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ABSTRACT In frequency-modulated continuous-wave (FMCW) radar interference suppression based on
signal reconstruction, the pruned exact linear time (PELT) algorithm is used to detect the time positions of
the interference. Due to the uncertain penalty factor of the PELT algorithm, the exactness of the position
detection is reduced; thus, the suppression performance is degraded. We propose a PELT algorithm with a
known change number (PELT-KCN), where a known change number is used to calculate the optimal penalty
factor such that the high accuracy of the algorithm can be guaranteed. After interference recognition, the beat
signal is separated into two parts: the undamaged signal and the damaged signal. The former is utilized to
restore the latter through an autoregressive (AR) model. In simulations and field experiments, we applied
our proposed PELT-KCN algorithm to the interference suppression method and verified its performance. Our
method can accurately detect the time positions of interference and effectively improve the signal-to-noise
ratio (SNR) of the detected targets.

INDEX TERMS Change-point detection, frequency modulated continuous wave (FMCW) radar, mutual
interference suppression, signal restoration.

I. INTRODUCTION
Mm-wave radar sensors have become increasingly popular
among automotive radar systems [1], [2]. Among the numer-
ous types of radar sensors, FMCW radars have been the most
widely used in automotive mm-wave radar systems in recent
years due to their simple radio structure, low power consump-
tion, etc. [3]. However, as the number of vehicles equipped
with FMCW radar systems increases, so does the possibility
of radar-to-radar interference, which may seriously affect
the detection performance of these radar systems [4]. When
signals transmitted by other radars are directly or indirectly
received by the victim radar, the increased noise floor cre-
ated by the mutual interference lowers the target detection
accuracy, which may lead to traffic accidents. Therefore,
the problem of mutual interference between FMCW radar
systems has seen increased importance [5].

The associate editor coordinating the review of this manuscript and
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The method proposed in [6] changes the slope of the chirp
signal to suppress the effect of interference. This method can
improve the signal-to-noise ratio (SNR) of the beat signal;
however, it does not work properly when the power of the
interference signal is high compared to the desired signal.
In [7], the effect of mutual interference was mitigated by
using morphological component analysis (MCA) to separate
the interference from the received signal according to the
sparse difference of the beat in the STFT domain and DFT
domain. However, MCA does not work well if the period of
the interference is not sufficiently long for the analysis. The
authors in [8] proposed a method whereby they applied deep
learning to mitigate interference. One problem of this method
is that it is difficult to find numerous suitable labels for
all types of scenarios before applying deep learning. In [9],
mutual interference was suppressed by changing the start
frequency of each FMCW radar to assure that the beat signal
resulting from mixing the transmitted signals of two different
sensors has a beat frequency higher than the cut-off frequency
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of the low-pass IF filter. The problem with the method pro-
posed in [9] is that a coordination mechanism has not been
proposed to determine how to change the start frequency
of all FMCW radars on the road. In [10], the amplitude of
the interference was reduced to a level similar to that of
the desired signal by using the advanced weighted-envelope
normalization (AWEN) method to improve the SNR of the
detected targets. However, suppressed interference still exists
and distorts the beat signal. If the period of interference is
long, the mis-detection probability of the desired targets will
be higher. To solve this problem, a method proposed in [11]
uses the signal out of the period of interference to restore
the signal in the period of interference by the AR model.
However, the authors of [11] have not proposed a method
to detect the start and end points of the interference in the
time domain for distinguishing between the interfered signal
and the desired signal, which was the key factor deciding the
performance of signal reconstruction in [11].

Because the interference and the signal reflected from the
target have different power, they show different statistical
properties in the beat signal. Change-point analysis is the
identification of points within a data set where the statistical
properties change [12]. Therefore, the problem of detecting
the start and end points of the interference in [11] can be
solved by using the change-point detection method according
to the difference in the statistical properties between the
interference and the desired signal. Among the numerous
change-point detection methods, the method based on the
pruned exact linear time (PELT) search algorithm is pre-
ferred because (i) it is only controlled by one parameter,
the penalty factor; (ii) it can guarantee that the global opti-
mum will be found; and (iii) a pruned exact linear time
method is used in the algorithm to increase the computational
efficiency without affecting the exactness of the partition-
ing [13]. However, the penalty factor is a preset constant,
which cannot guarantee that it is the optimal value for any
data set. If the penalty factor is too small compared to the
optimal value, many change-points will be detected, even
those that are the result of noise. Conversely, only the most
significant changes or possibly no changes will be detected
with a large penalty factor. To reduce the possibility of the
two situations above, it is necessary to propose a method to
find the optimal penalty factor. One solution is to obtain the
optimal factor according to the number of changes measured
previously [14].

Therefore, we propose a PELT-KCN algorithm for mutual
interference suppression in FMCW radar. First, the envelope
of the beat signal is obtained by the WEN algorithm. Second,
the number of change-points is determined according to the
variation of the envelope. Third, more accurate positions
of the interference in the time domain are obtained by the
PELT-KCN algorithm based on the known number of change-
points. Finally, the degraded signals are restored by using
the result of the PELT-KCN algorithm and the AR model
proposed in [11].

FIGURE 1. A typical FMCW radar system.

II. SIGNAL MODEL
Fig. 1 demonstrates a simplified block diagram of the main
RF components of an FMCW radar system. The chirp signal
is transmitted from VCO, and the received signal reflected
from the target is mixed with the output of VCO to obtain the
beat signals. The time delay and Doppler shift frequency of
the target can be obtained from the beat signal.

A. SIGNAL WITHOUT INTERFERENCE
The TX signal of an FMCW radar system can be expressed
by the following equation:

xt (t) = A cos(2π((fc −
BW
2

)t +
BW
2tm

t2)), (1)

where A is the amplitude of the TX signal, fc is the carrier
frequency, BW is the sweep bandwidth, and tm is the duration
of a single chirp.

The RX signal from multiple targets can be expressed as

xr (t) =
M∑
i=1

Bi cos(2π((fc −
BW
2
+ fd,i)(t − td,i)

+
BW
2tm

(t − td,i)2)), (2)

whereM is the number of targets, Bi is the attenuated ampli-
tude of reflection from the i-th target, and fd,i and td,i are
the Doppler frequency shift and time delay of the reflection
from the i-th target, respectively. For simplification, the noise
component is not included in the above equation.

The beat signal produced by the mixer can be represented
as

xs(t) =
M∑
i=1

Ci cos(2π(
BW
tm

td,i − fd,i)t

+2π (fc −
BW
2
+ fd,i)td,i −

πBW
tm

t2d,i)), (3)

where Ci is the amplitude of the demodulated signal from the
i-th target. The beat frequency is defined by the following
equation:

fb,i =
BW
tm

td,i − fd,i. (4)

Then the beat frequency can be converted to the distance
between the radar and the i-th target by

disti =
(fb,i + fd,i) · c

2slo
, (5)
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where slo = BW
tm

denotes the chirp slope, and c denotes the
speed of light.

The fast Fourier transform (FFT) is used to transform
the beat signal xs(t) from the time domain to the frequency
domain, where peak detection methods, such as the constant
false alarm rate (CFAR) method, can be applied to detecting
the peak, whose index represents the beat frequency fb,i of
the i-th target. Based on equation (5), the distance spectrum
can be obtained by converting the indexes of the frequency
spectrum to the distances.

B. SIGNAL WITH INTERFERENCE
When interferers are present, the sum of all interference
signals from other radar systems is expressed by

xIr (t) =
N∑
i=1

BIi cos(2π ((f
I
c,i −

BW I
i

2
+ f Id,i)

(t − t Id,i)+
BW I

i

2t Im,i
(t − t Id,i)

2)), (6)

where N is the number of interferers. For the i-th interference
signal, BIi is the amplitude, f Ic,i is the carrier frequency, BW

I
i

is the bandwidth, t Im,i is the duration of a single chirp, f Id,i is
the Doppler frequency, and t Id,i is the time delay. I denotes
the symbol of the interference.

In the i-th interference signal, the slope of the chirp is
determined by BW I

i and t Im,i. A ghost target occurs when the
interfering signal and our transmitted signal have the same or
similar slopes [15]; moreover, t Id,i is very short, i.e., within
the maximum time delay tdmax =

2distmax
c (here, distmax is the

maximum detection range). This situation rarely occurs, with
probability less than 0.00016 (= tdmax

2tm
) [16], [17]. Thus, it will

not be discussed in this paper.
With the interference, the beat signal can be categorized

into two cases according to the mixing conditions, as shown
by Fig. 11.

1) CASE 1
Both the TX signal and the interfering signal have positive or
negative chirp slopes, as shown by Fig. 2(a). The beat signal
can be described as

y(t) = xs(t)+ xSSI (t), (7)

where xSSI (t), the mixer output of this case, is described as

xSSI (t) =
N∑
i=1

C I
i cos(2π ((fc − f

I
c,i)∓ (

BW
2
−
BW I

i

2
)

±(
BW I

i

t Im,i
t Id,i ∓ f

I
d,i))t ± π(

BW
tm
−
BW I

i

t Im,i
)t2

+2π (f Ic,i ∓
BW I

i

2
+ f Id,i)t

I
d,i ∓

πBW I
i

t Im,i
t Id,i

2
). (8)

FIGURE 2. Different mixing signal cases.

2) CASE 2
The TX signal has a positive chirp slope, and the interference
signal has a negative chirp slope or vice versa, as shown by
Fig. 2(b). The beat signal can be described as

y(t) = xs(t)+ xDSI (t), (9)

where xDSI (t), the mixer output of this case, is described as

xDSI (t) =
N∑
i=1

C I
i cos(2π((fc − f

I
c,i)∓ (

BW
2
−
BW I

i

2
)

∓(
BW I

i

t Im,i
t Id,i ∓ f

I
d,i))t ± π (

BW
tm
−
BW I

i

t Im,i
)t2

+2π (f Ic,i ±
BW I

i

2
+ f Id,i)t

I
d,i ±

πBW I
i

t Im,i
t Id,i

2
). (10)

Let the discrete sequence of y(t) be denoted by y1:K =
(y1, . . . , yK ), where K is the length of the sequence. With
interference, the beat frequency can hardly be extracted from
y1:K using only the FFT and CFAR methods due to the low
SNR. The remainder of this paper will concern the processing
of y1:K .

III. INTERFERENCE DETECTION AND SIGNAL
RECONSTRUCTION
A. INTERFERENCE DETECTION
1) CHANGE-POINT DETECTION
The interference signal and RX signal have different powers;
consequently, the statistical properties of the interference
components in y1:K will change. In this case, change-point
detection methods can be used to measure the position of
the interference. We assume that there are L segments of
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interference in y1:K ; thus, there arem(= 2L) change-points in
y1:K . Let τ1:m = (τ1, . . . , τm) denote the sequence of change-
points. We set τ0 = 0 and τm+1 = K such that the change-
points split the data intom+1 segments, with the ith segment
containing the data points y(τi−1+1):τi = (yτi−1+1, . . . , yτi )
[18], and we assume that τ1:m is ordered such that τi < τj
if and only if i < j. As a result, y1:K will be split into
m+ 1 segments by τ1:m. Finally, the problem of interference
detection can be transformed into minimizing

m+1∑
i=1

[c(yτi−1+1:τi )]+ βpen(m). (11)

Here, c(·) is a cost function for the segment, and βpen(m) is a
penalty used to guard against overfitting. β is the penalization
parameter, and pen(m) is a function of m that increases with
the number of change-points m. In this paper, we choose the
mean as the statistical property in change-point detection.
As a result, the cost function c(·) uses

c(ya:b) =
b∑

t=a+1

‖yt − ȳa:b‖2 , (12)

where ȳa:b is the empirical mean of the sub-signal ya:b [19].
According to the most popular information criteria, such as
AIC and the Schwarz criteria, it is usually suggested to use
pen(m) = m [12].

However, if we want to use the exhaustive search method
to minimize equation (11) for all possible values of m and τ ,
a huge solution space will be obtained. For the series y1:K ,
there are 2K−1 possible solutions when m is unknown. When
m is known, there are still Cm−1

K−1 solutions (i.e., if K = 2000
and m = 4, there are 1.3293 × 109 solutions). Thus, it is
necessary to search the solution space efficiently.

According to [19], search methods are organized into two
general categories: approximate methods (such as binary
segmentation, window sliding, and bottom-up segmenta-
tion) and optimal methods (such as the optimal partition-
ing methods OPT and PELT). The approximate methods
are computationally efficient; however, the global mini-
mum of (11) may not be found. Optimal methods yield
the exact solution. Based on OPT, Killick R et al. intro-
duced a search method denoted PELT providing exact and
efficient computation achieved through a combination of
optimal partitioning and pruning [12]. Therefore, PELT will
be used as the search method for change-point detection in
this paper.

2) PELT WITH KNOWN CHANGE NUMBERS
Because PELT is a search method that does not know the
number of change-points, the choice of the penalization coef-
ficient β has a significant impact on the detection result: if
β is too small (compared to the optimal value), too many
change-points are detected, even including noise. Conversely,
only some of the most significant change-points or even no
change-points will be detected with a too large β. To lower

the probability of the two scenarios above, we need to find an
adaptivemethod to obtain the optimal value of β. [14] showed
that β can be obtained when the number of change-points is
known.

Equation (11) can generally be described as

Jm + βpm, (13)

where Jm =
∑m+1

i=1 [c(yτi−1+1:τi )] and pen(m) = pm (as men-
tioned above, we suggest using pm = m). Thus, the problem
of minimizing (11) or (13) can be described as using the
solution τ̂ (β) to minimize the penalized contrast:

τ̂ (β) = argmin
τ

(Jm + βm) = τ̂m(β), (14)

where

m(β) = argmin
m≥1

(Jm + βm). (15)

m(β) is the number of change-points in the segmentation that
is optimal for solving the penalized optimisation problem
of (15) with β [18]. In [14], the way m(β) varies with the
penalization parameter β is given as follows: There exists a
sequence m1 = 1 < m2 < . . . and a sequence β0 = ∞ >

β1 > . . . with

βi =
Jmi − Jmi+1
mi − mi+1

, i ≥ 1, (16)

such that m(β) = mi,∀β ∈ (βi, βi−1). In other words,
to make the number of change-points equal mi, we should
adjust the value of β iteratively until β ∈ (βi, βi−1) and
m(β) = mi. Finally, β can be estimated and used in PELT
to obtain at most m change-points.

When knowing the number of changes, the PELT-KCN can
be implemented as Algorithm 1.

3) CHANGE NUMBER DETECTION
To obtain the number of change-points m before the algo-
rithm above, an algorithm called weighted-envelope normal-
ization (WEN) in [10] is used to obtain the envelope of y1:K
first; then, m can be estimated according to the amplitude
variance of the envelope. The specific procedure is given in
Algorithm 2.

IV. SIGNAL RECONSTRUCTION
The positions of the interfered components are determined
by change-point detection. We then need to restore the signal
degraded by the interference. Here, we use the AR model as
the reconstruction method. As Fig. 3 shows, the signal y1:K
is divided into three portions, yF, yI and yB, denoting before,
during, and after the interference, respectively. The forward
restoration is the result of the AR model using time samples
in yF, and the backward restoration is the result of using yB.
Finally, We use the results from the two restorations to obtain
the final result according to the method mentioned in [11].
As a result, the degraded signal yI can be reconstructed.
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Algorithm 1 PELT With Known Change Number
(PELT-KCN)

Input: signal {yt }Kt=1
cost function c(·)
number of change-points m
type of change to detect ’statistic’

Output: the change-points recorded in cp
1: resmax = c(y1:K ),
2: resmin =

∑K
i=1 c(yi),

3: oneresidue = c(y1:τ )+ c(yτ+1:K ),
4: β = resmax − oneresidue
5: (cp, residue) = PELT ({yt }Kt=1, β, statistic)
6: while length(cp) < m and residue ≥ resmin do
7: βmax = β

8: resmax = residue
9: β = 0.5β
10: (cp, residue) = PELT ({yt }Kt=1, β, statistic)
11: if length(cp) > m then
12: βmin = β

13: resmin = residue
14: end if
15: end while
16: while length(cp) > m and residue ≤ resmax do
17: βmin = β

18: β = 2β
19: (cp, residue) = PELT ({yt }Kt=1, β, statistic)
20: if length(cp) < m then
21: βmax = β

22: resmax = residue
23: end if
24: end while
25: β =

βmin+βmax
2

26: while length(cp) 6= m and βmin < β < βmax do
27: (cp, residue) = PELT ({yt }Kt=1, β, statistic)
28: if length(cp) < m then
29: cpmax = cp
30: resmax = residue
31: βmax = β

32: else
33: βmin = β

34: end if
35: β =

βmin+βmax
2

36: end while

The method of restoration consists of four steps, as outlined
below.

1. Use yF and yB as references to restore yI and
obtain the restored signals uF [q], (q = 1, 2, . . . ,NI ) and
uB[q], (q = 1, 2, . . . ,NI ), respectively, where NI is the
number of samples in yI .
2. Calculate the coefficients A, B, and C of the function

F(·)

F(i) =
B

i+ A
+ C(i > 0,B < 0), (17)

Algorithm 2 Changes Number Detection

Input: signal {yt }Kt=1
Output: number of change-points m
1: m = 0
2: r = WEN ({yt }Kt=1)

//Estimate envelope r = [r1, . . . , rK ] by WEN method
3: Tc = (1+ α) min

k
(rk ), 0 < α < 1

//calculate the threshold to detect interference, where α
is a control parameter

4: for each k ∈ [1,K ] do
5: if rk ≥ Tc then
6: dk = 1
7: else
8: dk = 0
9: end if

10: end for
11: dt = [d2 − d1, d3 − d2, . . . , dk − dk−1]

//calculates differences between adjacent elements of d
12: for each k ∈ [1,K − 1] do
13: if dk 6= 0 then
14: m = m+ 1
15: end if
16: end for

where A, B, C, and D are

A =
DNI

1− 2D
,

B = −ANI − A2,

C = −
B
A
,

D =
NF

NF + NB
(18)

(NF and NF are the numbers of samples in yF and yB,
respectively), and the functionF(·) is designed to satisfy three
conditions:

F(0) = 0,

F(NI ) = NI ,

F(
NF

NF + NB
NI ) =

NI
2
. (19)

3. Calculate the window coefficient ω[q] = υ[F(q)],
where

υ[i] =
1
2
(1+ cos(π(1+

i
NI

))). (20)

4. Reconstruct signal yI according to

ŷI [q] = (1− ω[q])uF [q]+ ω[q]uB[q] (q = 1, 2, . . . ,NI )

(21)

V. SIMULATION EVALUATION
A. MULTI-INTERFERENCE SIMULATION
Simulations were performed under the following conditions,
as shown in Fig. 4. Two targets (car B and car C) are located
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FIGURE 3. Steps of signal reconstruction.

FIGURE 4. Simulation scenario.

40 m and 70 m away, respectively, from the ego car (car A),
and car B acts as an interferer as well. Car A is equipped
with FMCW radar, of which the sweep bandwidth and sweep
time are set to 150 MHz and 3.4 ms, respectively. The radar
of car B is set to have a 150 MHz sweeping bandwidth and
0.21 ms sweep time. The simulation results are presented in
the following pictures, in which target 1 and target 2 represent
car B and car C, respectively. The two targets in the distance
spectrum are detected by the cell averaging CFAR detector,
in which 20 training cells and 2 guard cells in total are
used, and the desired false alarm rate is 0.001. The values
of the SNR for all the simulations and the experiments are
reported given

SNR = 10log10(
R2(dixs)∑

R2(dix)−
∑
R2(dixs)

)

(dix = 1, . . . ,FN ; dixs = dix1, . . . , dixS ), (22)

where dix represents the index of a signal in the distance
spectrum, FN is the length of the distance spectrum, dixs is
the index of the signal of the target in the distance spectrum, S
is the number of the targets, R(dix) denotes the peak value of
the signal with index dix in the distance spectrum,

∑
R2(dix)

is the total power of the distance spectrum, and
∑
R2(dixs) is

the total power of all the signals of the targets [20].

1) SIMULATION A: A CHIRP WITHOUT INTERFERENCE
Without interference, the beat signal and the distance spec-
trum of the victim radar equipped on car A are as shown

FIGURE 5. Results of Simulation A. (a) and (b) are the beat signal and the
distance spectrum of the victim radar equipped on car A, respectively.

TABLE 1. SNR of target 1 in the simulations.

TABLE 2. SNR of target 2 in simulations.

in Fig. 5(a) and Fig. 5(b), respectively. The two targets are
detected by the CFAR algorithm. The SNR of target 1 is
27.573 dB, and the SNR of target 2 is 21.582 dB.

2) SIMULATION B: A CHIRP WITH ONE INTERFERER
With one interferer, the beat signal and the distance spectrum
of the victim radar equipped on car A are shown in Fig. 6(a)
and Fig. 6(b), respectively. Being completely buried in the
noise floor, the two targets cannot be detected by the CFAR
algorithm. The SNR of target 1 is -40.792 dB, and the SNR of
target 2 is -24.549 dB. After applying the AWEN algorithm,
the distance spectrum is as shown in Fig. 6(c), in which the
SNR of target 1 is 4.530 dB and the SNR of target 2 is
-1.496 dB. After applying the proposed method, the distance
spectrum is as shown in Fig. 6(d), in which the SNR of
target 1 is 27.661 dB and the SNR of target 2 is 21.655 dB.

3) SIMULATION C: A CHIRP WITH TWO INTERFERERS
With two interferers, the beat signal and the distance spectrum
of the victim radar equipped on car A are as shown in Fig. 7(a)
and Fig. 7(b), respectively. Being completely buried in the
noise floor, the two targets cannot be detected by the CFAR
algorithm. The SNR of target 1 is -36.848 dB, and the SNR of
target 2 is -27.190 dB. After applying the AWEN algorithm,
the distance spectrum is as shown in Fig. 7(c), in which the
SNR of target 1 is 1.641 dB and the SNR of target 2 is
-3.990 dB. After applying the proposed method, the distance
spectrum is as shown in Fig. 7(d), in which the SNRof target 1
is 27.037 dB. and the SNR of target 2 is 20.964 dB.
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FIGURE 6. Results of Simulation B. (a) The beat signal with one interferer. (b) The distance spectrum of (a).
(c) The distance spectrum after using the AWEN method. (d) The distance spectrum after using the PELT-KCN
and AR models.

FIGURE 7. Results of Simulation C. (a) The beat signal with two interferers. (b) The distance spectrum of (a).
(c) The distance spectrum after using the AWEN method. (d) The distance spectrum after using the PELT-KCN
and AR models.

B. COMPARISON OF DETECTION PROBABILITY
In this simulation, different algorithms are used for detecting
target 1 in simulation C, where the SNR of target 1 varies
from -80 dB to 0 dB successively. In addition, Monte Carlo
simulations are performed 100 times to obtain the detection
probability Pd , which is used to evaluate the performance
of each algorithm. Fig. 8 shows that the proposed PELT-
KCN algorithm stands out, with its lower SNRs being from
-80 dB to -26.67 dB, and offers a better performance than
the AWEN algorithm as well as processing without the
algorithm.

VI. FIELD EXPERIMENT
The tools adopted for capturing the data of the field experi-
ment are shown in Fig. 9, where the ADC data from Texas
Instrument’s 77GHz AWR1642 EVM is captured by the

DCA1000EVM, which enables PC to stream the ADC data
over Ethernet. Fig. 10 shows the field experiment scenario,
in which one target is located 3.9 m away from the observer
(radar 1), and the other two radars (radar 2 and radar 3) are
located at approximately 40 centimeters and act as interferers.
The main parameters of radar 1 are shown in Table 3. Radar 2
and radar 3 have the same parameters, as shown in Table 4.
The target in the distance spectrum is detected by the cell
averaging CFAR detector, in which 40 training cells and 2
guard cells in total are used, and the desired false alarm rate
is 0.0015.

A. EXPERIMENT A: A CHIRP WITHOUT INTERFERENCE
Without interference, the beat signal is as shown in Fig. 11(a),
and Fig. 11(b) is the distance spectrum. The SNR of the object
detected by CFAR is -11.462 dB.
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FIGURE 8. Comparison of Pd with various SNRs of target 1 for different
algorithms.

FIGURE 9. The AWR1642 EVM and the DCA1000EVM.

FIGURE 10. The field experiment scenario.

B. EXPERIMENT B: A CHIRP WITH
ONE INTERFERER
With one interferer, the beat signal is as shown in Fig. 12(a)
(the green lines are the output of the proposed PELT-KCN
algorithm), and Fig. 12(b) is the distance spectrum. The
SNR of the object is -18.604 dB. After applying the AWEN
algorithm, the distance spectrum is as shown in Fig. 12(c),
in which the SNR of the object is -11.400 dB. After
applying the proposed method, the distance spectrum is
as shown in Fig. 12(d), in which the SNR of the object
is -10.449 dB.

TABLE 3. Parameters of radar 1.

TABLE 4. Parameters of radar 2 and radar 3.

FIGURE 11. Results of Experiment A. (a) and (b) are the beat signal and
the distance spectrum of the victim radar, respectively.

C. EXPERIMENT C: A CHIRP WITH
TWO INTERFERERS
With two interferers, the beat signal is as shown in Fig. 13(a)
(the green lines are the output of the proposed PELT-KCN
algorithm), and Fig. 13(b) is the distance spectrum. The
SNR of the object is -23.359 dB. After applying the AWEN
algorithm, the distance spectrum is as shown in Fig. 13(c),
in which the SNR of the object is -13.103 dB. After applying
the proposed method, the distance spectrum is as shown
in Fig. 13(d), in which the SNR of the object is -11.197 dB.

D. EXPERIMENT D: A CHIRP WITH
THREE INTERFERERS
With three interferers, the beat signal is as shown in Fig. 14(a)
(the green lines are the output of the proposed PELT-KCN
algorithm), and Fig. 14(b) is the distance spectrum. The
SNR of the object is -19.908 dB. After applying the AWEN
algorithm, the distance spectrum is as shown in Fig. 14(c),
in which the SNR of the object is -13.870 dB. After applying
the proposed method, the distance spectrum is as shown in
Fig. 14(d), in which the SNR of the object is -12.353 dB.

VII. DISCUSSION
According to the simulations and field experiments, the noise
floor significantly increases when interference occurs.
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FIGURE 12. Results of experiment B. (a) The beat signal with one interferer. (b) The distance spectrum of (a). (c) The
distance spectrum after using the AWEN method. (d) The distance spectrum after using the PELT-KCN and AR
models.

FIGURE 13. Results of experiment C. (a) Beat signal with two interferers. (b) The distance spectrum of (a). (c) The
distance spectrum after using the AWEN method. (d) The distance spectrum after using the PELT-KCN and AR
models.

TABLE 5. SNR of the target in the field experiments.

This is because interference appears in the form of chirps
in the IF signal on the basis of (7) and (9). Thus, small
or far away objects with a low power level of reflection
may no longer be detectable. After using the AWEN method

and the method with the PELT-KCN algorithm, the effect
of interference can be mitigated. However, the method
with the PELT-KCN algorithm performs better since, com-
pared to the AWEN method, it increased the SNR of the
objects by at least 23 dB in simulations and 0.95 dB in
field experiments. Moreover, the simulation verifies that
the PELT-KCN algorithm can maintain a high detection
probability over a wide range of SNRs. In conclusion, our
algorithm, combined with a signal restoration method, such
as the AR model, is suitable for FMCW radar interference
suppression.
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FIGURE 14. Results of experiment D. (a) Beat signal with three interferers. (b) The distance spectrum of (a). (c) The
distance spectrum after using the AWEN method. (d) The distance spectrum after using the PELT-KCN and AR
models.

VIII. CONCLUSION
In this paper, we have proposed a PELT-KCN algorithm for
finding the optimal penalty factor of the PELT algorithm.
In this PELT-KCN algorithm, first, we obtain the number
of change-points by analyzing the variation of the signal
envelope, which is the output of the WEN algorithm. Sec-
ond, we find the optimal penalty factor based on the known
number of change-points. Moreover, we have proposed a
method to suppress mutual interference for FMCW radar by
using the PELT-KCN algorithm. In this method, we build
the signal model showing the change trend of the instan-
taneous frequency corresponding to the signals transmitted
by the victim radar and other radars. Then, based on this
signal model, interference suppression is achieved through
a combination of the PELT-KCN algorithm and AR model.
The results of the simulation and field experiment have ver-
ified that the proposed method can decrease the noise floor
caused by mutual interference and effectively increase the
SNR corresponding to the targets. The proposed algorithm
is currently an offline algorithm. To realize real-time inter-
ference suppression, we will further improve the efficiency
of the algorithm by choosing a more suitable cost function
andmethods for detecting change-point numbers. In addition,
the proposed algorithm will be used for direction-of-arrival
(DOA) estimation when interfering signals appear so that the
performance of the algorithms for DOA estimation can be
improved.
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