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ABSTRACT To achieve a simple and less invasive registration procedure in computer-assisted orthopaedic
surgery, we propose an automatic, markerless registration and tracking method based on depth imaging
and deep learning. A depth camera is used to continuously capture RGB and depth images of the exposed
bone during surgery, and deep neural networks are trained to first localise the surgical target using the RGB
image, then segment the target area of the corresponding depth image, from which the surface geometry of
the target bone can be extracted. The extracted surface is then compared to a pre-operative model of the same
bone for registration. This process can be performed dynamically during the procedure at a rate of 5–6 Hz,
without any need for surgeon intervention or invasive optical markers. Ex vivo registration experiments were
performed on a cadaveric knee, and accuracymeasurements against an optically tracked ground truth resulted
in a mean translational error of 2.74 mm and a mean rotational error of 6.66◦. Our results are the first
to describe a promising new way to achieve automatic markerless registration and tracking in computer-
assisted orthopaedic surgery, demonstrating that truly seamless registration and tracking of the limb is within
reach. Our method reduces invasiveness by removing the need for percutaneous markers. The surgeon is also
exempted from inserting markers and collecting registration points manually, which contributes to a more
efficient surgical workflow and shorter procedure time in the operating room.

INDEX TERMS Computer-assisted orthopaedic surgery, deep learning, depth imaging, markerless
registration.

I. INTRODUCTION
Registration plays an important role in computer-assisted
orthopaedic surgery, as it defines the position of the patient
with respect to the surgical system so that a pre-operative plan
can be correctly aligned with the surgical site. All subsequent
steps of the procedure will thus be directly affected by the reg-
istration accuracy. Conventionally, two approaches are avail-
able to the surgeon. In image-basedmethods, the surgeon uses
a tracked probe to measure the position of a number of points
on the target bone, which are compared to their correspond-
ing locations on a plan generated from pre-operative images
(e.g. Computed Tomography (CT) or Magnetic Resonance
Imaging (MRI)) to calculate the relative spatial transforma-
tion. Conversely, in image-free methods, the geometry of the
bone surface is scanned using the probe so that a generic
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model can be morphed onto it for intra-operative planning
purposes, avoiding the need for costly pre-operative imaging.

Both registration methods can be defined as ‘static’,
because the registration is only performed once. However,
during surgery, the bone will inevitably move, either by the
surgeon to adjust the cutting position (in the cm range), or due
to cutting or tissue retraction forces (in the mm range).
These movements, however small, will cause an error in
bone resection if not accounted for. In order to use the
registration result throughout the surgery, the target bones
have to be rigidly fixed to the surgical system, or markers
that can be tracked in real-time have to be inserted into the
bones so that the spatial relationship between the system and
the bone(s) can be updated continuously without the need
for re-registration. The active robotic system ROBODOC
(Curexo Technology, Inc.) employs limb fixation, whereas
the semi-active orthopaedic robots Mako (Stryker Corp.),
Navio (Smith & Nephew PLC) and ROSA Knee (Zimmer
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Biomet Holdings, Inc.) all use optically tracked markers
screwed into the bones.

The tracking methods outlined above all offer high preci-
sion, but at the expense of other properties that might affect
the outcome of the surgery. Indeed, bone fixation decreases
the intra-operative flexibility of the procedure and may even
increase the risk of iatrogenic injury and postoperative deep
venous thrombosis [1]–[3]. And the invasive procedure of
inserting bone fixation pins or marker pins into the bone
may cause complications such as infection, vascular and
nerve injury, and fracture [3]–[6]. Additionally, in order to
complete bone registration, the surgeon needs to manually
collect a number of points on the bone surface, which is
error-prone, with the accuracy heavily dependant on the
surgeon’s skill and experience [7]–[9]. Finally, all of the
necessary preparations for bone registration (including pin
insertion, registration point collection, etc.) will inevitably
increase procedure time in the operating room, leading to
lower efficiency [2], [10].

If the registration process was fast enough for real-time
re-computation, bone fixation or optical markers would no
longer be necessary, thus avoiding many of the difficulties
described above. By continuously tracking the bone surface,
registration can be recomputed on-the-fly, enabling the sys-
tem to account for any motion of the limb without the need
for invasive bone screws. Currently, optical tracking systems
used by commercial orthopaedic robots can provide a mini-
mum refresh rate of 20 Hz, which is the lowest requirement
for smooth target tracking. Ultrasound can be used intra-
operatively to provide images of the bone surface for reg-
istration [11], [12], though its speed and convenience for
intra-operative use need further investigation. In this con-
text, the development of depth imaging technology, typi-
cally adopted by different types of depth cameras, provides
new possibilities for bone geometry measurement. Currently,
commercial depth cameras can achieve fast (≥ 30 Hz) and
accurate (≤ 0.5%) geometry measurement in the form of
a high resolution (≥ 640 × 360) depth image. The cap-
tured geometry contains the surface of the bone that can be
seen, which can be used to estimate the pose of the target
bone.

One of the main challenges with using depth imaging is
that it captures all objects in the field of view indiscriminately,
whereas only the points that belong to the target bone are
useful for registration. Thus, an effective method that can seg-
ment the captured depth image is key to the adoption of depth
imaging for surface registration in surgery. Image segmen-
tation is an important topic in the field of computer vision,
as the partitioning of an image into multiple meaningful
segments that can subsequently be extracted and processed
is common practice in a variety of application domains. For
instance, in medical image analysis, segmentation helps sur-
geons to separate different cells, tissues, organs, or lesions for
diagnosis, treatment planning, etc., and segmentation studies
of medical images based on deep learning have achieved sat-
isfactory or even human-level performances [13]–[16], with

the potential for a significant reduction in the time, cost, and
workload for the clinician.

As a relatively new imagingmodality, depth imaging is still
rarely applied in surgical scenarios, despite its potential in
reconstructing anatomical structures intra-operatively. To the
best of our knowledge, the only commercial application of
depth imaging to surgical registration is the 7D Surgical
System (7DSurgical, Inc.), which captures virtual fiducials of
the patient’s anatomy using depth cameras so that registration
time decreases to less than 20 seconds. However, manual
selection of target areas in the depth image is still required,
so the registration continues to be ‘static’, where optical
markers are used to keep the registration current. Our previ-
ous studies adopted depth imaging for ‘dynamic’ orthopaedic
registration without the need for markers under laboratory
conditions [17], [18]. These experiments were performed on
bone phantoms, and segmentation of the depth images had to
be performed before the registration method could be applied
to the real anatomy.

In this paper we present an automatic segmentationmethod
for depth images of a surgical scene, where the segmented
depth images are subsequently used for femur registration
in computer-assisted knee replacement without the need for
invasive markers. Although in knee replacement surgery
both femur and tibia need to be registered and resected,
tibia registration will undergo a similar process as that for
femur registration. Consequently, in this study, we limited
our demonstration of markerless registration to the femur,
in order to prove the concept and showcase the complete
process within a streamlined experimental setup. Our work
utilises both RGB and depth images from the depth camera,
and deep learning technology to extract useful information
from the images for automatic registration. More specifically,
our contribution is threefold. First, we create a pixel-wise
labelled depth image dataset of the knee anatomy through
a normal incision, for femur segmentation training. Second,
we apply deep learning to depth image segmentation directly
and achieve a mean segmentation accuracy of 87.83% on the
testing dataset. Third, we perform online registration using
the segmented depth information and demonstrate that depth
imaging can be used to obtain markerless and automatic
registration in knee surgery.

The paper is organised as follows: in Section II, deep
neural networks are developed to localise the target femur
and extract the femur surface from the depth images. An auto-
matic labelling method is proposed to label the images from
a cadaveric knee for network training. Section III presents
the automatic markerless registration method based on the
knee segmentation result from Section II, and the registration
accuracy is tested in experiments using another cadaveric
knee. Experimental results are reported in Section IV, and
in Section V, the proposed registration method is discussed
in detail, with current limitations summarised and possible
solutions identified. A conclusion of the work is given in
Section VI and further development is suggested for future
work.
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II. DEEP NEURAL NETWORK DEVELOPMENT
In this section, deep neural networks are developed to seg-
ment depth images of the surgical scene. To reduce the
segmentation area, a region of interest (ROI), which is the
surgical site of the knee in this study, is first localised by
processing the RGB image. Then, the ROI is used to crop
the corresponding depth image for segmentation. Both tasks
are accomplished using deep learning, and the segmentation
output is subsequently used for femur registration.

The reason for using both colour and depth information
is twofold. First, depth imaging is still not as developed
and stable as RGB imaging, therefore in a depth image,
a considerable number of pixels will not have valid values
(i.e. their positions cannot be measured), which makes it
difficult to globally localise the position of the knee according
to the ‘broken’ depth image. The exponentially increasing
measurement noise with respect to distance also diminishes
the usability of the whole depth image. Second, RGB imaging
is able to provide a robust ROI estimate from the whole scene,
but in the smaller scope of the surgical site, the high bright-
ness of the surgical light may compromise the colour features
that are useful for segmentation. Bleeding at the surgical site
can also complicate the colour conditions, whereas depth
imaging is hardly affected. Therefore, the combination of
colour and depth information can capitalise on the strengths
of both to provide coarse but robust localisation as well as
fine segmentation.

A. DATASET CREATION FOR NETWORK TRAINING
A depth image is a map describing the spatial geometry of
the scene. Like RGB images, a depth image is also a matrix
of pixels, each of which contains three values. Instead of
representing colour, the values of each pixel in a depth image
are the x, y and z coordinates of that point relative to the
depth camera. As depth images and RGB images share the
same data structure, the architecture of the artificial neural
networks that perform well on RGB images can also be
utilised for depth image processing, but because very few
studies apply depth imaging to surgical scenarios, there are
no labelled datasets of surgical depth images available for
segmentation training.

In order to generate a training dataset, we used a commer-
cial depth camera (RealSense D415, Intel Corp.) to scan a
cadaveric knee and obtain depth images of its anatomy. RGB
images were also collected along with the depth images, and
used to train the ROI localisation network. A mechanical rig
was designed to hold the cadaveric knee, with a ball joint used
to mimic the hip so that the position and angle of the knee
could be changed during the experiments. The experimental
setup for data collection is shown in Fig. 1.
To facilitate automatic labelling of the femur points in the

depth images, the surface points of the femur that could be
seen under maximum exposure needed to be collected as a
reference. A standard incision was made across the front of
the knee to expose the distal femur, then an optical markerMf
that could be tracked by an optical 3D measurement system

FIGURE 1. Experimental setup for image collection of the knee anatomy.

(fusionTrack 500, Atracsys LLC) was inserted into the femur.
A digitising probe was then used to scan the femur surface,
and the position of its tip with respect to the femur marker’s
frame of reference was stored.

After the entire exposed femur surface was scanned using
the probe, a point cloud of the femur surface Pf in the femur
marker frame was defined, which would be used to label the
femur points in the depth images. The depth camera was then
used to take depth and RGB images of the cadaveric knee.
Another marker, Mc, was attached to the depth camera, and
the transformation between the marker frame and the camera
frame was computed. The poses of Mc and Mf were mea-
sured by the Atracsys system every time a new depth image
and a corresponding RGB image were collected. Different
positions and angles of the knee were set during the image
collection to increase the variability of the data.

More than 2,000 depth images of the knee were collected
during the experiment, together with the same number of
RGB images, and the poses ofMc andMf were also recorded
for each pair of images. In order to label the points that belong
to the femur surface, given the femur points Pf measured
by the probe, for each depth image, the femur points can be
transformed into the camera frame by

Pc = TCMc
× (T AMc

)−1 × T AMf
× Pf , (1)

where TCMc
is the calibration matrix from the camera marker

frame to the camera frame, and T AMc
and T AMf

are the poses
of the camera marker and the femur marker measured by
the Atracsys system, respectively. Theoretically, the points
belonging to the femur in the depth image can be labelled
by finding the matching points of Pc. However, due to errors
existing in the camera-marker calibration, the transformed
reference points Pc do not perfectly overlap the femur in
the depth image. Therefore, a standard iterative closest point
(ICP) [19] algorithm was used to align Pc with the depth
image, such that the overlapped points in the depth image
could be labelled as the surface points of the femur for
segmentation training.

Having labelled the points in the depth images, we aug-
mented the dataset in order to improve training performance.
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FIGURE 2. Architecture of the ROI localisation network using RGB information.

First, we cropped the depth image to a square shape of
size 160 × 160 around the centre of the labelled points,
with the cropping centre recorded as the label of the corre-
sponding RGB image for ROI localisation training. Then,
the depth images were flipped to increase the size of the
dataset. In depth images, pixel position (row, column) and
pixel value (x, y, z) are correlated because a pixel in the image
is projected from a physical point according to its spatial
position. Thus, depth images cannot be augmented by simply
flipping the pixel positions, the pixel values also need to be
modified. According to the coordinate system of the depth
camera, the x-axis points to the right and the y-axis points
downwards, so the x values of the pixels change signs if
the depth image is flipped horizontally, and y values change
signs if the flip is vertical. In this way, a left knee geometry
can be produced out of a right one. Rotation is also used
to augment the dataset, and for the same reasons as above,
the points in the depth image were rotated around the z-axis
of the depth camera (pointing forward) by ±90◦ before the
pixels were rotated (anti-)clockwise. For each depth image,
the pixel values were multiplied by a random scalar (arbi-
trarily set between 0.9 and 1.1) in order to represent different
knee sizes.

After data augmentation, a dataset of over 10,000 labelled
depth images was obtained, which was shuffled and divided
into three groups with the ratio of 6:2:2 for network training,
validation and testing.

B. NETWORK ARCHITECTURES
Commercial depth cameras normally have a wide field of
view that captures a large portion of the environment, so in
a typical scenario only a small part of the image belongs to

the target bone. In order to decrease the size of the segmen-
tation network and potentially improve its accuracy, we built
a localisation network that utilises the RGB information to
estimate the ROI position, around which the depth image can
be cropped to remove most of the background.

The ROI localisation network has an architecture similar
to the AlexNet [20], with five convolutional layers extracting
features from the RGB image. However, because we need to
preserve the spatial information of the features, instead of
using fully connected layers at the end of the network for
classification, we apply a 1 × 1 convolutional layer to com-
press the feature map to one channel and then normalise it.
The value of each element in the compressed map represents
the probability of the pixel in that position belonging to the
ROI. The compressed map is then multiplied element-wise
by a pre-defined position weight map to calculate the ROI
position. The position weight map has the same size as the
final feature map, and each cell in the map has two values
representing the relative positions of that cell in the row and
the column. The architecture of the ROI localisation network
is shown in Fig. 2. Input images are cropped to a given size
(355 × 627) to fit the network, then augmented (e.g. flipped
vertically and horizontally, with brightness and saturation etc.
adjusted randomly) to enlarge the dataset. Batch normalisa-
tion [21] is used after each convolutional layer to facilitate
network training.

The deep neural network for depth image segmentation
adopts the ‘U-Net’ architecture [15], which is a fully con-
volutional network with a symmetric ‘U’ shape, as shown
in Fig. 3. The input depth images are randomly cropped to
a size of 128 × 128 before being fed to the network, and
the output is a 1-channel segmentation map that has the same
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FIGURE 3. Architecture of the depth image segmentation network. The horizontal numbers are the channel numbers of the feature maps,
and the vertical numbers are the resolutions of the feature maps.

resolution as the input. On the left side are typical convolu-
tional and pooling layers that increase features and contract
resolution, whereas the right side contains deconvolutional
layers to increase resolution, which are then concatenated
with high resolution features from the left side to assemble
a more precise output. The last layer is a 1× 1 convolutional
layer with a sigmoid activation, mapping all the features of
a pixel to a value between 0 and 1, which represents the
probability of that pixel belonging to the femur.

C. NETWORK TRAINING AND EVALUATION
Both deep learning networks were implemented using Ten-
sorFlow [22], and the Adam optimiser [23] was used for
training. For the ROI localisation network, the loss function
was defined as the squared distance between the predicted
ROI position and the label. To prevent overfitting, dropout
and weight regularisation were applied during network train-
ing. After training, the testing dataset was used to test the
performance of ROI localisation on images that had never
been seen by the network. The mean distance between the
predicted ROI position and the label was 5.2 (SD: 4.3) pixels,
and some of the testing examples of ROI localisation are
shown in Fig. 4(a).

The loss function of the depth image segmentation network
was defined as the mean of the squared pixel errors:

loss =
m∑
i=1

n∑
j=1

(
pij − lij

)2
/mn, (2)

where m, n are the numbers of rows and columns of the input
image, and pij, lij are the prediction and the corresponding
label of the pixel at row i and column j. Because of the van-
ishing gradient problem [24] caused by the sigmoid activation
in the last layer, it is taxing to train the segmentation network
if the parameters are poorly initialised. To facilitate training,
first we used the rectified linear unit (ReLU) activation in the

last layer and pre-trained the network for a number of epochs
to obtain a good initialisation of the parameters, then changed
ReLU activation to sigmoid to compute the segmentation
map we needed (values between 0 and 1). The segmentation
network was trained for 250 epochs before the validation
error stopped decreasing.

Different metrics are available to test the image segmen-
tation accuracy, but most of them are designed for binary
classification (0 or 1) problems. The values in our generated
segmentation map represent the probability of pixels belong-
ing to the bone, which are between 0 and 1 rather than binary.
Thus, in order to evaluate segmentation accuracy, we need
to either set a threshold to convert the prediction values to
binary, or adjust the common metrics for evaluating image
segmentation to suit our data format.

Pixel accuracy (PA) is a metric calculating the ratio of
pixels that are correctly classified to all pixels:

PA =
TP+ TN

TP+ TN + FP+ FN
, (3)

where TP, TN , FP and FN represent the pixel counts for
true positive (label: 1, prediction: 1), true negative (label: 0,
prediction: 0), false positive (label: 0, prediction: 1) and false
negative (label: 1, prediction: 0). Given prediction values
between 0 and 1, we set a threshold to judge if the prediction
is positive (prediction > threshold) or negative (prediction ≤
threshold), and derive a weighted pixel accuracy from (3):

weighted_PA =
p(TP)+ q(TN )

p(TP)+ q(TN )+ p(FP)+ q(FN )
, (4)

where p(·) means that the contribution of each pixel in that
area to the count is the prediction value of that pixel rather
than 1, and q(·) means that the contribution is 1 minus the
prediction value.

Using pixel accuracy might be misleading when the target
area is too small compared to the background because the
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TABLE 1. Testing accuracy of depth image segmentation using different
metrics.

TABLE 2. Confusion matrix of the weighted segmentation results of the
testing depth images.

measure can be biased by a large TN . Therefore, another
metric commonly used in image segmentation challenges,
called intersection over union (IOU), is used here, which does
not account for TN :

IOU =
TP

TP+ FP+ FN
. (5)

Similar to (4), we derive the weighted IOU for our segmen-
tation evaluation:

weighted_IOU =
p(TP)

p(TP)+ p(FP)+ q(FN )
, (6)

which calculates a weighted pixel count based on the gener-
ated pixel probability values.

We used these modified metrics to evaluate the perfor-
mance of the depth image segmentation, and also converted
the prediction values to binary by setting a threshold so that
the conventional metrics could be used. The threshold value
was set to 0.5 in both cases. The accuracy measured by differ-
ent metrics is shown in Table 1. Table 2 shows the mean per-
centages for different fractions in the weighted segmentation
results, which highlight a precision of 93.64%, representing
the purity, and a recall value of 93.12%, representing the
completeness. Some examples of the segmentation results are
shown in Fig. 4.

III. AUTOMATIC MARKERLESS REGISTRATION
A. MARKERLESS REGISTRATION BASED ON DEPTH
IMAGING
After the localisation and segmentation networks were
trained with satisfactory accuracy, they were used to process
RGB and depth images from the depth camera directly. The
localisation network provides the position of the surgical site
based on the RGB image, which is then used to crop the
corresponding depth image to the required size. The cropped
depth image is then fed into the segmentation network to
remove surrounding tissues and obtain a clean surface of the
target femur, similar to the surface that the surgeon would
map out manually using a digitising probe.

Once the distal femur surface has been obtained from the
depth image, the pose of the femur can be computed by
comparing the acquired surface with a reference model of the

FIGURE 4. Examples of localisation and segmentation results of RGB and
depth images. Three rows represent three groups of results from different
viewing positions. (a): ROI localisation in RGB images. The centres of the
red boxes are the predicted ROI positions, and the size of the red boxes
(128 × 128) is used to crop the depth images. (b): RGB images
corresponding to the cropped depth images. (c): Depth images (blue) with
labelled pixels (ground truths, magenta). (d): Depth images (blue) with
predicted femur pixels (cyan). (e): The ground truths (red), the predictions
(green) and their overlays (yellow).

femur. Normally this model comes from pre-operative images
such as CT or MRI scans that contain the actual surface
geometry of the bone. In our case, the reference geometry
is acquired by scanning the bone surface using a digitis-
ing probe under maximum exposure. The ICP algorithm is
an effective and widely used algorithm for precise surface
matching in surgical registration [25], [26], but standard ICP
requires a large number of iterations to achieve satisfactory
convergence. In order to reduce the number of iterations,
thus reducing convergence time, a more efficient variant of
ICP, the point-to-plane ICP algorithm [27], is adopted. Once
initialised with a rough estimate of the limb pose with respect
to the camera system, the ICP algorithm will search for
corresponding points for each point in the segmented depth
image and the reference model, the former representing a
subset of the latter in terms of the features available formatch-
ing. As per the classical approach, our ICP implementation
computes the best pose between these points and uses it to
estimate a better candidate pose, which is then applied to the
depth image in order to search for better correspondences,
until monotonic convergence to a minimum.

Since the segmentation process associates to each point a
probability of belonging to the bone, this value is used as
a weight of that point when calculating total point-to-plane
errors, such that points with higher probability give larger
contribution to the ICP pose estimation, which helps further
improve the registration accuracy.

In our registration process, the target femur can thus be
registered once it is exposed through the surgical incision, and
the surgeon does not need to collect registration points manu-
ally. Additionally, as the registration can be performed auto-
matically at a fast rate, optical markers are no longer needed,
which could contribute to shorter operating times and reduced
invasiveness for the patient. The diagram of the markerless
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FIGURE 5. Comparison between our automatic markerless registration and conventional orthopaedic registration. The white area highlights the
proposed markerless registration workflow, which does not involve surgeon’s intervention or invasive markers, whereas the grey area captures the
conventional registration process for orthopaedic navigation.

registration process based on depth imaging, alongside a
comparison with conventional registration, is shown in Fig. 5.

B. EXPERIMENTS
The main aim of the experiments was to test the registration
accuracy of the femur during total knee replacement, without
the use of invasive markers. A new cadaveric knee was used
in the experiments and a standard incision was made across
the front of the knee to expose the distal femur. Although
the registration procedure was markerless, in order to mea-
sure the accuracy of femur registration, the Atracsys optical
tracking system was used again, and the setup was similar to
that of the training dataset collection experiment, as shown
in Fig. 6. An optical marker was inserted into the femur and
the exposed femur surface was scanned using a tracked probe,
to obtain a ground truth measurement. The depth camera,
with another optical marker attached to it, was then used to
capture RGB and depth streams of the exposed knee, from
which the femur surface could be localised and extracted.

The experiments included two stages. In stage 1, the depth
camera was placed at 40 different positions around the cadav-
eric knee to measure the pose of the femur while it was
fixed in place, and 50 frames were collected at each position
to measure the accuracy of static registration. In stage 2,
the depth camera was fixed and the knee was moved by hand
randomly for 40–50 seconds to evaluate the dynamic tracking
ability. The depth camera measured the pose of the femur
continuously, and both the depth camera and the target femur
were tracked by the Atracsys system for registration accuracy
evaluation. The target femur was registered in the depth
camera reference frame, then transformed into the Atracsys
reference frame using the camera marker tracking results.

FIGURE 6. Experimental setup for automatic markerless registration on a
new cadaveric knee.

To reduce the errors caused by measurement noise, a moving
average filter was applied to the transformed femur pose. The
ground truth scanned by the probe was also transformed into
the Atracsys reference frame to measure the error of mark-
erless registration. Segmentation results of the depth images
were saved at random intervals during the experiment, and
the time interval between the markerless registration updates
was also recorded.

The localisation and segmentation networks were imple-
mented in Python for training, and the architectures and
parameters were saved after training so that they could be
reloaded and reused in other projects. The software for depth
camera control and markerless registration was written in
C++, and after the RGB and depth image streams were
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TABLE 3. Online segmentation accuracy of the randomly saved depth
images.

enabled in the depth camera, two parallel threadswere created
to reload the saved networks and make inferences from the
two streams.1

The depth camera used in the experiments is the same as
the one for training data collection, i.e. the Intel RealSense
D415. The whole automatic registration programme was
deployed on a computer running Ubuntu 16.04 LTS with
an Intel R©CoreTM i7-4790 processor and 16 gigabytes mem-
ory. No external graphic cards were used. Depth image
preparation and registration was based on the Point Cloud
Library [28], and the Eigen Library [29] was used to facilitate
coding of the registration workflow. Result processing and
statistical analysis were performed in MATLAB (R2016a,
MathWorks, Inc.).

IV. RESULTS
To evaluate the online depth image segmentation accuracy,
we randomly saved 20 depth images with the predicted
segmentation maps during the experiments. Then, using the
same image labelling method as described in Section II-A,
we obtained the ground truth segmentation. The segmentation
accuracy was evaluated using the weighted pixel accuracy
and the weighted IOU, as shown in Table 3.
The registration result provides the pose of the target femur

in the depth camera reference frame, which is then trans-
formed into the Atracsys reference frame for comparisonwith
the ground truth, i.e. the pose of the femur scanned by the
probe. The overall registration error was measured as the
translational and rotational errors measured about the centre
of the distal femur, where the rotational error is described as
a single screw axis measurement, and in the coronal, sagittal
and transverse planes, for easier interpretation. In stage 1,
we mainly focused on the static registration accuracy, and the
overall errors are shown in Table 4. Box-and-whisker plots
for the registration errors in this stage can be seen in Fig. 7.
The aim of stage 2 was to test the dynamic tracking per-

formance of the target femur. We carried out the dynamic
tracking of the moving knee three times, and during the
motion the knee was always in the field of view of the depth
camera. Each motion lasted 40–50 seconds and contained
about 250 measurements. The dynamic registration errors of
the moving knee are shown in Table 5.
Finally, the time period for the online registration to update

was recorded during the experiments. In each period, a series
of computations were performed, including preparation of
RGB and depth images, identifying ROI from the RGB

1Thanks to Patrick Wieschollek’s package for loading a Python model in
C++ on GitHub https://github.com/PatWie/tensorflow-cmake.

TABLE 4. Translational and rotational errors of markerless registration.

TABLE 5. Dynamic registration accuracy of the knee in motion.

TABLE 6. Computation time for online registration update.

localisation network, extracting femur surface from the depth
image segmentation network, and ICP-based registration.
The time recordings when the knee was stationary or moving
can be seen in Table 6. From the time recordings, we can
see the update rate of the online registration under current
hardware and software conditions is about 5–6 Hz.

V. DISCUSSION
This study presents a bone registration and tracking method
for orthopaedic surgery that does not require the surgeon’s
intervention or percutaneous markers. Accuracy of the pro-
posed registration method was measured in experiments,
with mean errors of 2.74 mm and 6.66◦ in translation and
rotation, respectively. Although the accuracy, especially rota-
tional accuracy, is currently lower than what can be achieved
using conventional intra-operative registrationmethods based
on optical markers [30], [31], the results of this pilot study are
still promising, especially considering that the depth camera
used in the experiments is not designed for sub-millimetre
precision, and its price is much lower than that of the opti-
cal tracking system involved in conventional registration
methods. Depth cameras are still not as developed as RGB
cameras, so noise and obvious outliers are common in the
depth images. Outliers exist in small numbers, and most of
these can be filtered out by segmentation and thresholding.
Measurement noise is more troublesome for the depth cam-
era we use because it is found to distort some areas rather
than affecting individual points randomly, which causes bias.
This distortion will inevitably lead to registration inaccuracy,
which hinders the deployment of our markerless registration
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FIGURE 7. Box-and-whisker plots of the registration errors in 3D and in anatomical planes. The central mark indicates the median, and
the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data
points not considered as outliers (approximately ±2.7σ and 99.3% coverage for a normally distributed dataset). Outliers are plotted
individually using the ‘+’ symbol.

method from high-risk applications at this stage. In this study,
we focus on providing and validating a new perspective on
orthopaedic registration and tracking to inspire more research
in this direction, and the registration accuracy can be expected
to improve considerably with better depth cameras used in
future research.

Compared with the static registration results, the registra-
tion errors of the moving knee are larger, especially with
translational errors (p < 0.001). The main reason could
be that the Atracsys system and the depth camera were not
strictly synchronised, so the measurements of the ‘ground
truth’ and the registration result did not happen at exactly the
same time, possibly causing the large deviation measured in
translation. Another possible reason is that the quality of the
depth images might decrease when the object is moving, due
to technical limitations which are inherent to the depth cam-
era itself. The lower quality of depth images will inevitably
introduce larger errors into segmentation and ICP-based reg-
istration. Practically, the navigated operations during knee
surgery are performed when the leg is approximately still,
so the dynamic registration experiments of the moving knee
were carried out to illustrate a ‘‘worst case scenario’’, which
is unlikely to affect the actual operation.

Computational time for the online registration algorithm
is also an important aspect of registration performance. With
95% confidence, the registration results can be updated
within 190 ms. At the moment, the update rate of the online
registration (5–6 Hz) is not satisfactory for clinical use,
but we are optimistic about the computation speed because,

currently, only the CPU is used to process all the data and
make inferences from the trained networks. With more com-
puting power and GPU acceleration, we believe that the
computational speed can be drastically increased.

The proposed registrationmethod for knee surgery exploits
the power of depth imaging and deep learning, and can benefit
both patients and surgeons. For patients, since the bone can
be registered and tracked by measuring its surface geometry
directly, optical markers would no longer need to be inserted
into the bone for real-time tracking, making the surgery less
invasive. For surgeons, the surgical procedure could be sim-
plified because no extra operations would be needed to insert
the markers. This automatic registration could also exempt
them from manually collecting surface points of the target
bone, resulting in a significant time saving. The bone could
be registered once it is exposed, so a more fluid surgical
workflow can be achieved. These advantages will contribute
to higher surgical efficiency in the operating room, and a
simplified system setup that may eventually lower the cost
of surgery.

Apart from being used for registration, the depth image
segmentation based on deep learning could also be applied in
other clinical tasks. For example, active constraints are use-
ful collaborative control strategies for robot-assisted surgery,
which regulates the robotic motion to prevent entering the
restricted region [32], [33]. However, the definition of the
constraints with respect to the anatomy, especially soft tissues
that deform during surgery, is always challenging, as there is
no easy way to automatically interpret the patient’s anatomy
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to define the constraint geometry. Our depth image segmen-
tation provides a possible solution to this problem. Indeed,
our method digitises the anatomy in real time and, if prop-
erly trained with sufficient data, the neural network could
identify different regions of the anatomy dynamically, so that
important tissues can be protected. The depth image segmen-
tation method integrates surgeon-like expertise into fast and
accurate computer vision, which opens many possibilities for
intelligent assistance in surgery.

There are, however, several issues that need to be addressed
in future studies before the proposed registration and track-
ing method can be used clinically. The most straightfor-
ward one is to select a medically certified depth camera
that is more precise and suitable for the surgical conditions
in the operating room, which would alleviate many of the
collection inaccuracies identified in this work. Such depth
cameras are already available on the market, and have been
used in orthopaedic systems such as the 7D Surgical System
(7D Surgical, Inc.). In addition, more images of different
knee anatomies, ideally in surgical scenarios, will need to
be collected to expand the dataset for network training. This
will facilitate generalisation of the network inferences, espe-
cially on knees with large deformities, and help improve the
segmentation accuracy in practical use, thus reducing the
registration error.

In our markerless registration, only part of the distal femur
surface that is exposed can be measured to register the femur,
whereas the proximal end, i.e. the hip centre, is uncon-
strained, resulting in a large rotational error. In conventional
registration methods, however, the position of the hip centre
is normally measured, and used to set the mechanical axes of
the bones and facilitate registration. It has been demonstrated
that, when random noise exists in the surface point measure-
ments, the registration error could be significantly reduced
if the hip centre is considered in the ICP algorithm [26].
Therefore, an effective method to estimate the position of
the hip centre in real time will need to be explored, using
either conventional image processing or deep learning, so that
the registration error caused by depth imaging noise can be
bounded to a satisfactory range. Alternatively, ultrasound can
be used intra-operatively to acquire part of the femur surface
that is far away from the knee incision, as in [11], [12], such
that the diaphysis direction can be better defined to improve
the rotational accuracy.

VI. CONCLUSION
This study proposes a depth image segmentation method
based on deep learning, which can be used to achieve auto-
matic markerless registration and tracking of the limb for
knee surgery. Deep neural networkswere trained using cadav-
eric data and deployed to perform online segmentation of
the depth images from the depth camera, and the accuracy
and refresh rate of the proposed registration and tracking
method were assessed in ex vivo experiments, which demon-
strated its effectiveness in both static and dynamic scenarios.
Consequently, surgical procedures employing robotics and

computer navigation can be simplified considerably, resulting
in a more fluent surgical workflow and higher procedure effi-
ciency in the operating room. This method adds intelligence
to computer interpretation of anatomical structures without
artificial markers, and further extensions can be potentially
applied to many other robotic surgical systems.

ACKNOWLEDGMENT
The authors would like to thank Dr. Hadi El Daou for his help
with the ex vivo trials.

REFERENCES
[1] M. H. L. Liow, P. L. Chin, H. N. Pang, D. K.-J. Tay, and S.-J. Yeo, ‘‘Think

surgical tsolution-one (Robodoc) total knee arthroplasty,’’ SICOT-J, vol. 3,
p. 63, Oct. 2017.

[2] A. D. Pearle, P. F. O’Loughlin, and D. O. Kendoff, ‘‘Robot-assisted
unicompartmental knee arthroplasty,’’ J. Arthroplasty, vol. 25, no. 2,
pp. 230–237, Feb. 2010.

[3] A. P. Schulz, K. Seide, C. Queitsch, A. von Haugwitz, J. Meiners,
B. Kienast, M. Tarabolsi, M. Kammal, and C. Jürgens, ‘‘Results of total
hip replacement using the robodoc surgical assistant system: Clinical
outcome and evaluation of complications for 97 procedures,’’ Int. J. Med.
Robot. Comput. Assist. Surg., vol. 3, no. 4, pp. 301–306, 2008.

[4] S. Gulhane, I. Holloway, and M. Bartlett, ‘‘A vascular complication in
computer navigated total knee arthroplasty,’’ Indian J. Orthopaedics,
vol. 47, no. 1, p. 98, 2013.

[5] E. Kamara, Z. P. Berliner, M. S. Hepinstall, and H. J. Cooper, ‘‘Pin site
complications associated with computer-assisted navigation in hip and
knee arthroplasty,’’ J. Arthroplasty, vol. 32, no. 9, pp. 2842–2846,
Sep. 2017.

[6] R. W. Wysocki, M. B. Sheinkop, W. W. Virkus, and C. J. Della Valle,
‘‘Femoral fracture through a previous pin site after computer-assisted total
knee arthroplasty,’’ J. Arthroplasty, vol. 23, no. 3, pp. 462–465, Apr. 2008.

[7] D. K. Bae and S. J. Song, ‘‘Computer assisted navigation in knee arthro-
plasty,’’ Clinics Orthopedic Surg., vol. 3, no. 4, pp. 259–267, 2011.

[8] R. A. Siston, N. J. Giori, S. B. Goodman, and S. L. Delp, ‘‘Surgical nav-
igation for total knee arthroplasty: A perspective,’’ J. Biomech., vol. 40,
no. 4, pp. 728–735, Jan. 2007.

[9] G. Zheng, J. Kowal, M. A. González Ballester, M. Caversaccio, and
L.-P. Nolte, ‘‘(i) Registration techniques for computer navigation,’’ Cur-
rent Orthopaedics, vol. 21, no. 3, pp. 170–179, Jun. 2007.

[10] D. C. Beringer, J. J. Patel, and K. J. Bozic, ‘‘An overview of economic
issues in computer-assisted total joint arthroplasty,’’ Clin. Orthopaedics
Rel. Res., vol. 463, pp. 26–30, Oct. 2007.

[11] P. M. B. Torres, P. J. S. Gonçalves, and J. M. M. Martins, ‘‘Robotic motion
compensation for bone movement, using ultrasound images,’’ Ind. Robot,
Int. J., vol. 42, no. 5, pp. 466–474, Aug. 2015.

[12] P. M. B. Torres, P. J. S. Gonçalves, and J. M. M. Martins, ‘‘Robotic
system navigation developed for hip resurfacing prosthesis surgery,’’ in
New Trends in Medical and Service Robots. MESROB (Mechanisms
and Machine Science), vol. 48, M. Husty and M. Hofbaur, Eds. Cham,
Switzerland: Springer, 2018.

[13] Z. Akkus, A. Galimzianova, A. Hoogi, D. L. Rubin, and B. J. Erickson,
‘‘Deep learning for brain MRI segmentation: State of the art and future
directions,’’ J. Digit. Imag., vol. 30, no. 4, pp. 449–459, Jun. 2017.

[14] F. Milletari, N. Navab, and S.-A. Ahmadi, ‘‘V-Net: Fully convolutional
neural networks for volumetric medical image segmentation,’’ in Proc. 4th
Int. Conf. 3D Vis. (3DV), Oct. 2016, pp. 565–571.

[15] O. Ronneberger, P. Fischer, and T. Brox ‘‘U-Net: Convolutional networks
for biomedical image segmentation,’’ in Medical Image Computing and
Computer-Assisted Intervention—MICCAI (Lecture Notes in Computer
Science), vol. 9351, N. Navab, J. Hornegger, W.Wells, and A. Frangi, Eds.
Cham, Switzerland: Springer, 2015.

[16] H. R. Roth, C. Shen, H. Oda, M. Oda, Y. Hayashi, K. Misawa, and
K. Mori, ‘‘Deep learning and its application to medical image segmenta-
tion,’’Med. Imag. Technol., vol. 36, no. 2, pp. 63–71, Mar. 2018.

[17] H. Liu, E. Auvinet, J. Giles, and F. R. Y. Baena, ‘‘Augmented reality based
navigation for computer assisted hip resurfacing: A proof of concept
study,’’ Ann. Biomed. Eng., vol. 46, no. 10, pp. 1595–1605, May 2018.

VOLUME 8, 2020 42019



H. Liu, F. Rodriguez y Baena: Automatic Markerless Registration and Tracking of the Bone

[18] H. Liu, S. Bowyer, E. Auvinet, and F. Y. R. Baena, ‘‘A smart registration
assistant for joint replacement: Concept demonstration,’’ in Proc. 17th
Annu. Meeting Int. Soc. Comput. Assist. Orthopaedic Surg., vol. 1, 2017,
pp. 189–196.

[19] P. J. Besl and N. D. McKay, ‘‘A method for registration of 3-D shapes,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 2, pp. 239–256,
Feb. 1992.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097–1105.

[21] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ in Proc. Int. Conf. Mach.
Learn., vol. 37, Jul. 2015, pp. 448–456.

[22] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, and M. Isard, ‘‘Tensorflow: A system for large-
scalemachine learning,’’ inProc. 12thUSENIX Symp. Operating Syst. Des.
Implement. (OSDI), 2016, pp. 265–283.

[23] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic
optimization,’’ 2014, arXiv:1412.6980. [Online]. Available:
http://arxiv.org/abs/1412.6980

[24] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, ‘‘Gradient flow
in recurrent nets: The difficulty of learning long-term dependencies,’’ in
Field Guide to Dynamical Recurrent Networks. Piscataway, NJ, USA:
IEEE Press, 2001.

[25] F. P. Oliveira and J. M. R. Tavares, ‘‘Medical image registration: A
review,’’ Comput. Methods Biomech. Biomed. Eng., vol. 17, no. 2,
pp. 73–93, 2014.

[26] F. R. Y Baena, T. Hawke, and M. Jakopec, ‘‘A bounded iterative closest
point method for minimally invasive registration of the femur,’’ Proc.
Inst. Mech. Eng. H, J. Eng. Med., vol. 227, no. 10, pp. 1135–1144,
Aug. 2013.

[27] Y. Chen and G. Medioni, ‘‘Object modelling by registration of multi-
ple range images,’’ Image Vis. Comput., vol. 10, no. 3, pp. 145–155,
Apr. 1992.

[28] R. B. Rusu and S. Cousins, ‘‘3D is here: Point cloud library (PCL),’’ in
Proc. IEEE Int. Conf. Robot. Autom., May 2011, pp. 1–4.

[29] G. Guennebaud and B. Jacob. Eigen v3. Accessed: 2010, [Online]. Avail-
able: http://eigen.tuxfamily.org

[30] M. Jakopec, F. R. Y. Baena, S. J. Harris, P. Gomes, J. Cobb, and
B. L. Davies, ‘‘The hands-on orthopaedic robot, ‘acrobot’: Early clinical
trials of total knee replacement surgery,’’ IEEE Trans. Robot. Autom.,
vol. 19, no. 5, pp. 902–911, Oct. 2003.

[31] S. Nishihara, N. Sugano, M. Ikai, T. Sasama, Y. Tamura, S. Tamura,
H. Yoshikawa, and T. Ochi, ‘‘Accuracy evaluation of a shape-based reg-
istration method for a computer navigation system for total knee arthro-
plasty,’’ J. Knee Surg., vol. 16, no. 2, pp. 98–105, 2003.

[32] S. Ho, B. Davies, R. Hibberd, and J. Cobb, ‘‘Robotic knee surgery-implicit
force control strategy with active motion constraint,’’ in Proc. Euriscon,
1994, pp. 1235–1248.

[33] B. Davies, M. Jakopec, S. J. Harris, F. Rodriguez y Baena, A. Barrett,
A. Evangelidis, P. Gomes, J. Henckel, and J. Cobb, ‘‘Active-constraint
robotics for surgery,’’Proc. IEEE, vol. 94, no. 9, pp. 1696–1704, Sep. 2006.

HE LIU was born in Jiamusi, China, in 1990.
He received the B.Eng. degree in mechanical
design manufacturing and automation and the
M.Sc. degree in mechatronic engineering from the
Harbin Institute of Technology, Harbin, China,
in 2013 and 2015, respectively. He is currently
pursuing the Ph.D. degree in mechanical engineer-
ing with theMechatronics inMedicine Laboratory,
Imperial College London, U.K.

FERDINANDO RODRIGUEZ Y BAENA (Mem-
ber, IEEE) received the M.Eng. degree in mecha-
tronics and manufacturing systems engineering
from King’s College London, U.K., in 2000, and
the Ph.D. degree in medical robotics from Imperial
College London, in 2004.

He is currently a Professor in medical robotics
with the Department of Mechanical Engineer-
ing, Imperial College London, where he leads
the Mechatronics in Medicine Laboratory. His

research interests include mechatronic systems for diagnostics, surgical
training, and surgical intervention.

42020 VOLUME 8, 2020


