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ABSTRACT The negative selection algorithm (NSA) is one of the basic algorithms of the artificial
immune system. In the traditional negative selection algorithm, candidate detectors are randomly generated
without considering the uneven distributions of self-antigens and nonself-antigens, thereby resulting in
many redundant detectors, and it is difficult for these detectors to fully cover the area of nonself-antigens.
To overcome the problem of low detector generation efficiency, a negative selection algorithm that is based
on antigen density clustering (ADC-NSA) is proposed in this paper. The algorithm divides the process of
detector generation into three steps: the first step is to calculate the density of the antigens by using themethod
of antigen density clustering to select nonself-clusters. The second step is to prioritize the abnormal points
(nonself-antigens that are not clustered) as the centers of candidate detectors and to generate the detectors via
calculation. The third step is to generate the detectors via the traditional algorithm. Detector generation via
these three steps can reduce the randomness of the detector generation in the traditional algorithm, thereby
improving the efficiency of detector generation. The experimental results demonstrate that on the BCW
and KDD-Cup datasets, the negative selection algorithm that is based on antigen density clustering can
effectively increase the detection rate while reducing the false-positive rate compared with the traditional
negative selection algorithm (RNSA) and two improved algorithms at the same expected coverage.

INDEX TERMS Artificial immunity, negative selection algorithm, antigen density clustering, detector.

I. INTRODUCTION
The artificial immune system (AIS) is a computational
paradigm that is inspired by the biological immune system
[1]. The artificial immune system has been widely used in
computer security, anomaly detection and prediction [2], [3],
[23], [24]. The negative selection algorithm is one of the basic
algorithms of AIS. This algorithm was proposed by Forrest
[4] in 1994 and has been applied to intrusion detection and
data classification.

The negative selection algorithm has been widely used in
the fields of network intrusion detection, spam detection,
medical diagnosis, and fault detection [5]–[8]. However, the
negative selection algorithm has the disadvantages of high
detector repeat coverage and loopholes. [9], [10], [11]. In res-
ponse to these disadvantages, many scholars have proposed
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improved algorithms. For example, Gonzalez et al. [12] pro-
posed a real-valued negative selection algorithm (RNSA)
with an immutable radius. Antigens and antibodies belong to
the [0, 1]n value space to maximize the coverage of nonself-
regions to improve the detection efficiency. Ji and Dasgupta
[13] proposed a variable-radius negative selection algorithm
(V-Detector). The main strategy is to randomly generate the
detector center x, find the nearest self-antigen to x, calculate
the distance r between them, and dynamically generate detec-
tors with x as the center and r as the radius. Chen et al. [14]
proposed a negative selection algorithm that was based on
hierarchical clustering of self-sets (CB-RNSA). After the
hierarchical clustering of self-sets, cluster centers are used to
replace self-points, which effectively reduces the computa-
tional cost of distance calculations. Liu et al. [15] proposed
SDS-RNSA, which uses a subspace density search algorithm
to calculate the sample subspace region and directly gener-
ates detectors in its subspace to increase the detection rate.
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Zhengjun et al. [16] proposed a negative selection algo-
rithm that was based on soft subspace clustering of antigens
(ASSC-NSA), which uses clustering to calculate the key
features and weights of various types of antigens, thereby
reducing the influence of redundant features on the detector,
which effectively guides the generation of mature detectors.
In 2018, Abid et al. [10] designed a layered real-valued
NSA (LRNSA). Different layers are formed according to
the distance of candidate detectors from the self-antigens,
and the detectors belonging to far-self layer are generated
by clustering optimization method. In addition, the algorithm
makes the detectors stay apart from each other in order to
maximize the coverage and decrease the number of mature
detectors. In 2019, Fan et al. [11] proposed ASTC-RNSA,
the algorithm first uses the Delaunay triangulation method
from the perspective of computational geometry to divide
its space into simple units for determining the position of
the detector. Then the overlap between the simple unit and
the self-antigen is removed to form a set of triangulation
coverage areas, and finally detectors are generated within
this area. Avoid the time-consuming self-tolerance process of
traditional NSAs.

According to the discussion above, the focus of improv-
ing the NSA algorithm has been on the efficient generation
of detectors. Many scholars have improved the traditional
algorithm in response to the problems of high redundancy
and loopholes that are caused by the random generation of
candidate detectors via the traditional algorithm.

This paper proposes a negative selection algorithm that
is based on antigen density clustering (ADC-NSA). Partial
detectors are generated via density clustering to reduce the
repeated coverage and loopholes that are caused by randomly
generated detectors in the traditional algorithm. In this paper,
the generation of a detector via antigen density clustering is
divided into three steps: the first step is to cluster the antigen
via the antigen density clustering algorithm and to select the
clustered nonself-clusters as the mature detectors; the second
step is to use nonself-antigens that are not clustered as abnor-
mal points to generate mature detectors via training; and the
third step is to use traditional algorithms to randomly generate
candidate detectors and to train them to generate mature
detectors. This process reduces the generation of redundant
detectors and enables the algorithm to cover the nonself-
area with as few detectors as possible, thereby effectively
overcoming the problems of high detector repeat coverage
and loopholes.

II. PROBLEM DESCRIPTION
Traditional negative selection algorithms generate mature
detectors (antibodies) by judging whether the candidate
detector matches the self-antigens. Then, the data to be
detected are matched with the mature detectors. If the match-
ing is successful, the data are abnormal. The basic definitions
and process of the algorithm are as follows:
Definition 1: Antigen set. The antigen set is Ag = {x1, x2,

x3, . . . ,xn}, where xi∈ [0, 1], n represents the total number of

sample points, xi represents the normalized value of sample
point i, and Ag represents the set of normalized values of all
sample points.
Definition 2: Self-antigen and nonself-antigen., Self-

antigen self ∈Ag represents the positive sample of the sample,
and nonself-antigen nonself =Ag − self represents the neg-
ative sample of the sample. The area that is covered by the
self-antigens in the range of the value space is called the self-
region, and the area not covered is called the nonself-region.
Definition 3: Affinity. The Euclidean distance dist(
xi, xj

)
=

√∑D
d=1 (x

d
i − xdj )

2
between two points represents

the affinity between the two points, where xi and xj represent
the i-th and j-th sample points, d represents a feature dimen-
sion of the sample points, D represents the total number of
feature dimensions of the sample points, and xdi represents
the d-th dimension feature of the i-th sample point.
Definition 4: Detectors. A detector is denoted by de(zi, ri),

where zi represents the randomly generated candidate detec-
tor center, ri represents the distance from the center to its
nearest self-cell, and the circle that is formed by zi and ri
corresponds to the mature detector.

As illustrated in Figure 1, the traditional negative selec-
tion algorithm simulates the negative selection process in
which the immune system recognizes self-cells and nonself-
cells. The algorithm randomly generates candidate detectors,
and by removing the detectors that have detected the self-
antigens, the detectors that can detect any nonself-cell are
retained. Finally, a mature detector set is generated for data
detection. The main advantages are that no prior knowledge
is required and an unlimited number of nonself-antigens can
be detected with a limited number of self-antigens [17], [18].
The main disadvantage is that the traditional negative selec-
tion algorithm generates random detectors in the detector
generation step [11], [19], which leads to problems such as
high repeat coverage and loopholes.

FIGURE 1. (a) Detector generation (b) Data detection.

In Figure 2, the pentagram represents the self-set, and
the open circles represent the mature detectors. All regions
except the self-set are nonself-regions. The traditional nega-
tive selection algorithm expects that the detectors can cover
as many nonself-regions as possible. However, when the anti-
gens are unevenly distributed in the sample space, where the
antigens are densely distributed, the gaps between the sample
points are narrow, which hinders the efficient generation of
detectors. Where antigens are sparse, the randomly gener-
ated candidate detectors will inevitably be highly redundant,
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FIGURE 2. Generation of the detectors via the traditional algorithm.

thereby resulting in high repeat coverage of the detectors, and
loopholes will form in areas that are difficult to cover.

III. ADC-NSA ALGORITHM IMPLEMENTATION
STRATEGY
The traditional negative selection algorithm does not consider
the uneven distribution of antigens in the sample space [20];
as a result, detectors cover each other and cause substan-
tial redundancy. For overcoming this challenge, the ADC-
NSA is proposed in this paper. First, the clustering algorithm
is used to identify high-density regions, and the clustered
nonself-clusters are directly used as mature detectors. Sec-
ond, in the low-density regions, the abnormal points (nonself-
antigens that are not clustered) are preferentially used as the
candidate detector centers to generate detectors after calcu-
lating the radius. Finally, candidate detectors are randomly
generated via the traditional algorithm. The generation of
detectors via these three steps can reduce the randomness of
the detector generation in the traditional algorithm, thereby
effectively overcoming the problems of high detector repeat
coverage and loopholes and improving the efficiency detector
generation.

A. ADC-NSA BASIC DEFINITION
Definition 1: The Euclidean distance dij between sample
points xi and xj is:

dij =

√∑D

d=1
(xdi − x

d
j )

2
(1)

The antigen set Ag = {x1, x2, x3, . . . ,xn} contains n sam-
ple points, and each sample point has D-dimensional feature
attributes and is expressed as xi = {x1i , . . ., x

d
i , . . ., x

D
i }. x

d
i

represents the d-th dimension feature of the i-th sample point,
and the distance between any two sample points xi and xj
in the antigen set is calculated using the Euclidean distance,
which is also called antigen affinity calculation.
Definition 2: The local density ρi of the sample point xi is:

ρi =
∑

xi∈Ag
M(dij − dc) (2)

where dc represents the cutoff distance (clustering radius).
In [25], [27], a dc was selected so that the average number

of neighbors in each sample point was about 2%
of the total number of sample points, and M(m) ={
1, m ≤ 0
0, m > 1

(m = dij− dc). If dij is greater than dc, ρi is not

changed, whereas ρi is incremented by one if dij is less than
the dc. This function is used to calculate the true density of xi.
Definition 3: The sample point distance δi is defined as

follows:
If ρi is smaller than ρj:

δi = min
(
dij
)
(xi, xj∈Ag, j6=i and ρj > ρi) (3)

If ρi is maximal:

δi = max
(
dij
)

(xi, xj∈Ag, j6=i) (4)

Definition 4: The cluster center ci is determined by the size
of the cluster center weight γi. Sort γi in descending order and
set the sample points that correspond to the first K values of
γi as ci [26].
Definition 5: The cluster center weight γi is defined as:

γi = δi×ρi (5)

Definition 6: The abnormal point ai is determined accord-
ing to δi and ρi. A point with small ρi and relatively large δi is
called an abnormal point. In this paper, the nonself-antigens
that satisfy these conditions and are not clustered are called
abnormal points, which will be preferred as the candidate
detector centers.
Definition 7: The cluster discriminant Fi is defined as:

Fi =

1
∑n

i=1 g (xi) (non− self)
n (total)

> ε

0 else

g (x) =

{
1 non− self
0 self

(6)

If Fi = 1, the cluster is a nonself-cluster; otherwise, it is a
self-cluster. The ε is the category judgment threshold, and it
takes 0.99 in this experiment.
Definition 8: The expected coverage cp is defined as:

cp (p, t,m)=


−1 if t≥G

0 else if
m

√
t×p×(1−p)

−

√
t×p
1−p

1 else

< Za

(7)

The calculation termination condition is Flag =cp. If
Flag = −1, set t = m = 0 and start counting again. Za is a
very small constant. In this experiment, the value of Za is set
as 0.001, and G > max

(
5
p , 5/ (1− p)

)
.

B. ADC-NSA ALGORITHM
The basic process of the negative selection algorithm that
is based on antigen density clustering is presented as
Algorithm 1 and Figure 3:
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Algorithm 1 ADC-NSA Algorithm
Input: set Ag = {x1, x2, x3, . . . ,xn}, cutoff distance dc,

expected coverage cp
Output: Detectors
<1>: Detectors = ∅, self ∪ nonself =Ag, self∩nonself
= ∅.
<2>: Use the antigen density clustering algorithm to

calculate dij, δi, and ρi of each sample point, abnormal
point ai and nonself-clustering center ci.
<3>: Add the nonself-cluster that is composed of ci and

dc as the first type of mature detector into set Detectors.
<4>: Select the abnormal point ai as the center of

the candidate detector preferentially, calculate the distance
between ai and the nearest self-antigen, record it as R, and
add the circle with ai as the center and R as the radius as
the second type of mature detector to Detectors.
<5>: Randomly generate candidate detectors within

the collection, and add the third type of mature detectors,
which are generated using the traditional detector genera-
tion algorithm, to Detectors.
<6>: Reach cp and terminate of the algorithm. Thus,

the generation of Detectors ends.

FIGURE 3. ADC-NSA algorithm flowchart.

1) ANTIGEN DENSITY CLUSTERING ALGORITHM
The antigen density clustering algorithm clusters antigens
based on the density of the antigen distribution, in preparation

for the generation of the detectors. The algorithm is based on
the following assumptions: (1) The density of the clustering
center point is higher than that of the surrounding sample
points. (2) The distance between the clustering center point
and the higher density point is relatively large.

The process of the antigen density clustering algorithm is
presented as Algorithm 2:

Algorithm 2 Antigen Density Clustering Algorithm
Input: set Ag = {x1, x2, x3, . . . ,xn} and cutoff distance

dc
Output: nonself-clustering center ci and abnormal point

ai
<1>: Calculate Euclidean distance dij according to for-

mula (1).
<2>: Calculate local density ρi according to formula

(2).
<3>: Calculate δi according to formulas (3) and (4).
<4>: Calculate γi according to formula (5) and select ci

according to definition 4.
<5>: Select the abnormal point ai that satisfies the

condition in definition 6.
<6>: Determine the cluster category according to for-

mula (6), and select the nonself-clusters.

2) DETECTOR GENERATION ALGORITHM
The generation of the detector is divided into threemain steps:
(1) Use the nonself-clusters that are calculated via antigen
density clustering as detectors. (2) Use the abnormal point
ai preferentially as a candidate detector center to generate a
detector via calculation. (3) Use the traditional algorithm to
generate the detectors. The generation process of the detec-
tors is illustrated in Figure 4, and the process is presented as
Algorithm 3:

FIGURE 4. Detector generation process.

If a detector that is composed of an abnormal point ai and
a radius ri includes other abnormal points aj, then remove aj.
If there are randomly generated candidate detector points in
the self-antigens or other mature detectors, then remove these
points. At this time, the number of repeated detectors ism+1;
otherwise, the number of mature detectors is t + 1. Calculate
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Algorithm 3 Detector Generation Algorithm
Input: Expected coverage cp, self-antigens, nonself-

cluster center ci, and abnormal point ai
Output: Detectors
<1>: self ∈Ag, detectors = ∅.
<2>: Use the nonself-cluster-center ci as the center

of the circle and dc as the radius to form detectors, and
add them into Detectors as the first category of mature
detectors.
<3>: Calculate the distance ri between ai and the near-

est self-antigen, generate detectors with point ai as the
center and ri as the radius, and add them as the second
category of mature detectors into Detectors.
<4>: Randomly generate a candidate detector center zi

within the set. Calculate the minimum distance ri between
zi and the self-antigen, and generate the detector with the
point zi as the center of the circle and ri as the radius. Add
it as the third category of mature detectors into Detectors.
<5>: Stop generating detectors if cp has been reached.

the termination condition Flag =cp according to the statistical
hypothesis testing method [13] of formula (7).

In Figure 4, hollow dots represent self-antigens with a
specified radius, solid dots represent nonself-antigens, large
circles represent clustering results, and the regions with self-
antigens are nonself-regions. The generated mature detectors
should cover as many nonself-regions as possible. Among
them are nonself-clusters 1, 2, and 3 and self-cluster 1.
These four groups of clusters are calculated via the antigen
density clustering algorithm according to the distribution of
the antigens. Nonself-clusters 1, 2 and 3 (each of which is
defined by a cluster center ci and a cutoff distance dc) are
selected as the first category of mature detectors according
to the cluster discrimination formula (6). ai is preferentially
used as the center of the candidate detector. Then, calculate
the distance between ai and the nearest self-antigen; this
distance is regarded as Ri. If the detector that is defined
by the abnormal point ai and the radius Ri contains other
abnormal points aj, then remove aj and select the detector
as the second category of mature detectors. If a randomly
generated candidate detector point is in the self-antigen or
other mature detectors, then remove it. As illustrated in the
figure, the candidate detector center zi is randomly generated,
and the closest self-antigen distance ri is selected as the
radius. At this time, the generated detector is used as the
third category of mature detectors. Three categories of mature
detectors have been generated.

IV. EXPERIMENT AND ANALYSIS OF THE RESULTS
A. DATASETS AND EVALUATION INDICATORS
The datasets that are used in this paper are from the UCI
database [21]. Classic datasets BCWandKDD-Cup99, which
are often used for anomaly detection and machine learning,
are selected. The BCW dataset originates from breast cancer

TABLE 1. Details of THE BCW dataset in the experiment.

data that were provided by foreign medical institutions. This
dataset has 2 categories, 9 attributes, 241 abnormal data, and
458 normal data. This experiment standardizes and normal-
izes the data, and divides the testing set and training set of
the BCW dataset by using a partition function, As shown
in Table 1. The KDD-Cup99 dataset originates from 9-week
network data connection information that was collected by
a foreign LAN. This dataset includes a training dataset and
a test dataset. In this experiment, the experimental data are
extracted at a ratio of 1:1. Each connection record in the
training dataset contains 41 fixed feature attributes and a class
identifier. The data features include basic features, network
features and content features.

As shown in Table 2.

TABLE 2. Details of the KDD dataset in the experiment.

The evaluation indices are the detection rate (DR) and the
false-positive rate (FPR), which are commonly used in the
classic binary classification problem.

DR =
TP

TP+ FN
(8)

FPR =
FP

FP+ TN
(9)

In these expressions, TN denotes the number of true-
negative types, which are correctly recognized as self-
antigens; TP denotes the number of true-positive types, which
are correctly recognized as nonself-antigens; FN denotes
the number of false-negative types, which are incorrectly
recognized as self-antigens; and FP denotes the number
of false-positive types, which are incorrectly recognized as
nonself-antigens.
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B. EXPERIMENTAL DATA PREPROCESSING
This experiment uses the most common z-score normaliza-
tion (zero-mean normalization) method, also known as stan-
dard deviation standardization. This method gives the mean
and standard deviation of the original data to standardize the
data.

The processed data conforms to the standard normal dis-
tribution, that is, the mean is 0, the standard deviation is 1,
and its conversion function is: x∗ = x − µσ . Where µ is the
mean of all sample data and σ is the standard deviation of all
sample data. There are two benefits after data normalization:
¬ Improve the convergence speed of the model, ­ Improve
the accuracy of the model.

Due to the large KDD-CUP data set, this paper uses Prin-
cipal Component Analysis (PCA) to reduce the dimension
of this data set, while maintaining the characteristics of the
largest variance contribution in the data set. The main steps
are: The features are recombined into uncorrelated principal
components, which are used to represent the original informa-
tion. Thismethod can effectively reduce the dimensionality of
the sample and improve the calculation accuracy [22].

The key statement in the code is as follows: sklearn.
decomposition.PCA (n_components = 99.9, copy = True,
whiten = False).

¬ n_components: If the value is assigned to string, such
as n_components = ’mle’, the number of features will be
automatically selected to meet the required percentage of
variance; if no value is assigned, the default is None and the
number of features will not change (the feature data will be
changed ). In this experiment, the percentage of variance is
set to 99.9%, that is, the similarity with the feature data before
dimensionality reduction is 99.9%.

­ copy: True or False, the default is True, that is, whether
the original training data needs to be copied.

® whiten: True or False, the default is False, that is,
whether to whiten, so that each feature has the same
variance.

C. EXPERIMENTAL PARAMETER SETTINGS
The main parameters of this experiment are the expected
coverage cp and the cutoff distance dc. The experimental
results are presented in Figures 5, 6, 7 and 8. Figures 5 and
6 plot the detection rate and the false-positive rate when cp

FIGURE 5. Effect of the expected coverage cp on the detection rate.

FIGURE 6. Effect of the expected coverage cp on the false-positive rate.

FIGURE 7. Effect of the cutoff distance dc on the detection rate.

FIGURE 8. Effect of the cutoff distance dc on the false-positive rate.

is 90%-99%. Figures 7 and 8 plot the detection rate and the
false-positive rate when cp is 99% and dc is 0.1-0.55.

The experimental parameters are the best parameters that
were identified in the analysis of the experimental results.
According to the figure, in the BCW dataset, when cp is 99%
and dc is 0.35, the detection rate of this algorithm reaches
its maximal value and the false-positive rate is relatively low.
At this time, the detection rate is 99.41%, and the false-
positive rate is 3.54%.

In the KDD-Cup dataset, the algorithm performs best when
cp is 99% and dc is 0.25. The detection rate reaches 99.24%,
and the false-positive rate is 3.25%.

The final parameter settings are listed in Table 3:

D. COMPARATIVE ANALYSIS EXPERIMENT
To further evaluate the performance of the algorithm, this
paper compares it with three algorithms, namely, RNSA [12],
V-Detector [13], and ASSC-NSA [16], on the BCW and
KDD-Cup datasets. The statistics are presented in Table 4,
and the results of the comparative experiments are presented
in Figures 9, 10, 11, and 12.
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TABLE 3. ADC-NSA parameter settings on two datasets.

TABLE 4. Comparison of four algorithms on the bcw and KDD-Cup
datasets.

FIGURE 9. Comparison of the detection rates of four algorithms on BCW.

FIGURE 10. Comparison of the false-positive rates of four algorithms on
BCW.

These results are the averages of the detection rates and
the false-positive rates that were obtained via multiple exper-
iments with cp equal to 99%. In this experiment, the detec-
tion rate is 99.41% and the false-positive rate is 3.54% on
the BCW dataset. On the KDD-Cup dataset, based on PCA
dimension reduction, the detection rate is 99.24% and the
false-positive rate is 3.25%. It is concluded that ADC-NSA,
which is proposed in this paper, realized a higher detection
rate and a lower false-positive rate than the three compared
algorithms.

FIGURE 11. Comparison of the detection rates of four algorithms on
KDD-Cup.

FIGURE 12. Comparison of the false-positive rates of four algorithms on
KDD-Cup.

TABLE 5. Time complexit of each algorithm.

E. TIME COMPLEXITY ANALYSIS
Based on this experiment, the following assumptions are
made: Ns is the number of self-antigens, Nn is the num-
ber of nonself-antigens, d is the dimension, M is the num-
ber of nonself-clusters, and P is the number of abnormal
points. By analyzing definitions 1 through 7, we can get
that the time complexity of antigen density clustering algo-
rithm is O((N s + Nn)

2). Combined with the detector gener-
ation algorithm, the time complexity of this experiment is
O((N s + Nn)

2
∗d). Compared with other experiments [11],

the time complexity is shown in Table 5.
As shown in Table 5, compared with RNSA and

V-Detector, the time complexity of ADC-NSA is much lower
than the traditional exponential level [14]. Under the same
conditions, the time complexity of this algorithm is better
than the improved ASSC-NSA. As the dimension d increases,
the time complexity of this algorithm will also be better than
the improved ASTC-RNSA. Overall, the time complexity
of the algorithm is slightly lower.

VOLUME 8, 2020 44973



C. Yang et al.: NSA Based on Antigen Density Clustering

V. CONCLUSION
The traditional negative selection algorithm ignores the influ-
ence of the antigen distribution on the generation of detectors
during the detector generation stage, thereby resulting in
low efficiency of detector generation. Therefore, this paper
proposes a negative selection algorithm that is based on
antigen density clustering (ADC-NSA): First, the clustering
algorithm is used to identify high-density regions, and the
clustered nonself-clusters are directly used as mature detec-
tors. Second, the abnormal points are selected as the centers
of candidate detectors preferentially in low-density regions,
and detectors are generated via training. Finally, detectors
are generated via the traditional algorithm. The algorithm
can effectively generate detectors in regions with various
densities; hence, the algorithm has a higher detection rate and
a lower false-positive rate.

At present, the algorithm still has two problems: 1. In the
clustering step, the selection of the cutoff distance dc during
clustering still depends on artificial experience; 2. When the
detection is performed, the points that fall into the loopholes
are not clear. The next research work is how to achieve adap-
tiveness in the selection of dc and conduct further research on
the determination of the data to be detected that falls into the
loopholes.
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