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ABSTRACT Spectral clustering is a very popular graph-based clustering technique that partitions data
groups based on the input data similarity matrix. Many past studies based on spectral clustering, however,
do not consider the global discriminative structure of the dataset. Also, the benefits of using more than one
kernel have not been fully exploited with respect to spectral clustering, although it has been established by
these past studies that using more than one kernel in clustering can result in a more accurate clustering than
those obtained with a single kernel. Multi-kernel approaches, however, tend to be more time consuming
compared to single kernel methods. To compensate these drawbacks, we integrate a global discriminative
term into the clustering with an adaptive neighbor framework. This is done to preserve both the global
geometric information and global discriminative information in a dual kernel space, in an attempt to optimize
clustering performance. Via co-regularization, we utilize more than one kernel space to take advantage of
the benefits of multiple kernels. We, however, use two heterogeneous kernels to help us reduce clustering
time, since the ability to quickly process data is as equally important as its accuracy in this era of information
explosion. Since these different kernel spaces admit the same underlying clustering of the data, we approach
the problem looking for clustering consistent across the two kernel views. Hence we are able to detect
the non-linear intrinsic geometrical information of the dataset. We perform clustering using the obtained
indicator matrix from our modified Laplacian utilizing k-means. Our Experimental outcomes show that our
approach gives satisfactory results in terms of accuracy and NMI, with time-to-cluster savings in comparison
to other state-of-the-art clustering methods using both synthetic and public datasets.

INDEX TERMS Adaptive neighbors, co-regularize, multi-kernel, similarity measure, spectral clustering.

I. INTRODUCTION
Clustering is a very useful procedure in the field of arti-
ficial intelligence. Based on clustering results, many ana-
lytic approaches could be carried out. As a result, several
studies have been done on various clustering approaches
including hierarchical clustering methods, central grouping
methods, and graph clustering methods with them achieving
great success [1]–[3]. Compared with conventional clustering
algorithms, spectral clustering (SC) has obvious advantages.

The associate editor coordinating the review of this manuscript and

approving it for publication was Paul Yoo .

It can converge to a global optimum and performs well for
sample space of arbitrary shapes and especially suitable for
non-convex dataset [4]. On very challenging clustering tasks
in real-world applications such as image and video segmen-
tation, spectral clustering is known to perform very well and
hence a preferred approach for numerous researchers [5].

It is worth noting that the advancement of information
technology has led many applications to possess rich data
structure and relations [6]. It is vital to utilize the benefits
of these multiple types of information to improve the clus-
tering performance. Multiple kernels can be considered as
different views of the same data [7] and are thus considered
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as such in our discussions. We combine two kernel views
via co-regularization. Co-regularization employs two main
assumptions for its success [8], [9]. Firstly, the true target
functions in each view should agree on the labels for the
unlabeled data. Secondly, the views should be independent
given the class label. The first assumption makes it possible
to reduce the space of likely target hypotheses by searching
only over the compatible functions. The second assumption
makes it unlikely for compatible classifiers to agree on wrong
labels. Thus, a data point in both views is most likely to be
assigned to the correct cluster.

Inspired by the above discussions, we propose in this paper
a unique spectral clustering algorithm henceforth referred
to as Co-Regularized Discriminative Spectral Clustering
with Adaptive Similarity Measure in Dual-Kernel Space
(CoRDiSC-ASMDKS). We build on the Clustering with
Adaptive Neighbors (CAN) model [10]. The CAN model
learns data similarity matrix by assigning the adaptive and
optimal neighbours for each data point based on the local
distances and then imposes a rank constraint on the Laplacian
matrix of the data similarity matrix. The efficacy of spectral
clustering critically depends on the construction of the graph
Laplacian and the ensuing eigenvectors that reflect the cluster
structure in the data. We therefore construct an objective
function that consists of the discriminative graph Laplacians
from all the kernel views of the data and regularize on the
eigenvectors of the Laplacians such that the cluster structures
resulting from each Laplacian look consistent across all the
views.

The proposed approach integrates both global geometrical
structure and global discrimination structure in a dual ker-
nel co-regularized framework, to perform spectral clustering.
Just as in [10], we assume that the similarity between two
points is the probability that the two points are neighbors
in the kernel space since [10], [11] shows that probabilistic
neighborhood is very effective in measuring similarity in data
feature learning.

The proposed approach has the following summary as its
main contributions:

1) It introduces discriminability into the normalized
Laplacian of each kernel view that ensures that the fea-
tures to the spectral clustering is more discriminative.

2) It uses a co-regularization approach to combine objec-
tives of the individual kernel spaces with their dis-
agreements to obtain a joint minimization problem that
is solved to obtain a class indicator matrix used in
k-means for clustering.

3) It improves time for clustering samples compared to
other multi-kernel clustering approaches and is satis-
factorily robust to noisy data.

The rest of the paper is presented as follows. Section II
gives a brief of related works. The proposed approach
is elaborated in section III. Experimental results are
presented in Section IV and Section V completes the
paper.

II. RELATED WORKS
1) SPECTRAL CLUSTERING
SC is based on the algebraic graph theory, which treats data
clustering problem as a graph partitioning problem [12]–[15].
It constructs an undirected weighted graph with each node
corresponding to a data point, and the weight of the edge
connecting the two nodes being the similarity value between
the two points [16], [17]. Then, using a certain graph cut
method, it divides the graph into connected components,
which are called clusters.

Ng et al. [18] introduced a theoretical work grounded on
matrix perturbation theory that brought forward the condi-
tions under which to expect a good performance of the SC
algorithm [19]. Their method found the optimal value of
parameter σ to improve spectral clustering. In [11], Du and
Shen proposed a self-tuning spectral clustering algorithm,
which improved the SC algorithm by locally scaling the
parameter in similarity measure. Luxburg [20] summarized
comprehensively the main literature related to spectral clus-
tering.

SC has a few challenges including but not limited to
its inability to handle big data without using approxima-
tion methods such as the Nyström algorithm [21], [22],
the power iteration method [23], or linear algebra-based
methods [24]–[26]. It however has enormous advantages
including its ability to perform very well on very challenging
clustering tasks in real-world applications such as image and
video segmentation.

2) KERNEL, MULTI-KERNEL AND ENSEMBLE SPECTRAL
CLUSTERING
Kernel based methods works by mapping data into high
dimensional feature space implicitly defined by the choice
of the kernel function. Alzate and Suykens [27] introduced
a technique named kernel spectral clustering (KSC), which
is based on solving a constrained optimization problem in
a primal-dual setting. From [27], casting SC in a learning
framework allows to meticulously select tuning parameters
such as the natural number of clusters which are present in
the data and also, an accurate prediction of the cluster mem-
berships for unseen points. This can be done by projecting
the test data in the embedding Eigen space learned during
training. Ye and Sakurai [28] based their work on the fact that
SC makes use of the spectrum of some normalized similarity
matrix that is derived from the data to reveal the cluster
structure, and the fact that data is normally very complex,
heterogeneous and high dimensional. Theymeasured the sim-
ilarity of data points not in their original space, but in kernel
space to precisely reflect the underlying data structure. This
results in better clustering with the most appropriate kernel
function chosen. In general, learning graph in kernel space
can enhance clustering accuracy due to the incorporation of
nonlinearity.

In recent times, many approaches that make use of multiple
kernels have also been proposed. This is as a result of the fact
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that in many applications, there could be multiple possibly
beneficial features and thereby multiple affinity matrices.
To ensure better clustering results, multiple affinity matrices
should be aggregated or fused. Some of these recent methods
includes Low-rank Kernel Learning for Graph-based Clus-
tering [29], Clustering with Similarity Preserving [30] and
Robust Graph Learning from Noisy Data [31].

Besides multiple kernels, other authors have also consid-
ered the ensemble clustering technique, which aims to utilize
multiple clusterers to obtain a stronger clusterer. Some of
these techniques includes the Ultra-Scalable Spectral Clus-
tering and Ensemble Clustering [32], Enhanced Ensemble
Clustering via Fast Propagation of Cluster-wise Similarities
[33], Locally Weighted Ensemble Clustering [34], Robust
Ensemble Clustering Using Probability Trajectories [35], and
a clustering ensemble framework based on elite selection of
weighted clusters [36].

3) DISCRIMINATIVE CLUSTER ANALYSIS
It is observed that many algorithms consider the global man-
ifold structure of datasets [12], [37], [38], but fail to con-
sider the discriminative structure which reveals the intrinsic
structure of the data distribution. We know that both man-
ifold information and discriminant information are of great
importance for clustering and hence we expect to preserve
the discriminant information of a dataset in the learning
process. Discriminative cluster analysis (DCA) [39] uses
discriminative features for clustering rather than generative
ones. In [40], [41], both the local manifold structure and the
global discriminant information are preserved simultaneously
through manifold discriminant learning. In [42], the pro-
posed local discriminative and global integration clustering
algorithm (LDMGI) combines the local discriminative mod-
els and manifold structure for clustering. Nie et al in [43]
introduce a new Laplacian matrix into a spectral embed-
ded clustering frame work to capture local and global
discriminative information for clustering. In the work of
Yang et al. [44], the global discriminative regularization term
is introduced, which provides a more discriminative informa-
tion that enhances clustering performance. These algorithms
use the global discriminative information, and make their
performance to improve.

Recently, [30] proposed a discriminative graph learning
method which can preserve the pairwise similarities between
samples in an adaptive manner. This was due to the fact
that prior kernel-based graph learning mechanisms was not
similarity-preserving, hence led to sub-optimal performance.
Their method required the learned graph to be close to a
kernel matrix, which serves as a measure of similarity in raw
data. Our method differs from [30] by learning a discrimi-
native consensus result over a collection of kernels. We take
advantage of the fact that different kernel spaces admit the
same underlying clustering of data, and hence, learn a view
that is consistent across the kernels using co-regularization to
detect the nonlinear intrinsic geometrical information of the
dataset. We use a modified Laplacian which is discriminative

to learn a consistent view that is used to obtain an indicator
matrix to be utilized in k-means for clustering.

4) PROBABILISTIC NEIGHBORS WITH KERNEL DISTANCE
MEASURING
According to the Reproducing Kernel Hilbert Space (RKHS)
theory, we can calculate our Mercer Kernel on a given set
of n data points {xi}ni=1 , with Xi ∈ Rd with a function
K : X × X → R. This can be expressed as;

K (xi, xj) = ϕ(xi) · ϕ(xj) (1)

with ϕ : X → F performing a mapping from the original
space X to a high dimensional feature space F . In this way,
each coordinate matches a feature of the data items. The
distance dϕij between data points xi and xj in the feature space
of a Kernel (ϕ), is measured using the Euclidian distance,
but according to the Mercer Kernel theorem, this can be
calculated from the kernel values as illustrated in equation (2).

dϕij =
√
K (xi, xj)+ K (xj, xj)− 2K (xi, xj) (2)

We ensure that our data is centered so that
∑n

i=1(
xi
n ) = 0.

Assuming, ϕ(xi) and ϕ(xj) are neighbors, then the proba-
bility pij can be said to be 0 ≤ pij ≤ 1, and also the
probabilities for all the data points to be connected to ϕ(xi)
satisfy

∑n
j=1 Pij = 1. The probability of data points being

neighbors is thus inversely proportional to their distance of
separation. Therefore Pij is large if

∥∥ϕ(xi)− ϕ(xj)∥∥2 is small.
The probabilities Pij(j = 1, . . . , n) of all data points to be
connected to ϕ(xi) can be determined as;

min
pi

n∑
j=1

∥∥ϕ(xi)− ϕ(xj)∥∥ 2
2pij,

s.t. 0 ≤ pij ≤ 1, pTi 1 = 1 (3)

where pi ∈ Rn×1 is a vector with the j-th element as Pij
Adding a regularizing parameter λP2ij to the problem (3),

we avoid a trivial solution.

min
pi

n∑
j=1

∥∥ϕ(xi)− ϕ(xj)∥∥ 2
2pij + λP

2
ij,

s.t. 0 ≤ pij ≤ 1, pTi 1 = 1 (4)

where λ is the regularization parameter and pij is the proba-
bility that ϕ(xi) is a neighbor of ϕ(xj). Solving problem (4),
we can assign neighbors to each data point ϕ(xi).
From the work of Nie et al. [10], we can add an additional

constraint rank(Lp) = n − k to the problem (4) to help
attain optimal neighbor assignment, hence the problem is
equivalent to;

min
P,F

n∑
i,j=1

∥∥ϕ(xi)− ϕ(xj)∥∥ 2
2pij + λP

2
ij + 2γTr(FTLpF)

s.t. 0 ≤ pij ≤ 1, pTi 1 = 1, F ∈ Rn×k , FTF = IK (5)

where LP = IK −D
1
2PD

1
2 is the normalized Laplacian matrix

with P as the similarity matrix of the data set, IK is an identity

VOLUME 8, 2020 46429



A. Monney et al.: CoRDiSC-ASMDKS

matrix of size K , and D as the degree matrix with the i-th
diagonal entry defined as

∑
j=1(Pij + Pji) and F ∈ Rn×k is

defined as the weighted indicator matrix.

III. PROPOSED METHOD
The offered algorithm for our technique, Co-regularized
Discriminative Spectral Clustering with Adaptive Similar-
ity Measure in Dual Kernel Space (CoRDiSC-ASMDKS)
is comprehensively outlined in this segment. Given a data
set made up of n data points {x1, x2, . . . , xn}, we strive to
group the n data points into K clusters {Cj}Kj=1. To explore
the non-linear feature space of the datasets, the data points are
projected into high dimensional spaces to learn adaptively the
optimal neighbors of each data point in these spaces. In our
experiments, the linear and Gaussian radial basis function
kernel (RBF) are used. A similarity matrix and a discrimi-
native term is learnt and added to the determined Laplacian
in these kernel spaces. The disagreement between the cluster-
ings is measured and combined with the discriminative spec-
tral clustering with adaptive similarity measure objectives of
the individual kernel spaces, to obtain a joint minimization
problem. Using alternate minimization with respect to each
view, the joint minimization problem is solved, and k-means
is used to perform the final clustering.

A. CO-REGULARIZED DISCRIMINATIVE SPECTRAL
CLUSTERING
Given data with two kernel representations. Let ϕ(v)(X ) =
ϕ(v)(X1), ϕ(v)(X2), . . . , ϕ(v)(Xn) and ϕ(u)(X ) = ϕ(u)(X1), ϕ(u)

(X2), . . . , ϕ(u)(X1) denote samples in kernel representations
v and u respectively, and P(v) and P(u) also denote the sim-
ilarity of ϕ(X ) in kernel representations v and u respec-
tively. We introduce a discrimination term (2) as deduced
in the next subsection into problem (5) for each kernel
representation.

1) DISCRIMINATIVE TERM (2)
For a data set with n data points xi ∈ Rd having a similarity
matrix P, with pij representing the relationship between xi
and xj, our target is to group in K clusters Cjj = 1K the data
points. To obtain very good clustering results, discriminative
information should be considered, hence inspired by the work
done by Wang et al. [45], discriminability is introduced into
our normalized Laplacian to ensure that the spectral clus-
tering is discriminative. We represent the jth column of the
indicator matrix Fj as

Fj = (0, . . . , 0,

nj︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0)T /n

1
2
j

s.t. Fij =

{
1/√nj, if xi ∈ Cj
0, otherwise

(6)

with nj being the size of the cluster Cj. Similar to [46],
we formulate our discrimination term as

max
F

Tr(FT (In − (In + (
1
λ
G)−1)F)

s.t. FTF = IK (7)

where Tr(·) signifies the trace of a matrix, In represents an
identity matrix of size n, λ which is greater than zero is a
regularization parameter, and a symmetrical positive semi-
definite Gram matrix is represented as G = XTX .

Ye et al shows in [46] that tr(FTF) = K and for a given
similaritymatrixP, the equivalent of problem (7) can be given
as

2 = min
F
Tr(FT ĜF)

s.t FTF = IK (8)

where Ĝ = (In + 1
λ
G)−1 is treated as a Gram matrix

2) DISCRIMINATIVE SPECTRAL CLUSTERING WITH ADAPTIVE
SIMILARITY MEASURE IN KERNEL SPACE
A discrimination term (2) is introduced into problem (5) for
each kernel representation. Thus for example, in the v-kernel
representation, the following equation is obtained;

min
P(v),F (v)

n∑
i,j=1

(
∥∥∥ϕ(v)(xi)− ϕ(v)(xj)∥∥∥ 2

2pij
(v)
+ λ(v)P(v)ij

2

+ 2γ (v)
(
α1 Tr(F (v)TL(v)p F (v))+ (1− α1)2(v)

)
s.t. 0 ≤ pij(v) ≤ 1, p(v)i

T
1 = 1, F (v)

∈ Rn×k ,

F (v)TF (v)
= IK (9)

where α1 ∈ [0, 1]
Expanding problem (9) we obtain

min
P(v),F (v)

n∑
i,j=1

(
∥∥∥ϕ(v)(xi)− ϕ(v)(xj)∥∥∥ 2

2pij
(v)
+ λ(v)P(v)ij

2

+ 2γ (v)Tr
(
α1(F (v)TL(v)p F (v))

+ (1− α1)(F (v)T Ĝ(v)F (v))
)

s.t. 0 ≤ pij(v) ≤ 1, p(v)i
T
1 = 1,F (v)

∈ Rn×k ,

F (v)TF (v)
= IK (10)

This is equivalent to

min
P(v),F (v)

n∑
i,j=1

(
∥∥∥ϕ(v)(xi)− ϕ(v)(xj)∥∥∥ 2

2pij
(v)
+ λ(v)P(v)ij

2

+ 2γ (v)Tr
(
F (v)T [(α1 L(v)p )+ (1− α1)Ĝ(v)]F (v))

s.t. 0 ≤ pij(v) ≤ 1, p(v)i
T
1 = 1, F (v)

∈ Rn×k ,

F (v)TF (v)
= IK (11)

where F (v)
∈ R(n×K ) is defined as the weighted indicator

matrix, ˆG(v) is treated as a Gram matrix, LP(v) is the normal-
ized Laplacian matrix with P(v) as the similarity matrix of the
data set and α1 ∈ [0, 1].
We solve problem (11) as our optimization problem for

each kernel representation of our data.
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a: UPDATE P AND λ WITH F FIXED
When F is fixed, the problem (11) can be reformed as

min
P(v),F (v)

n∑
i,j=1

(
∥∥∥ϕ(v)(xi)− ϕ(v)(xj)∥∥∥ 2

2pij
(v)
+ λ(v)Pij(v)

2

+ 2γ (v)Tr
(
F (v)T [(α1 L(v)p )+ (1− α1)Ĝ(v)]F (v))

s.t. ∀i 0 ≤ pij(v) ≤ 1, pi(v)
T
1 = 1 (12)

If we assigned an arbitrary function value fi(v) ∈ R(K×1) to
each node, it can be verified that

min
P(v)

n∑
i,j=1

∥∥∥fi(v) − fj(v)∥∥∥ 2
2pij

(v)

= 2γ (v)Tr
(
F (v)T [(α1L(v)p )+ (1− α1)Ĝ(v)]F (v)) (13)

where F (v)
∈ Rn×k with the i− th row formed by f (v)i

We can therefore obtain

min
P(v),F (v)

n∑
i,j=1

(
∥∥∥ϕ(v)(xi)− ϕ(v)(xj)∥∥∥ 2

2pij
(v)

+ λ(v)P(v)ij
2
)+

n∑
i,j=1

∥∥∥fi(v) − fj(v)∥∥∥ 2
2pij

(v)

s.t. ∀i 0 ≤ pij(v) ≤ 1, p(v)i
T
1 = 1 (14)

We solve problem (14) individually for each i. If we denote

dϕxij
(v)
=
∥∥ϕ(v)(xi)− ϕ(v)(xj)∥∥ 2

2, d
f
ij
(v)
=
∥∥(fi)(v) − (fj)(v)

∥∥2
2

and dϕi
(v)
∈ Rn×1 as a vector with the j-th element as dij(v) =

dϕxij
(v)
+d fij

(v)
, problem (14) can be re-written into vector form

as:

min
pi(v)

∥∥∥∥∥pi(v) + diϕ (v)

2λi(v)

∥∥∥∥∥
2

2

s.t. ∀i 0 ≤ pij(v) ≤ 1, p(v)i
T
1 = 1 (15)

For each i, the Lagrangian function of problem (15) is;

τ (pi(v), µi(v), σi(v))=
1
2

∥∥∥∥∥pi(v) + dϕi
(v)

2λi(v)

∥∥∥∥∥
2

2

−µi
(v)(p(v)i

T
1− 1)− σ (v)

i
T
pi(v) (16)

where µi(v) and σi(v) ≥ 0 are the Lagrangian multipliers.
Solving problem (16) similarly as in [10], we obtain λ(v) and
pij(v) as;

λ(v) =
1
n

n∑
i=1

(
k
2

(
dϕ

(v)

i,k+1

)
−

1
2

k∑
j=1

dϕij
(v)
)

(17)

pij(v) =

(
dϕ

(v)

i,k+1

)2
−
(
dϕ

(v)

ij

)2
kdϕ

(v)

i,k+1

2
−
∑k

j=1
(
dϕ

(v)

ij

)2 (18)

where k is the k-nearest number

b: UPDATE F WITH P FIXED
When P is fixed, the objective function in problem (11) can
be reformed as:

min
F (v)

Tr
(
F (v)T [(α1L(v)p )+ (1− α1)Ĝ(v)]F (v)))

s.t. F (v)
∈ Rn×k , F (v)TF (v)

= IK (19)

Here, the constant F (v) is relaxed as in traditional clustering
approaches. From the Ky Fan theorem [47], the solution to
problem (19) can be derived as the eigenvectors of the matrix
(α1 L

(v)
p ) + (1 − α1)Ĝ(v) corresponding to the smallest K

eigenvalues. Hence, in the convergence of P(v), an optimal
solution F (v) to problem (19) is attained.

Likewise for view u, its solution is the eigenvectors of the
matrix (α2 L

(u)
p )+ (1−α2)Ĝ(u) corresponding to the smallest

K eigenvalues. Therefore as in problem (19), the optimal
solution F (u) is attained in the convergence of P(u).

3) CO-REGULARIZATION
In our procedure, we want to take advantage of the benefits
of using more than one kernel. As stated earlier, two kernel
views; (u) and (v), are used. The indicator matrix F in each of
these views is solved for as in problem (19). In the objective
function offered by the proposed approach, it is desired that,
new representation (in terms of rows of F (·)’s) is comparable
across all the kernels views. We therefore strengthen the pair-
wise similarities of samples under this representation. Thus,
implementing the spectral clustering hypotheses (which are
based on the F (·)’s) to be the same across all the kernels.
The disagreement between clusterings in the two views is
measured as;

D(F (v),F (u)) =

∥∥∥∥∥ SF (v)∥∥SF (v)

∥∥2
2

−
SF (u)∥∥SF (u)

∥∥2
2

∥∥∥∥∥
2

2

(20)

where SF (v) and SF (u) are the similarity matrix for F (v) and
F (u) respectively. Normalizing the similarity matrices of the
views makes them comparable across all views. Since SF (v) =

F (v)F (v)T and SF (u) = F (u)F (u)T , then, the graphs with the
learned similarity S(v)F and S(u)F will have exactly K connected
components. Thus,

∥∥SF (v)

∥∥2
2 = K and

∥∥SF (u)

∥∥2
2 = K . Sub-

stituting this into Equation (20) and ignoring the constant
additive and scaling terms that depend on the number of
clusters, we get

D(F (v),F (u)) = −tr
(
F (v)F (v)TF (u)F (u)T

)
(21)

We choose to let α1 L(v)p + (1 − α1)Ĝ(v) and α2 L(u)p +

(1 − α2)Ĝ(u) in the objectives of individual kernel spaces in
equation (19) to be represented as Z (v) and Z (u). Hence, com-
bining problem (21) with the discriminative spectral cluster-
ing with adaptive similarity measure objectives of individual
kernel spaces, the following joint minimization problem is
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obtained.

min
F (v)
∈Rn×K

F (u)
∈Rn×K

tr
(
F (v)TZ (v)F (v))

+ tr
(
F (u)TZ (u)F (u))

− δtr
(
F (v)F (v)TF (u)F (u)T )

s.t F (v)
∈ Rn×k , F (v)TF (v)

= IK , F (u)TF (u)
= IK (22)

where δ is a trade-off of the spectral clustering objectives and
the disagreement term.

Using alternating minimization with respect to F (v) and
F (u), problem (22) is solved. Hence, for a given F (u), the opti-
mization problem in F (v) becomes:

min
F (v)∈Rn×K

tr
(
F (v)T (Z (v)

− δF (u)F (u)T )F (v))
s.t F (v)

∈ Rn×k , F (v)TF (v)
= IK (23)

The alternate minimization process is repeated until con-
vergence. We monitor the convergence by the change in
the value of the objective between successive iterations, and
stop when the difference falls below a minimum threshold
of ε = 10−4. The solution F (v) is given by the smallest-k
eigenvectors of this modified Laplacian Z (v)

− δF (u)F(u)T .
The final step in our approach is to use either of F (v) or F (u)

in k-means to perform the final clustering. We summarise our
procedure as in Algorithm 1.

Algorithm 1 CoRDiSC-ASMDKS Method

Input: Data matrix X ∈ R(d×n); Parameters α, k, c;
Output: Cluster indexes of x1, x2, . . . , xn
1: for kernel v, u do
2: Initialize P by the optimal solution to the problem (4).
3: while not converge do
4: for each i do
5: update the i-th row of P by solving problem (15),

where dϕi ∈ R(n×1) is a vector with the j-th
element as dij = dϕxij + d

f
ij

6: end for
7: end while
8: Update F , which is formed by the K eigenvectors of

Z = (αLp+(1−α)Ĝ) corresponding to the K smallest
eigenvalues

9: end for
10: Determine D(F (v),F (u))
11: Solve problem (22) using alternate minimization until

convergence
12: Use F (v) or F (u) in k-means to obtain the final clustering

4) COMPLEXITY ANALYSIS
The computational cost involved in solving the main aspects
of our proposed CoRDiSC-ASMDKS technique is shown
in this sub-section. Our method, CoRDiSC-ASMDKS has a
general complexity of

O(n2logn+ nk)+ O(n2)+ O(2n3)

This includes initializing P in equation (4), updating the
i-th row of P in equation (15), and computing the disagree-
ments between the two kernel views. It includes additionally
the general measure for complexity analysis of comput-
ing eigenvectors from a dense matrix. However in our
case, we solved the eigenproblem by applying sparse eigen-
solvers [49]. We used ARPACK, which is a variants of
Lanczos/Arnoldi factorization with a complexity of(

O(h3)+ O(nh)+ O(nk)+ O(h− c)
)
∗ A

where A is the number of restarted Arnoldi, h > c is the
Arnoldi length used to compute the first c eigenvectors of our
modified Laplacian matrix.

IV. EXPERIMENTS
In this section, we evaluate the performance of the proposed
method by comparing it with other state-of-the-art spectral
clustering methods.

A. SETUP
All algorithms were implemented on Matlab R2016a (revi-
sion 9.0.0.341360) 64-bit, running on a windows7 Intel
CoreTM i3-4170 CPU @3.7GHz 3.70GHz processor with
an 8GB installed memory. Using already implemented
tools of Matlab, ARPACK and the Kernel Methods Tool-
box (KMBOX), we adapted the open source Matlab
codes as presented by [18], [48] and [50]. We use the
Gaussian radial basis function (RBF) and Linear ker-
nels in our experiments. We use the same initialization,
pre-setting the neighborhood parameter value k = 10.
We select the parameters α and δ as in subsection IV-E.
We repeat our experiments ten times and record the best
values.

B. DATA SELECTION
To evaluate the performance of our approach, experiments
are conducted on synthetic and publicly available data sets.
We first perform experiments on three simple 2D synthetic
data; 2S + Circle, 8-Gaussian and the 4S + Noise, to ascer-
tain the usefulness of our method. We then implement our
algorithm on other eight publicly available data sets with
various degrees of challenges from the UCI Machine Learn-
ing Repository [51], the MNIST [52] and Trec database
repositories to further evaluate the performance of our algo-
rithm. These data sets are from different fields. We use three
face databases; JAFFE, UMIST, Yale and ORL, a hand-
written digits database; MNIST, a toy image database;
COIL20, and BA which is a binary alpha digits data set.
These were taken under different configurations, so some
of them are corrupted severely. We use also, one biological
dataset; LUNG. The last data sets is a text corpora from
TREC 2.

Table 1 and 2 summarizes the characteristics of the syn-
thetic and public datasets.
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TABLE 1. Characteristics of the synthetic datasets.

TABLE 2. Characteristics of the public datasets.

C. COMPARATIVE METHODS
Discussing effectively the general performance of our pro-
posed algorithm requires choosing a good set of comparative
methods. Our proposed approach was compared with both
graph-based and kernel clustering methods. The kernel meth-
ods includes both single and multiple kernel approaches.

For our synthetic data, many legacy methods as well as
state-of-the-arts approaches were used to establish the wor-
thiness of our proposed approach. These methods include
K-means, Normalized Cut, Ratio Cut, Self-Tuning Spec-
tral Clustering (ST-SC) [53], Local density adaptive sim-
ilarity measurement for spectral clustering (DA-SC) [54],
spectral clustering based on k-nearest neighbour (kNN-SC)
[55], Spectral clustering with adaptive similarity measure
(ASM-SC) [56] and spectral clustering with adaptive simi-
larity measure in kernel space (ASMK-SC) [28].

With that established, the proposed approach is then tested
on publicly available datasets. For these publicly available
dataset, we compare our approach specifically with the
Robust Kernel K-means (RKKM) [57], Self-Tuning Spectral
Clustering (ST-SC) [53], Clustering with Adaptive Neigh-
bor (CAN) [10], Spectral clustering with adaptive similarity
measure (ASM-SC ) [56], Spectral clustering with adaptive
similarity measure in Kernel space (ASMK-SC) [28], Robust
Graph learning from Noisy data (RGC) [31], Low-rank Ker-
nel Learning for Graph-based Clustering (LRKL) [29] and
Clustering with Similarity Preserving (SPC and mSPC) [30].

D. EVALUATION METHODS
In this paper, the provided label of each sample is matched
with the label computed by the various clustering methods to
give the clustering result. Accuracy(ACC) and Normalized

FIGURE 1. Effect of α for kernels.

Mutual Information(NMI) are used for measuring the clus-
tering performance [58]. The accuracy is defined as follows:

ACC =

∑n
i=1 δ(li,map(ci))

n
,

where li is the label of data and ci is the lable result gotten
by clustering. If a = b, δ(a, b) equal 1,else, δ(a, b) equal 0.
map(ci) is the permutation mapping function that best map
each cluster label ci to the equivalent label from dataset. Let
L be the true label provided by the dataset and L ′ be the label
gotten from clustering algorithm. The mutual information
between L and L ′ is defined as follows:

MI (L′L ′) =
∑
Li∈L

∑
L ′i∈L

p(li,l ′j)log2
p(li, l ′j)
p(li)p(l ′j)

,

where p(li) and p(l ′ are the marginal probability distribution
functions of L and L ′. p(li, l ′j) is the joint probability distri-
bution function of L and L ′. However, in our experiments,
we use the NMI for our performance comparison and is
defined as follows:

NMI (L′L ′) =
MI (L′L ′)

max(H (L),H (L ′)
,

where (H (L) and H (L ′) are the entropies of p(L) and p(L ′).
The NMI takes values in [0, 1]. If NMI equals 1, the two
clusters labels are identical; otherwise, they are independent.
In our experiments however, we express our NMI as a per-
centage for easy appreciation.

E. PARAMETER SELECTION
1) SELECTION OF α
We demonstrate how the parameter α are selected for our
approach using the Jaffe dataset in Figure 1. The parameter
α, has a discriminatory balancing effect on the dataset which
help us to attain optimal performance of each kernel optimiza-
tion equation of our proposed method. We set α carefully
through experiments to achieve optimal performance. This
is done by choosing a suitable α first by evaluating it in a
sample of the whole dataset. In theory, α should take a range
of 0 to 1. We discovered that on the datasets we used, the best
α parameter was in the range of 0.59 to 0.77 depending on
the specific dataset. We vary α from 0 to 1 to determine the
best α parameter for each kernel. Thus we record the best
performance for each kernel acting alone.

VOLUME 8, 2020 46433



A. Monney et al.: CoRDiSC-ASMDKS

TABLE 3. Performance in terms of accuracy (acc) and NMI on synthetic datasets.

FIGURE 2. Synthetic datasets.

As per the results shown, when we set α1 which is the α for
the RBF kernel to 0.73, and α2 which is the α for the Linear
kernel to 0.77, we obtain the best accuracy. It is worth noting
that the curves have an upward trend in the values α = 0 to
0.73, α = 0 to 0.77 and begin to decline afterwards. When
α = 1, it implies that our model has completely neglected
the effect of discrimination. We can conclude from the graph
that 0.73 and 0.77 are fine choices for α1 and α2 for the Jaffe
data set. Also, it may not be a good idea to set a very low
α value, otherwise there can be an imbalance between the
discriminatory term (2) and the normalized Laplacian matrix
LP with P as the similarity matrix of the data set which may
lead to a low performance of the model.

2) SELECTION OF δ
In order to select the optimum co-regularization parame-
ter (δ), we experimented with different values of δ in the
range 0 to 0.1, and observed how it affected performance.
We observed that on most of the data sets, δ showed best
performance in the range of δ = 0.009 to 0.052. The best
performance of the parameter δ for each dataset was chosen
for use in our experiments. For instance, the parameter δ on
the Jaffe data set has a best performance at δ = 0.014.
We observed generally that accuracy increases as δ

increased from 0 until it reaches its highest point. It then starts
decreasing with local ups and downs until δ reaches 0.1.

F. EXPERIMENTS ON SYNTHETIC DATASETS
As shown in Figure 2, three synthetic datasets are used in our
experiments.

The NMI and accuracy results of the various methods in
comparison to CoRDiSC-ASMDKS on synthetic datasets are
illustrated in table 3. It is evident from the experimental
results in table 3 that the proposed CoRDiSC-ASMDKS
method outdoes all the baseline approaches on the synthetic
datasets. CoRDiSC-ASMDKS, for example, recorded an
NMI value of 70.52% on the 2S + Circle dataset, surpassing

ASMK-SC by 2.05%, ASM-SC by 3.39%, Normalized cut
by 2.33%, Ratio Cut by 2.27%, ST-SC by 3.02%, kNN-SC by
3.26%, DA-SC by 7.05% and K-means by 9.20%. The results
in table 3 also show that most of the methods performed
better than K-means on the 4-Circle, 4-Corner, and 2-Spiral
datasets. It is also noted that CoRDiSC-ASMDKS recorded
the highest accuracy of 92.18%, 97.87% and 93.62% for
the 2S + Circle, 8-Gaussian and 4S + Noise datasets
respectively, surpassing ASMK-SC which is the second-best
method by 1.98%, 1.35% and 2.85% respectively.
Using box diagrams to illustrate Accuracy(%) andNMI(%)

on the 8-Guassian dataset; which contains eight clusters
of data obeying the eight Gaussian distributions, and also
2S + Circle dataset made up of three clusters of data ran-
domly distributed in two squares and one circle, we again
show the pre-eminence of our approach with the other com-
paring methods in Figures 3(a and b), and 4(a and b).
CoRDiSC-ASMDKS shows the highest value Accuracy%

and NMI% amongst all the comparing methods from the
results. The poorest performance is recorded by K-means as
a result of the fact that all the other methods improve upon its
performance.
We demonstrate how varying the parameter k affects per-

formance using selected synthetic datasets. Since kNN-SC,
ASM-SC and ASMK-SC have the same parameter k ,
we compare the proposed method with these three methods in
the experiments. Figures 5(a-d) presents the clustering results
in terms of accuracy and NMI, varying k on the 2S + Circle
and 8-Guassian datasets.
We find that on the 2S + Circle data, our proposed

CoRDiSC-ASMDKS method obtains the best accuracy at
k = 9, whereas ASM-SC and ASMK-SC obtains the best
accuracy at k = 10. We also find that, kNN-SC is able to
cluster correctly when k = 6, however, it is very unstable
as k varies. This illustrates the fact that different methods
performs differently with different values of k .

G. EXPERIMENTS ON PUBLIC DATASETS
In the experiments on public datasets, we present the best
NMI and Accuracy performance of the proposed method in
comparison to the comparative methods. We organize our
results in two tables. The first table (table 4), presents a
comparison of the proposed approach with graph and single
kernel based methods. The second table (table 5) presents
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FIGURE 3. Box plot of accuracies for selected synthetic datasets.

TABLE 4. Performance in terms of accuracy (ACC) and NMI for graph and single kernel based methods on public datasets.

FIGURE 4. Box plot of NMI’s for selected synthetic datasets.

a performance comparison with multiple kernel based
methods.

Examining the results, it is observed that comparing the
results of approaches involving kernel methods to non-kernel
methods, the kernel methods generally recorded improve-
ments over the clustering results of non-kernel methods, more
significantly on the public datasets. This can be attributed
to Mercer Kernels giving a more general way of represent-
ing complex data through which clusters can accurately be
identified. Table 4 shows that the proposed approach per-
forms much better than most of the single kernel methods

indicating that our procedure may have benefited from the
advantages of using more than one kernel in clustering, and
the discrimination that took place at each kernel level. We see
SPC performing well in terms of accuracy and NMI on the
ORL and TR41 datasets but unable to perform same on the
other datasets.

From table 5, we see that the performance of the proposed
approach, closely matches the other comparative methods.
It obtained the best performance in terms of accuracy and
NMI on the LUNG and COIL20 datasets. In terms of accu-
racy for example on the COIL20 dataset, it surpassed RGC by
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FIGURE 5. Accuracy (%) and NMI (%) varying the parameter k on selected synthetic datasets.

TABLE 5. Performance in terms of NMI and accuracy (ACC) for multiple kernel based methods on public datasets.

3.83%, LRKL by 2.55% and mSPC by 4.14%. On the LUNG
dataset, it outperformed RGC by 0.17%, LRKL by 1.22% and
mSPC by 0.74% in terms of accuracy. For the other datasets,
its performance though not the best was quite significant.
In terms of accuracy, it recorded 73.95%, 66.29%, 50.62%,
68.68% and 72.08% to become the second best approach
for the UMIST, MNIST, BA, YALE, and TR4 datasets.
In terms of NMI, it also recorded the second best approach for
the UMIST, JAFFE, MNIST and TR4 datasets respectively.
It was however, the third best approach for the BA and YALE
datasets with reference to NMI performance. Accuracy for
the proposed approach was third best for the JAFFE dataset.

It is important to note however, that no single multi-
kernel method performed unilaterally well on all the datasets.

However, although our method wasn’t the best approach, its
performance is significant considering the fact that it used
only two kernels. Also, comparing the time it takes to cluster,
our approach has lower computational cost. We show this in
our next section.

H. TIME-TO-CLUSTER FOR MULTI-KERNEL BASED
METHODS ON PUBLIC DATA SETS
For us to appreciate the performance of our method further,
we measure the time it takes for each method to cluster
selected public datasets. Table 6 shows the obtained results
in seconds (s).

It is clear that our approach records the best time to cluster.
The time-to-cluster per sample for the proposed algorithm is
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TABLE 6. Clustering time in seconds (s) for multi-kernel methods at
k = 10.

FIGURE 6. Sample image from ORL dataset with varied noise ratio.

more than three times as fast as the multi-kernel comparative
methods. On the UMIST dataset, it was 3.67 times faster than
RBC, 3.38 times faster than LRKL and 3.28 times faster than
mSPC. This results from the fact that our model uses only
two kernels, and hence is able to process the clusters faster
although its performance reduces slightly. But in this era of
big data, ability to process data quickly is quite important and
hence the performance of our model in terms of accuracy and
NMI can be said to be highly satisfactory.

I. ROBUSTNESS TO NOISY DATA
In this sub-section, we investigate how robust our pro-
posed approach CoRDiSC-ASMDKS is in comparison to
the Robust Graph learning from Noisy data (RBC) method
[31], spectral clustering with adaptive similarity measure
(ASM-SC) [56] and spectral clustering with adaptive similar-
itymeasure in kernel space (ASMK-SC) [28] to noisy dataset.
It is worth noting that methods such as Robust Graph learning
from noisy data (RBC) uses robust graph learning scheme to
learn reliable graphs from real-world noisy data by adaptively
removing noise and errors in the raw data. Our approach does
not aim to remove noise but demonstrate the importance of
discriminatory information in noise handling.

We introduce salt & pepper noise in an incremental order
of 5%, 10% up to 40% to the ORL datasets and record their
average performance. Figure 6 shows sample data with varied
noise ratio.

FIGURE 7. Robustness of CoRDISC-ASMDKS in comparison to RGC,
ASM-SC and ASMK-SC on ORL dataset with varied noise ratio.

This experiment is performed using the tuned optimal
parameter settings for the algorithms and we record the best
performances at k = 10. Figure 7 shows that the proposed
approach did not degrade drastically with the introduction of
noise and performed better than ASM-SC and ASMK-SC. It
is noticed that, with the introduction of noise, its performance
degraded in a similar fashion as the RGC technique, although
lagged behind RBC. At 30% noise level, it is seen that our
methods accuracy performance is a little better than RGC.

The proposed approach is able to find the global discrimi-
natory data structure, identify noisy samples and obtain satis-
factory performance against noise. What this implies is that,
incorporating discriminatory information in noise removing
clustering techniques can further improve their performance.

V. CONCLUSION
In this paper, a novel co-regularized discriminative spectral
clustering method with adaptive similarity measure in a dual-
kernel space is proposed. This enabled us to exploit some of
the benefits of multiple kernels, since multi-Kernels can offer
a more general way to represent data by which clusters can be
more accurately identified. Taking advantage of the fact that
different kernel spaces admit the same underlying clustering
of data, we learned a view that is consistent across the kernels
using co-regularization to detect the non-linear intrinsic geo-
metrical information of the dataset. Our approach essentially
differs from existing spectral clustering methods by learning
a discriminative consensus result over a collection of ker-
nels. We use a modified Laplacian which is discriminative
to learn a consistent view that is used to obtain an indicator
matrix which is utilized in k-means to obtain the clustering.
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An extensive experimental study on synthetic and public data
sets demonstrates that CoRDiSC-ASMDKS obtains satisfac-
tory clustering quality with improved clustering time com-
pared to other state-of-the-art clustering methods. As future
work, we will consider extending our work to multiple kernel
co-regularization whiles maintaining good time to cluster,
to further improve the accuracy of data clustering.
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