29].

V. SIMULATION RESULTS
This section will illustrate the effectiveness of the developed
offset-freeMPCmethods for the considered ITWTmodel (1).
In order to obtain a state-space model, an identification

experiment that transforms the transfer function model into
the state-space formulation is performed. Here we intro-
duce the experiment briefly. Select the subspace identifi-
cation method N4SID to identify the model (1), with the
relevant parameter settings: 1) the equilibrium point yeq =
[0, 0]T , ueq = [0, 0]T ; 2) the general binary noise (GBN)
with magnitude 1; 3) the system order nx = 5. By performing
this identification process, the resulting system matrices are

A=


0.9247 0.0992 0.00557 − 0.0456 0.0036
−0.0591 0.9414 − 0.3092 − 0.0162 − 0.1357
−0.0617 0.0585 0.8691 0.3928 0.0549
0.0227 0.0551 − 0.0377 0.8867 0.5703
−0.0107 0.0110 − 0.0377 − 0.1542 0.5703

,

B=
[
−8.0905 0.0021 − 0.0012 0.0019 4.5048
−0.0023 − 5.2663 − 7.2934 0.0035 1.4913

]T
,

C =

−1.0004 0.4508 0.4115 − 0.2115 0.1046
−0.0113 − 0.0016 − 0.0029 − 0.0040 0.0109

 .
Based on the identified system matrices (A,B,C), the offset-
free MPC tracking methods in Sections III and IV are veri-
fied. The input constraint is set as |u1(k + i|k)| ≤ 1.2 and
|u2(k + i|k)| ≤ 1 for i ≥ 0. The optimization problem (29)
is infeasible since the condition (18) in Assumption 4 is
violated. For the general offset-free MPC strategy, choose the
weighting matrices Q = I6 and R = I2. Then, minimizing γ2
subject to (14)-(15) obtains the feedback gain matrix F .

In the problem (37)-(38), the control horizon is cho-
sen as N = 3 to calculate the optimal free perturbation
sequence ṽ(k), where the initial state is x(0) = [0 0 0 0 0 0 0]T

FIGURE 2. State trajectory of closed-loop system.
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FIGURE 3. Output responses (y1).

FIGURE 4. Output responses (y2).

FIGURE 5. Control input of plant (2) (u1).

and the reference signal is ys(k) = [128 1.51]. The simulation
results are shown in Fig. 2-6. In Fig 2-4, both state and output
reach to their steady-state setpoints, where the output quickly
tracks. Fig 5-6 show the control inputs of the closed-loop
system. It can be observed that the control signals always sat-
isfy the constraints. Therefore, the simulation results demon-
strate a reliable and desirable tracking performance by the
offset-free control. Besides, we also conclude that the general

FIGURE 6. Control input of plant (2) (u2).

offset-free MPC method is more effective and applicable
since Assumption 4 is a conservative condition, which is a
harsh condition for an real process.

VI. CONCLUSION
In this paper, we have investigated offset-free MPC tracking
methods for linear systems subject to input constraints and
studied their effectiveness on an ITWTmodel. The controller
consists of an open-loop optimal sequence and a terminal
control law. The resulting MPC tracking method is treated
as a finite horizon optimization problem with a terminal
constraint. The terminal constraint and terminal control law
are designed so that the input constraints are satisfied in
the terminal set. It is necessary to incorporate the stochastic
description and disturbance into the modeling and controller
design (see, e.g. [30]–[32]), which will be our future topics.
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