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ABSTRACT Infrared small target detection is a crucial and challenging topic for various applications.
In recent years, the spectrum scale space (SSS) algorithm has shown considerable potential in the field of
target detection. However, the SSS algorithm is prone to high false alarm rates in infrared small target detec-
tion scenarios with complex background. This paper proposes an improved SSS (ISSS) algorithm via precise
feature matching and scale selection strategy for efficient infrared small target detection, which includes
background suppression, feature matching and optimal scale selection three stages. In the background
suppression stage, a matrix decomposition method named inexact augmented Lagrange multiplier (IALM)
algorithm is used to extract the sparse image matrix from the original image as the target foreground image.
In the feature matching stage, the 16 elaborate Gaussian kernel functions convolve with the the amplitude
spectrum of target foreground image to generate 16 scale saliency maps that precisely match the feature
of small targets. In the optimal scale selection stage, a few proper candidate scale maps are screened
out according to the difference between the pixel values of the target area and the background clutters,
in which the target area was more highlighted, and the scale map corresponding to the maximum value of
local information entropy of the candidate saliency map is the final detection result map. We mainly made
three contributions: First, IALM algorithm is utilized as a preprocessing step, and we have verified it is
indispensable in eliminating most backgrounds with self-correlation property. Second, an elaborate scale
division strategy is proposed to obtain multi-scale saliency maps that match the feature of infrared small
targets precisely. Third, the gray value difference and the maximum value of local information entropy
are defined and used as the judgment criteria for optimal scale selection. Extensive experimental results
demonstrate that the proposed method outperforms state-of-the-art techniques, especially on infrared images
with thick clouds and high-brightness buildings.

INDEX TERMS Infrared small target detection, improved spectrum scale space, matrix decomposition.

I. INTRODUCTION
Infrared small target detection remains a challenging issue
with the rapid development of infrared guidance systems.
Small targets are often submerged in nonconstant complex
backgrounds with low signal-noise ratios and low contrast.
Moreover, infrared small targets always have unremarkable
features, uncertain brightness, and weak intensity because
of the long imaging distance in the atmosphere [1], [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Gangyi Jiang.

Researchers have exerted considerable efforts in the past
decade, but infrared small target detection is still a challeng-
ing task worth exploring [3]–[6].

In general, infrared small target detection methods can be
classified into two categories: single frame and sequential
detection. Sequential detection methods, such as the inter-
frame difference method [7], optical flow method [8], [9],
three-dimensional directional filtering [10], and Bayesian
theory [11], perform well when the target has prior knowl-
edge of the shape and position in adjacent frames. However,
obtaining prior knowledge in practical military applications
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is extremely difficult. Considering fast detection speed and
short initialization time [12], researchers often focus on single
frame detection.

Typical single frame image detection methods, such as
the maximum mean and maximum median filters [13], [14],
two-dimensional minimum mean square filter [15], back-
ground regression estimation method [16], morphological
method [17], and bilateral filter [18], can effectively detect
targets in simple background. However, when small targets
are submerged in infrared scenarios with highly heteroge-
neous backgrounds, these algorithms fail to obtain satisfac-
tory detection results. Recently, matrix decomposition and the
saliency detection method have shown substantial advantages
in single frame infrared images detection. For the typical
matrix decomposition method, the robust principal compo-
nent analysis (RPCA) method [19] based on convex opti-
mization is used to separate the foreground target matrix and
the background matrix accurately from the original infrared
image. The infrared patch-image (IPI) model [20] generalizes
the traditional image model to a new patch-image model
based on local patch construction. The core idea of the IPI
model is to split an infrared image into the patch-image
model, separate the foreground target matrix from the back-
ground matrix by stable principle component analysis, and
finally reconstruct the image. However, some residual back-
ground edges remain when the target is submerged in heavy
noise due to the defect of the l1-norm-based sparsity mea-
sure in the IPI model. A reweighted infrared patch-image
model is proposed [21] to overcome the defect that the
nuclear norm in the IPI model could easily leave many sparse
background edges. The weighted nuclear norm minimization
based matrix completion (WNNM-MC) model [22] assigns
weights adaptively on different singular values to overcome
the defect of regularizing each singular value equally in prac-
tical problems.

In recent years, methods based on the contrast mechanism
of saliency detection have been proposed in the open litera-
ture for infrared small target detection. These methods con-
sider noticeable differences between targets and background
regions [23]–[26]. In the meanwhile, numerous saliency
detection methods have been proposed in the field of small
target detection. Spectral residual (SR) [27] is a typical algo-
rithm for saliency detection that extracts the target region
by utilizing the spectral residual information in the spec-
tral domain and finally obtaining the salient target region.
However, the SR algorithm focuses on target extraction and
lacks suppression ability, especially on infrared images with
heavy noises and highly heterogeneous backgrounds. The
phase spectrum of quaternion Fourier transform (PQFT) [28]
is proposed to calculate spatiotemporal saliency maps, which
validates the necessity of phase spectra in saliency detec-
tion. A new bottom-up paradigm named spectrum scale
space (SSS) algorithm [29], which is based on scale space
analysis, is proposed for saliency detection. SSS analyzes
the infrared image at a multiscale level and obtains different
scale maps with various detailed information. However, for

small target detection in complex backgrounds, SSS often
detects not only target regions but also background edges.
In this case, a dual multiscale filter [30] with SSS and
Gabor wavelets (GW) is proposed for efficient infrared small
target detection. SSS is used as the preprocessing proce-
dure to obtain the multiscale saliency maps, and GW is
utilized to suppress the high frequency noise remained and
next, non-negative matrix factorization method fuses all the
GW maps into one final detection image. Some saliency
detection methods based on local contrast have been pro-
posed in the open literature. Typically, local contrast mea-
sure (LCM) [31] utilizes the characteristics of HVS and a
derived kernel model to highlight target regions well. How-
ever, the LCM algorithm needs to conduct numerous pixel-
by-pixel calculations; thus, the efficiency is relatively low.
A multiscale algorithm utilizing the relative local contrast
measure (RLCM) [32] is proposed for infrared small tar-
get detection. The raw infrared image is first calculated by
multiscale RLCM and then an adaptive threshold is utilized
to extract target area. Recently, some LCM-based methods
have shown considerable potential in target detection area.
For example, a fast target detection method guided by visual
saliency (TDGS) [33] is proposed, which contains fast SSS
as the coarse-detection stage and adaptive LCM as the fine-
detection stage. TDGS performs well for small and dim target
detection in infrared search and track (IRST) systems and
practical applications. A coarse to fine (CF) [34] framework
combining the matrix decomposition method with multiscale
modified LCM (MLCM) detects small target from structured
edges, unstructured clutter and noise gradually. Inspired by
the multiscale gray difference and local entropy operator,
a small target detection method based on the novel weighted
image entropy (NWIE) [35] is proposed, which performswell
to process small target images with low SNR.

This study proposes an improved SSS (ISSS) algorithm
via precise feature matching and scale selection strategy
for infrared small target detection. The inexact augmented
Lagrange multiplier (IALM) by exploiting the nonlocal
self-similarity prior is set as the preprocessing step to extract
the sparse image matrix from the original infrared image
matrix. After the candidate target region is extracted from
the first step, most backgroundswith self-correlation property
are suppressed. Then, the improved SSS (ISSS) algorithm is
proposed as the postprocessing step to further enhance the
target contrast and eliminate the highly heterogeneous back-
grounds via the proposed elaborate scale division strategy
and optimal scale selection mechanism. The ISSS algorithm
generates multi-scale saliency maps by the proposed scale
division strategy, which caters to the features of infrared
small targets. Finally, the optimal scale map where the small
target is most highlighted needs to be screened out. Combined
with the idea of saliency measurement [36], [37], the gray
value difference and the maximum value of local information
entropy are defined and used as the judgment criteria for
optimal scale selection. Extensive experiments demonstrate
that the proposed algorithm not only performs satisfactorily

VOLUME 8, 2020 48661



Z. Yan et al.: Multi-Scale Infrared Small Target Detection Method via Precise Feature Matching and Scale Selection Strategy

in visual and quantitative evaluations, but also outperforms
other contrast algorithms, especially on infrared images with
thick clouds and high-brightness buildings. Real experimen-
tal data also indicate that IALM and ISSS are essential steps
for the proposed method and that the execution order cannot
be changed in order to achieve a high detection performance.
Given these effective improvements, the proposed algorithm
is robust and efficient against occlusion and complex noise
for infrared small target detection.

This paper is organized as follows. Section 2 reviews
the related work. Section 3 introduces the proposed algo-
rithm, including the IALM algorithm and the ISSS algo-
rithm. Section 4 shows the experimental results. Lastly,
Section 5 presents the conclusion.

II. RELATED WORK
In this section, we review the basic concepts of matrix
decomposition and saliency detection for infrared small target
detection.

A. MATRIX DECOMPOSITION
Inspired by the non-local self-correlation configuration of
the background [20], matrix decomposition method has been
turned out to be an effective and accurate method to sepa-
rate the small target from the original image. The society
of photo-optical instrumentation engineers (SPIE) defines a
target with the pixel points of no more than 9 × 9, which
accounts for nomore than 0.12% of an image sized 256×256,
as a weak and small target. ‘‘Weak’’ means that the pixel
contrast of the target is low, and ‘‘small’’ refers to the small
number of pixels occupied by the target. Thus, the target IT
is often regarded as a sparse matrix, which is represented as:

‖IT ‖0 < k, (1)

where ‖·‖0 denotes the l0-norm of a matrix, which is the
number of non-zero elements in the matrix. The parameter
k depends on the size of the target.

According to a general low-rank assumption previously
proposed, all background patches come from a mix of
low-rank subspace clusters [38], and infrared background IB
is considered as a low-rank matrix:

rank (IB) ≤r, (2)

where the parameter r is proportional to the complexity of the
image. The noise in infrared image usually includes photon
noise, johnson noise, color noise, 1/ f noise, particle noise
and so on. But from the principle of generation, they are all
independent. All the noise obeys the Gaussian distribution
with the mean value of 0 except the 1/ f noise. In general,
an infrared image can be regarded as the superposition of
the target, the background and the noise [39], which can be
represented as:

I = IT + IB + In. (3)

where I represents the original infrared image, IT repre-
sents the target matrix with sparse property, IB represents the

background matrix with low-rank property, and In represents
the random noise. The matrix decomposition method has
been proved to be effective in separating the target matrix
with sparse property from the original infrared image. Princi-
pal component analysis (PCA) [40], as a classical data dimen-
sion reduction method, aims to re-describe the new high
dimensional data space using another set of low dimensional
bases. The principal component can also be understood as the
projection of high dimensional data on the low dimensional
subspace. PCA can remove noise and redundancy to the
greatest extent and is widely used in science and engineer-
ing applications. Given a large image matrix D, it is often
low-rank or approximate low-rank. The function of PCA is
to find a low-rank matrix L, so that L becomes the principal
element of D. PCA decomposes the matrix D into a matrix L
and a matrix E .When the elements of matrix E are subject to
independent and identical distribution, they are represented
as the following optimization problem:

min
L,E
‖L‖F , subject to rank (L) ≤ r,D = L + E (4)

where D is the original data matrix, E is the error matrix,
rank(L) represents the rank of the matrix L and ‖·‖F is
the Frobenius norm. The optimal solution of the problem
can be obtained by singular value decomposition of the
matrix D. However, when the E matrix is the sparse and
large noise, PCA cannot give the ideal result. Robust PCA
method performs well in this case. The iterative thresholding
technique [41] is a typical algorithm to solve matrix decom-
position problem, but its convergence rate is very slow. The
algorithm usually requires 104 iterations to converge, and
the cost of each iteration is equal to that of one singular
value decomposition. In order to improve the efficiency of
the algorithm, Lin et al. [42] proposed the accelerated proxi-
mal gradient (APG) algorithm and gradient-ascent algorithm.
Both algorithms converge at a speed 50 times faster than
iterative thresholding technique. On the basis of augmented
Lagrange multiplier (ALM), exact ALM method (EALM)
algorithm [43] is proposed. The solution obtained by EALM
algorithm can converge to the exact solution of the optimiza-
tion problem, and the Q-linear convergence rate is better
than the iterative threshold algorithm and APG algorithm
mentioned above. EALM algorithm obtains the more accu-
rate non-zero number of E matrix, and the accuracy is high.
However, the solution of optimization problem L(L, E, Yk ,
µk ) needs to be solved by alternating direction method in
every iteration of EALM algorithm, which is shown in (5):

(Lk+1,Ek+1) = argmin
L,E

L(L,E,Yk , µk ), (5)

Nevertheless, solving this sub-problem exactly is proved
to be time-consuming and unnecessary. Then the Inexact
ALM [43] algorithm (IALM) is proposed, which is the
improved EALM algorithm. IALM algorithm converges as
fast as EALM, but the number of partial SVDs is less.
Consequently, IALM algorithm is widely used to solve the
constrained convex optimization problem.
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B. SALIENCY DETECTION
Human eyes can capture the prominent area of an image
quickly through contrast mechanism, which helps eyes to
selectively focus on the interested salient area. This attention
selection mechanism, which is also called visual saliency, can
select the region of interest from all the information in the
visual range. Many algorithms of saliency detection refer to
the idea of visual saliency and extract the salient region from
the whole image effectively. Spectral residual (SR) [27] is a
typical saliency detection method, that extracts the saliency
region by using the spectral residual information.

Given an original image I , the log-amplitude spectrum
L(u, v) of I in the frequency domain is represented as:

L(u, v) = log(|fft(I )|), (6)

The spectral residual is defined as the difference between
the original amplitude spectrum and the smoothed amplitude
spectrum:

R(u, v) = L(u, v)−h∗L(u, v), (7)

where h denotes the mean filter. Then the inverse Fourier
transform converts spectral residual to time domain:

S(x, y) = ifft{exp(R(u, v)+ i·P(u, v))}. (8)

where P(u, v) = angle(fft(I )) is the phase spectrum of the
original image. Inspired by the SR model, researchers have
noted the frequency domain characteristics of the images.
For instance, SSS algorithm is a classical bottom-up frame-
work based on SR model. It is worth mentioning that the
convolution of the image amplitude spectrum with a low-
pass Gaussian kernel of the appropriate scale is equivalent
to an image saliency detector. SSS algorithm suppresses the
repetition mode by smoothing the amplitude spectrum with
a multi-scale low-pass filter, and is proved to be an effective
algorithm for saliency detection. Recently, the saliency detec-
tionmethods have been applied more andmore to the infrared
small target detection field.

III. PROPOSED METHOD
The flowchart with a pipeline structure of the proposed
method, including the background suppression stage, feature
matching stage and optimal scale selection stage, is shown
in Figure 1. In the background suppression stage, IALM
algorithm is used to decompose the original image matrix D
as a low-rank matrix L and a sparse matrix E . The low-rank
matrix L is considered as the background image, and the
sparse matrix E is considered as the target foreground image.
In the feature matching stage, the 16 elaborate Gaussian
kernel functions convolve with the amplitude spectrum of
the sparse matrix E to generate 16 scale saliency maps that
precisely match the feature of small targets. In the optimal
scale selection stage, a few candidate saliency maps are
screened according to the difference of gray values between
the target area and the residual noise area, and the target
area in these maps is assigned a high value while the other

FIGURE 1. Flowchart of the proposed method. The red boxes represent
the real target areas, the yellow and green boxes represent the different
highlighted residual noise areas in some saliency maps.

parts are greatly suppressed. Finally, the optimal saliencymap
(the final detection result) is obtained corresponding to the
maximum local information entropy of the candidate maps
above. These steps are described in detail in the following
sections.

A. BACKGROUND SUPPRESSION STAGE
The matrix decomposition method is set as the preprocess-
ing step to decompose the target foreground matrix with
sparse characteristics from the infrared image matrix. RPCA,
a typical matrix decomposition method, can recover essential
low-rank data from observation data with large and sparse
noise pollution. This problem can be solved by the following
optimization problems:

min
L,E

rank (L)+ λ ‖E‖0 s.t. D = L + E, (9)

where the regular parameter λ is greater than 0. Optimizing
the solution is difficult because the rank and l0-norm of the
matrix have nonconvex and nonsmooth properties in the opti-
mization. The nuclear norm and l1-norm [44] of thematrix are
their optimal convex approximation; thus, the NP-hard prob-
lem of (9) is represented as the following convex optimization
problem:

min
L,E
‖L‖∗ + λ ‖E‖1 s.t. D = L + E, (10)
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where ‖·‖∗ represents the nuclear norm of the matrix and ‖·‖1
represents the l1-norm of the matrix. The matrix recovery
problem depends on the optimization of nuclear norm and
l1-norm.

Considering the efficiency and robustness of the above-
mentioned IALM algorithm, we use it to decompose the
original image matrix to a low-rank image matrix and a
sparse image matrix, which correspond to the background
region and the target region, respectively, in the preprocessing
step. The Lagrange multiplier method is often used to solve
the constrained convex optimization problem. This technique
integrates the original function and constraint conditions into
an unconstrained equation to solve this optimization problem.
For (10), the Lagrange multiplier method can perform the
following integration:

X = (L,E)

f (X) = ‖L‖∗ + λ ‖E‖1 .

h(X) = D− L − E (11)

Then the augmented Lagrange function is as follows:

L(L,E,Y , µ) = ‖L‖∗ + λ‖E‖1 + 〈Y ,D− L − E〉

+
µ

2
‖D− L − E‖2F, (12)

where 〈A,B〉 = tr
〈
ATB

〉
. The specific algorithm flow of

IALM is as follows:

Algorithm 1 (Matrix Decomposition by IALM Algorithm)

Input: Observation matrix D ∈ Rm×n, λ

1: Y0 = D/J (D);E0 = 0;µ0> 0;ρ> 1;k = 0
2: while not converged do
3: (U , S,V ) = svd(D− Ek + µ

−1
k Yk )

// Fix the others and update L by
4: Lk+1 = US

µ−1k
[S]V T

// Fix the others and update E by
5: Ek+1 = S

λµ−1k

[
D− Lk+1 + µ

−1
k Yk

]
6: Yk+1 = Yk + µk (D− Lk+1 − Ek+1)
7: µk+1 = ρµk
8: k = k + 1
9: end while
Output: (Lk , Ek )

The initial parameters need to be set in the algorithm: ρ =
1.6, λ = 1/

√
max(m, n), µ0 = 1.25/max(svd(D))×107,

Y0 = D/(max(mm, im)), mm = max(svd(D)), im =

max (abs(D))/λ.
The following formula updates the parameter µ:

µk+1 =

ρµk , if
µk ‖Ek+1 − Ek‖F

‖D‖F
< ε

µk , otherwise.
(13)

With the iteration of the algorithm and the continuous
updating of µk , a fast growth rate results in a fast algorithm
convergence speed.

FIGURE 2. Extraction of sparse target foreground image by IALM.

Figure 2 shows the experimental results of three typical
infrared small target images after the implementation of the
IALM algorithm. The experimental results in Figure 2 are
all sparse image matrices extracted from the original image.
The results show that the IALM algorithm can effectively
eliminate most backgrounds with self-correlation property
and enhance the target contrast. In Figure 2, the target areas
are labeled with red circles and the noise areas are labeled
with the yellow circles.

In Figure 2, although most backgrounds are suppressed,
the detection results still show a high false alarm rate and
poor location precision. Moreover, the target intensity from
the three-dimensional maps is considerably weak. ISSS algo-
rithm needs to be used for follow-up processing to further
suppress the residual background edges and enhance target
contrast.

B. FEATURE MATCHING STAGE
Studying the different properties of an object often requires
different specific scales. For instance, when we study the
flying trajectory of an eagle, the eagle is only a small point in
our visual range.When we explore its shape, we even observe
its feathers. The scale must be introduced as a free parameter
variable into the image processing to analyze the areas of
interest. The so-called scale space is used to obtain the opti-
mal scale of the target through multiple scales without know-
ing the image size. On the basis of the SSS algorithm and the
contrast mechanism, the target foreground image extracted
in the background suppression stage is further processed by
ISSS algorithm. According to [29], the convolution of the
image amplitude spectrum and the low-pass Gaussian kernel
with an appropriate scale is equivalent to image saliency
detection; thus, we use a Gaussian kernel function with dif-
ferent scales to obtain the saliency maps of various scales.
For selecting the optimal scale factor of the Gaussian kernel
function, an optimal-scale selection mechanism is proposed
in accordance with the property of local information entropy.
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This mechanism caters to the characteristics of infrared small
targets [45], [46] and limits the calculation of information
entropy to the small region of interest instead of traversing
all the complete scale maps. Gaussian kernels are the only
ones that can produce multiscale spaces [47]. Using linear
scale space representation for reference, we generate a sin-
gle parameter family of smooth spectrum, whose parameters
depend on the scale of the Gaussian kernel.

The specific process of the ISSS algorithm is as follows.
Given target foreground matrix I (x, y), the log-amplitude
spectrum IA(u, v) and phase spectrum IP(u, v) are represented
as follows:

IA (u, v) = log|fft(I (x, y))|, (14)

IP (u, v) = angle(fft(I (x, y))). (15)

The scale space 8(u, v;k) is defined as the convolution of
IA(u, v) with a series of Gaussian kernel functions:

8(u, v;k) = g (u, v;σ) ∗IA(u, v), (16)

where g(u, v;σ ) is gaussian kernel and its standard deviation
σ is related to scale factor k:

σ =


2k 0 <k ≤ 5
k ∗ (k − 4) 5 <k ≤ 11
25+ 2 ∧ (k − 6) 11 < k ≤ 16

(17)

The step value of the scale parameter σ of the Gaussian
kernel function is set as an irregular value in (17). When the
value of k is small, the standard deviation σ of the Gaussian
kernel function varies slowly, andwhen the value of k is large,
and σ varies rapidly. This elaborate scale division strategy is
conducive to choosing an appropriate and accurate Gaussian
kernel for small targets. Different types of salient regions
require varied filter dimensions. A large background area
with a uniform pattern requires a suitable scale to smooth
the amplitude spectrum for suppression. An excessively small
or large scale selection may cause the background area to
become suppressed insufficiently or cause only the salient
area edge to be highlighted. When a small-scale nucleus is
used, the large area is salient. A large-scale nucleus is used to
detect long-range or texture-rich targets [29]. Infrared small
targets flying in the sky are usually classified as long-range
targets, and their pixels are few; thus, an elaborate scale
division strategy is necessary to select the optimal saliency
map.

The obtained smooth logarithmic amplitude spectrum
8(u, v; k) and the original phase spectrum IP(u, v) are com-
bined to calculate the inverse Fourier transform and gain the
saliency maps Sk (x, y):

Sk (x, y) = ifft{exp(8(u, v;k)+ i·IP(u, v))}. (18)

C. OPTIMAL SCALE SELECTION STAGE
Information entropy is often used as a quantitative indicator
of system information content [48]. Thus, it can be further
utilized as a criterion for the optimization of system equations

or parameter selection. In a relatively simple background,
the highlighted target can change the information entropy of
the whole image. By contrast, for a small and dim infrared tar-
get, its contribution to the whole image information entropy
is insignificant. In the proper sclae map, the areas of interest
are highlighted while the other parts are suppressed to the
greatest extent. For the saliency detection of large targets,
the minimum image information entropy may perform well
in selecting the optimal saliency map, but it is not suitable for
infrared targets with extremely small sizes.

Small targets can considerably influence the value of infor-
mation entropy in the local saliency region [49]. Information
entropy is a local concept, and for one pixel point in the
image, information entropy H (x, y) is defined as follows:

H (x, y) = H [3(x, y)] = −
∑K

b=1
pb(x, y)lgpb(x, y), (19)

where3(x, y) represents a local area adjacent to a pixel point
(x, y), the pixel value of the local area is projected onto K
intervals, and pb(x, y) represents the probability that the pixel
value is in the b interval. A high value of the local information
entropy means that the region is rich in information and has
a high probability of containing small targets.

In the optimal scale map, the target saliency is better than
the background clutters, and at the same time, the background
often shows a certain spatial similarity. Hence, when selecting
the salient region, we first traverse the largest pixel point Lk
in all scale maps:

Lk = max (Sk (x, y)) k = 1 . . .K , (20)

where K is set as 16 in the original image with a size of
288 × 384. With the point as the center, we define the eight
neighbor points as Bk and calculate the mean value of the
pixel value mk in its eight neighborhoods as follows:

mk =
1
8

8∑
n=1

In (i, j) In (i, j) ∈ Bk (21)

Figure 3 shows the values of maximum pixel points and
their neighborhoods at two scales.

The similarity of the pixel point is determined by its adja-
cent region [50]; thus, the pixel values of the eight neigh-
borhoods near the strong background interference are similar
to one another or tend to approach the largest pixel value,
whereas only a few neighborhood pixel values in the target
region tend to approach the central pixel value. Extensive
experiments indicate that the mean value of the eight neigh-
borhoods’ pixel values in the target area is usually smaller
than that in the highlighted background clutters. We set the
discriminant standard τ . When the mean value is less than τ ,
the scale corresponding to the region is temporarily stored,
and when the mean value is greater than τ , the corresponding
map is regarded as ‘‘not salient’’. After traversing all maps,
we calculate the local information entropy in the stored scale
maps and regard the scale corresponding to the maximum
local information entropy as the optimal scale kout , the kout
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TABLE 1. Details of the seven sequences.

FIGURE 3. Comparison of pixel values of target and interference at two
scales.

is defined as follows:

kout = arg
k
max{H (Vk )}Vk = Lk + Bk . (22)

where Lk represents the largest pixel point, Bk represents the
eight neighbor points.

FIGURE 4. a1, b1 is the original image. a2, b2 are the salient maps
obtained by global entropy, a3, b3 are the salient maps obtained by local
entropy.

Figure 4(a2, b2) and Figure 4(a3, b3) respectively show
the optimal scale saliency map screened by the minimum

global information entropy in accordance with the original
SSS algorithm and by the proposed local information entropy.
As shown in Figure 4(a), the saliency map obtained by
the global information entropy focuses on the car at close
range, whereas the proposed selective mechanism focuses
on the driver, which is the small target in the original
image. Similarly, from Figure 4(b), the saliencymap obtained
by the global information entropy method focuses on the
high-brightness buildings at close distance, and the local
information entropy method can effectively detect the small
infrared targets at far distances.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we randomly select twelve infrared small
target images from seven infrared image sequences to verify
the effectiveness and robustness of the proposed algorithm.
These sequences contain images with different sizes in var-
ious typical scenarios. The detailed information of seven
sequences is shown in Table 1. Figure 5 shows the experi-
mental results of the eight state-of-the-art contrast methods
and the proposed method for infrared images in each scene.
Table 2 and Figure 6 show the results of SCRg, BSF and
ROC curves of eleven contrast methods. The eleven contrast
algorithms include TDLMS [51], Top-hat [52], RPCA [19],
SSS [29], WNNM-MC [22], TDGS [33], NWIE [35],
CF [34], RLCM [32], DM filter [30], IPI [20]. Based on
detection results in Figure 5, SSS has achieved satisfactory
detection results in relatively simple background, but SSS
misses the targets with low SNR such as in Image e and
Image f. RLCM and CF fail to fully detect multiple small
targets in Image g, k and l; instead, a lot of false alarm
emerge. Results of TDGS in Image f, i, j are not capable
of detecting target correctly, due to its failure to enhance
target with low SNR in complicated background with large
noise. Detection results of IPI fail to suppress the heavy cloud
edges and highlighted buildings completely in Image b, c, g.
DM filter obtains ideal detection results in Image a, d, i, k,
all the targets are correctly output while most background
clutters are discarded. NWIE has achieved relatively ideal
detection results compared to other contrast algorithms, and
complicated background clutters are almost suppressed and
most small targets are highlighted. However, false alarms still
emerge in multitude in detection results of NWIE in Image c
and Image e, owing to the bright cloud and building. Accord-
ing to 2D and 3D results in Figure 5, the proposed method
can both eliminate the complicated background and enhance
the target region of interest in all the seven sequences.
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FIGURE 5. The representative images of the seven real image sequences and the corresponding processed results of different methods.
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FIGURE 5. (Continued.) The representative images of the seven real image sequences and the corresponding processed results of different methods.
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FIGURE 6. ROC curves of different methods.

TABLE 2. SCRg and BSF of different methods.

To further objectively verify the detection performances of
the proposed method, we adopt four kinds of evaluation met-
rics: the signal-to-clutter ratio gain (SCRg), the background
suppression factor (BSF), Receiver Operating Characteristic
curve (ROC curve) and time. The SCRg and BSF values
for different methods are shown in Table 2. The maximum
and second values of SCRg andBSF obtained by the detection
results of different algorithms in each image aremarked as red
and blue, respectively.

SCR =
|µt − µ|

σ
, (23)

SCRg = 20lg
SCRout
SCRin

, (24)

BSF = 20lg
σin

σout
. (25)

where µt is the average of target area intensity, µ and
σ are the average and standard deviation of the entire

image intensity. Both the SCRg and BSF indicate the degree
of accuracy in infrared small target detection. The larger
the SCRg and BSF values, the better the performance of
the related algorithm in background suppression and target
extraction. From Table 2, the SCRg and BSF values of the
proposed method are higher than those of other contrast algo-
rithms in most cases. In simple background such as Image a,
the SCRg and BSF values of each contrast algorithm are rela-
tively high. The SCRg value of IPI is slightly higher than that
of the proposed algorithm, but the background suppression
value is lower. The values of SCRg and BSF of NWIE in the
detection results of twelve infrared images are higher than
other contrast algorithms, but on the whole, they are slightly
inferior to the proposed algorithm. According to the values of
SCRg and BSF in Table 2, the background suppression ability
and target extraction ability of the proposed algorithm are
superior to other contrast algorithms in general. To conclude,
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TABLE 3. The average time consumed by each algorithm.

the intuitive evaluation conclusion can be drawn that the
proposed method outperforms other state-of-the-art contrast
algorithms, especially on infrared images with thick clouds
and high-brightness buildings. The average time consumed
by each algorithm is given in Table 3. It can be concluded
from Table 3 that both RLCM and WNNM algorithms con-
sume less time, followed by the proposed algorithm, TDGS
and NWIE. Similar to the prposoed method, DM filter and
CF perform multi-scale calculations, but take twice as long
as the proposed method. IPI splits an infrared image into the
patch-image model, which requires the longest running time,
and the larger the image size, the longer the consumption
time. In addition, the receiver operating characteristic (ROC)
curves are also utilized to further evaluate the performance
of the proposed method. The ROC curves effectively reflect
the relationship between probability of detection and the false
alarm rate. In ROC curves image, the larger the area between
the curve and the x-axis, the higher the detection efficiency
of the related algorithm. Figure 6 shows the ROC curves of
different methods for twelve infrared scenarios. The ROC
detection result by WNNM in Image e performs better than
other methods. But in other images, the proposed algorithm
has achieved the highest detection rate at the same false
alarm rate. The comparisons derived from the ROC curves
indicate that the proposed method is effective and robust
to detect infrared small targets against various complicated
backgrounds.

In addition, we conduct a large number of experiments
to prove the necessity of introducing IALM method as the
preprocessing step. In the following, we provide the simple
experimental results to illustrate it. Figure 7 shows the detec-
tion results of Image b, Image c and Image e when the two
algorithms’ execution order is altered. The detection results
show a high false alarm rate and poor location precision.

FIGURE 7. Experimental results before and after IALM and ISSS algorithm
execution order changes.

In above experiments, the ISSS algorithm not only
enhances the target intensity but also sharpens the back-
ground edges, resulting in a large amount of residual

background clutters. However, in the subsequent processing
stage, ISSS algorithm can enhance the target strength and fur-
ther eliminate the residual background clutters. In conclusion,
the IALM and ISSS algorithms are the irreplaceable steps
for the proposed method, and their execution order cannot be
exchanged.

V. CONCLUSION
This paper proposes an improved SSS (ISSS) algorithm via
a precise feature matching and scale selection strategy for
efficient infrared small target detection. We have selected
twelve special infrared images with complex background
such as heavy and bright cloud, cloud and building, bright
buildingwith rich details, heavy noise and bright background,
etc. as application scenarios, and the eleven state-of-the-art
methods as contrast algorithms to evaluate the performance
of the proposed algorithm. Extensive experiments illustrate
that the proposedmethod outperforms the contrast algorithms
not only in visual quality, but also in quantitative evalua-
tion criteria such as SCRg, BSF scores, ROC curves, and
running times, especially in scenarios with thick clouds and
high-brightness buildings. Therefore, the proposed algorithm
is an effective and robust method for infrared small target
detection, and it has great potential in the field of infrared
small target detection and tracking. In our future work,
we will further explore the structural information of different
multiscale saliency maps, such as the extraction of salient
areas in each scale map by the fusion method.
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