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ABSTRACT In this paper, we propose SelfSphNet, that is, a self-supervised learning network to estimate the
motion of an arbitrarily moving spherical camera without the need for any labeled training data. Recently,
numerous learning-basedmethods for cameramotion estimation have been proposed. However, most of these
methods require an enormous amount of labeled training data, which is difficult to acquire experimentally.
To solve this problem, our SelfSphNet employs two loss functions to estimate the frame-to-frame camera
motion, thus giving two supervision signals to the network with the usage of unlabeled training data. First,
a 5 DoF epipolar angular loss, which is composed of a dense optical flow of spherical images, estimates
the 5 DoF motion between two image frames. This loss function utilizes a unique property of the spherical
optical flow, which allows the rotational and translational components to be decoupled by using a derotation
operation. This operation is derived from the fact that spherical images can be rotated to any orientation
without any loss of information, hence making it possible to ‘‘decouple’’ the dense optical flow between
pairs of spherical images to a pure translational state. Next, a photometric reprojection loss estimates the
full 6 DoF motion using a depth map generated from the decoupled optical flow. This minimization strategy
enables our network to be optimized without using any labeled training data. To confirm the effectiveness of
our proposed approach (SelfSphNet), several experiments to estimate the camera trajectory, as well as the
camera motion, were conducted in comparison to a previous self-supervised learning approach, SfMLearner,
and a fully supervised learning approach whose baseline network is the same as SelfSphNet. Moreover,
transfer learning in a new scene was also conducted to verify that our proposed method can optimize the
network with newly collected unlabeled data.

INDEX TERMS Motion estimation, computer vision, image processing, deep learning, convolutional neural
networks.

I. INTRODUCTION
Motion estimation of cameras in frame sequences is a critical
part of robotic applications such as visual odometry [1], [2]
and structure frommotion [3], [4], as they require ego-motion
of cameras. Especially, visual Simultaneously Localization
and Mapping (SLAM) techniques [5] are dependent on
the camera motion estimation. Various types of cameras
have been adopted to track the motion of camera-equipped
autonomous vehicles or drones by using consecutive images
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in all frames. Perspective cameras, which project images on
a plane, are popular for numerous applications. However,
these cameras often suffer from their narrow field-of-view,
which may fail to track the camera motion due to occlu-
sions like moving objects [6]. They can also lose their loca-
tion due to images with fewer features such as textureless
regions or shadows. Meanwhile, spherical cameras (Fig. 1),
which have a wider 360◦ field-of-view than that of per-
spective cameras, are relatively beneficial for camera motion
estimation [7], [8], as they are less vulnerable to environ-
ments with fewer features, occlusions, moving objects, and
other problems. Multiple studies have explored the utilization
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FIGURE 1. Spherical projection. Spherical cameras can capture images in
(a) spherical projection and (b) equirectangular projection without any
loss of information because of their a 360◦ field-of-view.

of the all-round view of spherical cameras. Reference [8]
rotated spherical images to avoid the distorted areas, and
extracted robust features from the central region of the image.
Reference [9] rectified the optical flow in an equirectangular
projection by rotating the images on a sphere to estimate the
motion of the spherical camera. These methods are based on
the fact that spherical images contain all-round information
and can be rotated without any loss of information.

Modeling camera motion estimation is an arduous prob-
lem. Learning-based approaches to estimate the motion of
spherical cameras have recently explored the trajectories of
cameras [10], [11]. Convolutional Neural Networks (CNNs)
have been used for robust estimation in various environ-
ments and the accuracy is equivalent to that of traditional
feature-based approaches. However, most learning-based
approaches still require a large amount of labeled training
data, which is difficult to acquire and label. These are known
as fully supervised learning approaches [12]. Assuming that
the labeled data is captured, the training might lead to over-
fitting in some specific scenes. This indicates the accuracy in
test scenes cannot be guaranteed. In contrast, self-supervised
learning approaches for deep learning tasks have recently
attracted much attention [13]–[17]. These approaches do not
require any explicitly labeled data for training, and thus
present the possibility of optimizing the network using unla-
beled data. They have been adopted in various regression
tasks, such as depth estimation [18], semantic segmenta-
tion [19], and motion estimation [13]. For these tasks, it is
difficult to acquire precise ground-truth labels.

Self-supervised learning methods can easily retrain net-
works in a completely different environment with the use of
newly collected training data whose labels are not provided.
This retraining cannot be conducted by fully supervised
learning methods because they require the labels of the train-
ing data. In this research, we conducted this retraining with
a network whose weights were pre-trained by the transfer
learning approach. This method only requires the collection
of data, and does not need any additional pre-processing or
labeling. By conducting this transfer learning, the estimation
accuracy is expected to improve.

For optimizing self-supervised networks, extraction of the
meaningful features of input data is required. To realize
this, the network should be provided with pseudo-supervision
signals instead of direct supervision signals, which are

composed of camera motion labels. In this research, we con-
struct the required supervision signals from the input data
and loss functions. These signals are unique to the spherical
camera. Furthermore, we train the spherical camera motion
with the unlabeled data using our self-supervised learning
approach.

Dense optical flow [20], [21], which represents pixel-wise
movements, is often adopted to estimate the frame-to-frame
camera motion. The advantage of this optical flow is that it
is relatively less vulnerable to raw RGB intensities, which
causes overfitting when training [22]. Furthermore, in spher-
ical cameras, the optical flow can be distinguished easily
between pure rotational and translational states (Fig. 3), as the
optical flow on a sphere can be derotated using a simple mul-
tiplication of the rotation matrix. Consequently, the network
can efficiently decouple the two components of the optical
flow. In this research, we utilize this derotation operation to
decouple the optical flow, which is required for composing a
unique geometric loss function similar to that used in [23].
Therefore, we adopt this loss function for 5 DoF motion
estimation using the first two consecutive frames, and then
estimate the full 6 DoF motion using the next frames.

To estimate the full 6 DoF camera motion including a
translation scale, we composed a photometric reprojection
error using spherical warping, which generates synthetic
spherical images. As spherical cameras have an all-round
view without any loss of information, a lossless warping of
synthetic images can be achieved by using depth maps and
original images. However, a monocular camera does not have
a standard for the translation scale, such as the baselines
in stereo camera systems, when generating the depth map.
To address this problem, we assign a constant value to fix the
translation scale of It → It+1, and then generate the depth
map by using triangulation. This process estimates the full
6 DoF motion between the first and third frames It → It+2
as a relative translation of the fixed scale.

To summarize, two loss minimizations are conducted to
estimate the full 6 DoF motion of the spherical camera. First,
the epipolar angular error minimization estimates the 5 DoF
motion, which are the rotation and the translation direction.
Next, the photometric reprojection error estimates the full
6 DoF motion, using the disparity map that is equal to the
magnitude of the derotated (translation only) optical flow.

In this manner, we process three frames at a time to esti-
mate the camera motion and trajectory. These two loss mini-
mizations are carried out simultaneously by our SelfSphNet,
without using labeled training data. An overview of our Self-
SphNet is summarized in Fig. 2. Our network is divided into
two parts, Stream A and B. In Stream A, a dense optical flow
enters the CNN and the 5 DoF camera motion is obtained by
minimizing the 5 DoF epipolar angular error. Here, the depth
map can also be obtained by the decoupled optical flow.
In Stream B, raw images enter the CNN and the full 6 DoF
camera motion is obtained by minimizing the photometric
reprojection error. The entire process can be done without
using any labeled training data. To confirm the effectiveness
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FIGURE 2. Overview of our proposed SelfSphNet. The input consists of
the dense optical flow and raw images from a frame sequence and the
output is the full 6 DoF motion of the spherical camera. Two loss
minimizations (Stream A and B) are conducted in order to optimize both
convolutional neural networks, and these are done by a self-supervised
manner without any labeled training data.

of our SelfSphNet, the camera trajectory estimation is con-
ducted using the estimated frame-to-frame camera motion
by carrying out several experiments. For comparison with
the fully supervised learning method, we additionally train
our SelfSphNet, this time with the labeled training data, and
confirm the possibility of the self-supervised camera motion
estimation. The contributions of our research are as follows:
• Weconstructed a self-supervised learning network (Self-
SphNet) to estimate the motion of a spherical camera
without using any labeled training data.

• Spherical optical flow-based derotation enabled the net-
work to estimate the depth map, thus avoiding over-
fitting, a problem methods based on raw images often
encounter.

• Transfer learning, using the newly captured unlabeled
data, was conducted to learn the structure of a previously
unseen scene. The results we obtained with SelfSph-
Net for the camera motion estimation were more accu-
rate compared to those obtained using fully supervised
learning.

II. RELATED WORK
To expand the versatility of the camera-based motion esti-
mation, omnidirectional [24], fisheye [25], or spherical cam-
eras [26] have been adopted in recent years. They have
proven to be more beneficial compared to perspective cam-
eras, owing to their wider field-of-view. Considering real
environments, camera-based motion estimation approaches
often suffer from interruption caused caused by moving
objects [27], partially occluded regions [28], and the lack
of corresponding information between the frames [29].

Thus, it is essential to acquire a larger field-of-view to over-
come the problems caused by these unexpected scenarios.
Among the various large field-of-view cameras, the spherical
camera, which consists of two fisheye lenses, has a full 360◦

field-of-view. Therefore, there exists plenty of potential for
utilization of this unique device. Despite its wide field-of-
view, there are disadvantages: the two fisheye lenses require
complicated calibration and the projected images are dis-
torted. However, we use spherical cameras that have already
been calibrated and design a distortion weight to address the
distortion problem.

Numerous self-(un)supervised visual odometry approaches
have displayed the possibility of learning the network using
unlabeled training data [13], [14], [18], [30]–[32]. These
approaches attempted to provide supervision signals to train
their networks using pseudo-labels generated from unlabeled
training data. To obtain the required supervision signals,
[33] generated synthetic images by using an image warp-
ing, [34] geometrically constrained a transformation matrix
along multiple frames, and [35] introduced pose consistency,
which is unique to a cubemap projection. However, to the
best of our knowledge, only a few studies concerned with
the self-supervised motion estimation of spherical cameras,
such as [35], have been reported to date. Moreover, datasets
suitable for a spherical camera are lacking. This prompted
us to manually collect data to build datasets to enable the
spherical camera motion to be learned and to construct the
self-supervised learning network (SelfSphNet).

Recently, multiple studies have attempted to process spher-
ical signals directly. For example, spherical convolution [36]
and spectral analysis-based convolution [37], [38]. However,
all these approaches are in their infancy and are capable of
solving simple classification or recognition tasks rather than
complex regression problems such as depth/motion estima-
tion [31], [33] or camera relocalization [39]. In this research,
we attempt to compose the unique loss functions using a
spherical camera geometry, and minimizing them to estimate
the full 6 DoF motion of the monocular spherical camera.
These loss functions can optimize the network to solve the
regression problem in a self-supervised manner.

To estimate the consecutive trajectory of a camera, it is
essential to first acquire a depth map along the frame
sequences. This is often calculated via triangulation that uti-
lizes either the baselines of stereo camera systems or cer-
tain particular objects whose real sizes are already known.
However, monocular camera systems have no such baseline,
and the sized objects have a constraint in that they should be
tracked in all frame sequences, which complicates the prob-
lem setting. Therefore, in many self-supervised approaches
of the motion estimation for monocular cameras, a single
raw image is often used to generate the depth map by using
encoder-decoder networks such as those used in [18], [31],
[33]. They perform well in trained environments, whereas
this may not be realized in new environments because of
overfitting problems. This is because these networks generate
the depth map from a single image [18], [31], [33]. To solve
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this problem, we use optical flow vectors that contain the
motion information between two image frames rather than
the single raw image. These optical flow vectors are less
vulnerable to overfitting because they represent pixel move-
ment, which is not affected by RGB values. This approach
enables the network to be trained in more general conditions
and to estimate the camera motion more robustly in various
environments.

III. PROPOSED METHOD
Our proposed method to estimate the motion of a spherical
camera utilizes two error functions, which are unique to
spherical images. First, an epipolar angular error, which is
used for estimating the 5 DoF camera motion of the first
two consecutive frames It → It+1, is explained using a
derotation operation. Next, the disparity, which corresponds
to the magnitude of the derotated optical flow, is converted
into a depth map by using triangulation. In this triangulation,
the translation between It and It+1 is fixed to 1 without loss of
generality, as the monocular camera lacks a baseline. Finally,
a photometric reprojection error is introduced to estimate the
full 6 DoF camera motion of It → It+2, using the depth map
generated from the triangulation.

A. 5 DOF EPIPOLAR ANGULAR ERROR
Dense optical flow in consecutive frames represents the cam-
era motion intuitively. When the camera moves, the optical
flow shows different patterns as mixtures of translational and
rotational components of the motion. In perspective cameras,
the optical flow of the translation to the left side and the
yawing rotation in the counterclockwise direction are similar.
This confuses the network when estimating them separately.
Meanwhile, the optical flow patterns obtained from spherical
cameras are found to have a distinguishing property [40]
for rotational and translational camera movements, as shown
in Fig. 3. In a pure rotational state, the optical flow vectors
move in circles perpendicular to the axis of the rotation
(roll, pitch, and yaw), whereas, for a pure translational state,
the optical flow vectors diverge from the epipoles q′ and
converge to the opposite epipoles q, and their alignment to the
epipolar circles remain constant. This property enables the
translational and rotational components of the optical flow
f to be decoupled from the mixture, f = frot + ftrans. This
can be achieved using the derotation operation of the optical
flow vectors, as shown in Fig. 6. After derotation, only the
translational optical flow vectors remain, f = ftrans, which
point towards the same directions as the epipolar circles.

In this case, the normal vectors of the derotated, i.e.,
translational, optical flow Nf over all spherical unit vectors
x̂ = [x, y, z]T , can be expressed as the cross product× of the
location of the optical flow vectors x̂ + f and x̂, on the unit
sphere:

Nf = (x̂+ f)× x̂. (1)

In a similar way, the normal vectors of the epipolar cir-
cles Nq, regarding to the epipole q(θ, φ) can be defined as

FIGURE 3. Spherical optical flow. Optical flow on a unit sphere in the
pure (a) translational and (b) rotational states. They can be decoupled
using a derotation operation, which enables the network to estimate the
camera rotation and translation separately.

FIGURE 4. 5 DoF epipolar angular error. The cross products (x̂+ f)× x̂ and
q× x̂ are taken to find the angle �, between ftrans and f at x̂, projected
from point p. According to the derotation of the rotational optical flow,
two large circles are overlapped, minimizing the angular error � to be
zero.

the cross product of q and x̂ on the unit sphere:

Nq = q× x̂. (2)

The directions of the above two normal vectors are required
to be the same in a completely derotated state. Therefore,
the 5 DoF epipolar angular error � [23] is defined as the
angular distance between Nf and Nq of x̂ over a unit sphere S
(Fig. 4):

� =
∑
∀x̂∈S

wd (z)cos−1
(

Nq · Nf

|Nq||Nf|

)
, (3)

where wd (z) is the weight considering the distortion rate of
the equirectangular projection. This distortion weight wd (z),
is calculated along the latitude z of the sphere, i.e., wd (z) =√
1− z2, which effectively limits the influence of the top and

bottom regions on the result. A visualization of the distortion
weight is shown in Fig. 5.

Minimizing the � enables the network to estimate the
3 DoF rotation parameters (α, β, γ ) and 2 DoF parameters
(θ , φ) of the translational direction, i.e., the 5 DoF motion
of the spherical camera. This angular minimization can be
achieved by using a geometric constraint to ensure that the
large circle of the derotated optical flow corresponds to the
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FIGURE 5. Distortion weight. The equirectangular images have different
distortions along the latitude of the sphere z . Therefore, the distortion
weight wd (z) with values in the range of 0 to 1, is adopted. This enables
the network to consider the varying contribution of the distortion.

FIGURE 6. Spherical optical flow derotation. Spherical optical flow
(a) estimated from two raw frames, (b) consists of the mixture of the
rotational and translational components. This can be derotated on a
sphere, decoupling each component. After the derotation, (c) only the
translational component remains, (d) whose magnitude corresponds to
the disparity of the two frames. This derotation operation is unique to the
spherical camera, which can acquire all-round optical flow on the sphere.

epipolar circle. Here, the direction of the translation is esti-
mated by using this minimization. Consequently, an addi-
tional condition is required to acquire the translation scale,
to obtain the full 6 DoF motion. This can be realized by
triangulating the depth map by fixing the translation scale
from It to It+1 as 1, which is explained in the next section.

FIGURE 7. Triangulation. The disparity, which corresponds to the
magnitude of the derotated (translation only) optical flow d , is converted
into the depth Dt through the triangulation of the measured point p.
Here, the translation between two frames |tt,t+1| is fixed to 1, without
loss of generality.

B. TRIANGULATION
The triangulation used for calculating the depth map is
explained as follows. The first two consecutive frames It , It+1
of the equirectangular projection are used for obtaining the
optical flow f, which represents a mixture of the translational
and rotational components. Later, the derotated optical flow
and the translation direction are acquired by minimizing the
5 DoF epipolar angular error as explained in Section III-A.
Furthermore, the disparity, which corresponds to the magni-
tude of the derotated optical flow |ftrans|, can be converted
into the depth map Dt by using the per-pixel triangulation
(Fig. 7):

Dt = |tt,t+1| ×
sin(ω + d)
sin(d)

, (4)

where |tt,t+1| is the translation of the two frames It → It+1,
ω is the angle between the translational, i.e., epipolar, direc-
tion and the spherical unit vectors x̂, and d is the disparity
which is equal to |ftrans| on the unit sphere. In this case,
as explained earlier, |tt,t+1| is fixed to 1, without loss of
generality. To emphasize, all the variables required for this tri-
angulation can be obtained from the minimization conducted
in Section III-A. The translation scale is fixed to allow a
relative scale to be estimated from the next frame, which is
explained in Section III-C.

The spherical image is stretched onto the planar equirect-
angular image. Consequently, the generated depth map is
distorted, which roughens the synthetic image, especially the
top and bottom areas, as shown in Fig. 8. To relieve this
distortion in training, Gaussian filter (σ = 2) with a size of
7× 7 is used as a smoothing operation.

An example of the triangulated depth map and the
per-pixel reconstructed 3D model with ground-truth are
shown in Fig. 8. The depth map is triangulated from the
magnitude of the translational optical flow, i.e., disparity.
To confirm the validity of the generated depth map, it is
used to reconstruct a 3D model. As shown in Fig. 8(d),
the ceiling and floor regions of the reconstructed 3D model
appear distorted. This is due to the distortion of the spherical
image, which is apparent in the upper and lower parts of
the stretched equirectangular image, i.e., the distorted depth

VOLUME 8, 2020 41851



D. Kim et al.: SelfSphNet: Motion Estimation of a Spherical Camera via Self-Supervised Learning

FIGURE 8. Depth map and 3D model. The ground-truth and triangulated
depth map (a), (b), and reconstructed 3D model (c), (d). In (a), (b),
the colors black and white represent the closer and farther regions,
respectively.

map. This distortion leads to incorrect estimation, which can
be resolved by adopting the distortion weight explained in
Section III-A.

C. PHOTOMETRIC REPROJECTION ERROR
Once the depth map is obtained, the third frame It+2 can
be reprojected by using spherical warping. This generates a
synthetic image Ît+2 of the third frame It+2 using a transfor-
mation matrix Tt,t+2, which is a combination of Rt,t+2 and
tt,t+2. The synthetic image is generated using a pixel-wise
binary interpolation to fill the gaps, which is similar to [33].
The reprojected third frame Ît+2 and the target frame It+2 are
required to be the same. Therefore, the photometric repro-
jection error 1 can be defined in all pixels p. Moreover,
to prevent the loss minimization from getting stuck in the
local minima, 1 consists of the aggregation of multi-scale
resolution of It+2 and Ît+2. The resolutions of It+2 and Ît+2
are downsampled as 1/2s. Finally, the full 6 DoF motion of
It → It+2 is estimated by minimizing 1, as follows:

1 =
∑
s

∑
p

wd (z)‖It+2(p)− Ît+2(p)‖1, (5)

where s indexes a downsampling scale of the multi-scale
reprojected image, and wd (z) is the same distortion weight
that is described in Section III-A. The effectiveness of the
multi-scale reprojection and the distortion weight wd (z) were
demonstrated by conducting experiments and the results are
presented in Section V.

To summarize, the camera position of the first frame It
is set to be the origin and the 5 DoF motion of It → It+1
is estimated by minimizing the epipolar angular error �

(Section III-A) with the scale of translation set as 1, without
the loss of generality (Section III-B). Later, the full 6 DoF
motion of It → It+2 is estimated by minimizing the pho-
tometric reprojection error 1 proposed in this section. The
entire process does not require the use of explicit labels, thus
making it possible for the network to learn in a self-supervised
manner.

IV. SELF-SUPERVISED LEARNING NETWORK
Our SelfSphNet structure is summarized in Fig. 9. Three
consecutive frames are entered into the network as inputs
and two losses are minimized to optimize the two camera
motion parameters as outputs. The first and second image
frames It and It+1, are used to calculate dense optical flow
using the EpicFlow [21] method. Moreover, the first and
third image frames It and It+2 are entered into the first two
convolution layers separately, and are then concatenated in
the third convolution layer. Two parallel streams (Stream A
and B) of CNNs are adopted to extract the features of each
input, namely, the optical flow and stacked image frames.
At the end of each stream, these features are flattened by
global average pooling [41]. The final outputs of the fully
connected layers for the regression consist of two loss mini-
mization parts. First, the 3 DoF rotationRt,t+1 and the 2 DoF
translational direction t̂t,t+1 of It → It+1 are estimated
using the loss function Lepi, which minimizes the epipolar
angular error �(It , It+1) (Section III-A) in the entire training
data i:

Lepi =
∑
i

�(It , It+1). (6)

Next, the depth map is calculated via triangulation from
the disparity map, which corresponds to the magnitude of
the derotated optical flow ftrans, of It → It+1, as explained
earlier. To estimate the full 6 DoF motion of It → It+2, i.e.,
the 3 DoF rotation Rt,t+2 and the 3 DoF translation tt,t+2,
the photometric reprojection error 1(It , It+2), explained in
Section III-C, is adopted as the loss function Lrep between
the target and the synthetic frames in the entire training
data i:

Lrep =
∑
i

1(It , It+2). (7)

The total loss function Lself of our SelfSphNet consists
of the combination of the 5 DoF epipolar angular loss Lepi
and full 6 DoF photometric reprojection loss Lrep, which are
jointly minimized:

Lself = λepiLepi + λrepLrep, (8)

where λepi and λrep are scale factors to balance the weights
of the two losses. To emphasize, this minimization is carried
out without any labeled training data and requires only the
consecutive raw frames.

V. EXPERIMENTAL RESULTS
To verify the performance of our proposed SelfSphNet, which
estimates the motion of a spherical camera, we conducted
experiments to compare the motion and trajectory estimation
with a fully supervised learning network, as well as with
another self-supervised motion estimation method named
SfMLearner [33]. Another experiment was conducted as
additional evaluation to ensure that transfer learning could be
used to apply our SelfSphNet in an entirely new environment.
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FIGURE 9. SelfSphNet structure. The optical flow generated from two input frames It , It+1, and the raw frames of It , It+2 enter into two separate CNNs
for feature extraction, Stream A and B respectively. The final outputs regress the 5 DoF motion of It → It+1 and the full 6 DoF motion of It → It+2,
by the loss minimization which consists of the epipolar angular error and photometric reprojection error. The depth map is generated by the
triangulation of the disparity map for synthesizing the third frame It+2. Furthermore, the spherical warping is conducted using the 6 DoF motion of
It → It+2 and the triangulated depth map.

A. TRAINING SPHERICAL CAMERA DATASET
Existing studies on self-supervised motion estimation [31],
[33] have shown an almost two-dimensional estimation using
the traditional KITTI dataset [42] for self-driving vehicles.
Consequently, a fair evaluation in the case of an arbitrarily
moving camera, which is our problem setting, would be com-
plicated. Furthermore, a spherical camera, which captures
360◦ images, cannot be tested equivalently with networks
that were trained by images from a perspective camera.
Consequently, we manually constructed the spherical camera
dataset using the rendering software Blender [43], the cam-
era models of which have no direct influence on sensor
errors or motion blurs. Details of the composition of this
dataset are provided in Section V-C. Real spherical images,
with ground truths (for evaluation) of the camera motion,
were captured from a classroom scene,1 as shown in Fig. 6
and 8. All the obtained images were projected onto a planar
equirectangular image with a resolution of 200×100 pixels.
Using our dataset, all networks were trained end-to-end for
a fair comparison. In [33], the image warping part of the
photometric reprojection loss was changed to accommodate
spherical images because it originally considered perspective
images.

B. COMPARISON WITH A FULLY SUPERVISED LEARNING
For comparison with our SelfSphNet, an additional experi-
ment was conducted using a fully supervised learning method
whose network baseline was similar to that of SelfSphNet
(Fig. 9). This fully supervised learning network was pro-
vided with the ground-truth labels as supervision. Therefore,

1Available under CC0 license in http://www.blender.org.

the Euclidean distances between the ground-truth and esti-
mated values were minimized as a loss function, which is
similar to [12]. This was realized by deleting the part of our
SelfSphNet that generates the synthetic frame (Fig. 9).
Fully supervised learning with labeled training data was

conducted using the combination of the following two L2
loss functions L1 and L2, between the ground truths and
the estimated values of two frame pairs, It , It+1 and It , It+2,
respectively:

L1 =

∥∥∥∥q̂t,t+1 − qt,t+1
‖qt,t+1‖

∥∥∥∥
2
+ λ1

∥∥t̂t,t+1 − tt,t+1
∥∥
2, (9)

L2 =

∥∥∥∥q̂t,t+2 − qt,t+2
‖qt,t+2‖

∥∥∥∥
2
+ λ2

∥∥t̂t,t+2 − tt,t+2
∥∥
2, (10)

where q̂t,t+1, q̂t,t+2 and qt,t+1, qt,t+2 were the ground-truth
and the estimated value, respectively, of the quaternion rota-
tion; t̂t,t+1, t̂t,t+2 and tt,t+1, tt,t+2 were the ground-truth
and the estimated value of the metric translation; and λ1, λ2
(0.1, 0.1 in this paper, similar to those in [39], [44]) were
the scale factors used to balance the two loss functions in
L1,L2, respectively. The total loss function Lsup for the fully
supervised learning was a combination of the two losses L1,
L2 as given below:

Lsup = L1 + µL2, (11)

where µ is a scale factor used to balance the two losses L1,
L2, and was set to 1.0 in this case.

C. DATASET AND NETWORK COMPOSITION
This section details the spherical camera dataset and the
structure of our SelfSphNet are detailed. To assume arbitrary
movement of the spherical camera and to enable computation
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of the optical flow, the rotation for each angle-axis (roll, pitch,
and yaw)was set within−5◦ to 5◦, and the translation for each
axis (x, y, and z) was set within−0.1 to 0.1 meters, randomly,
between all frames. The quantity of frames in the training,
validation, and test datasets amounted to 18,148, 2,202, and
1,647 frames as an equirectangular projection, respectively.
For the entire collection of data, the ground truths of the
camera motion, i.e., rotation and translation, were captured
only for the quantitative evaluation. The dense optical flow
generated from two consecutive frames was decomposed
into horizontal and vertical vector components, and was then
stored in two separate channels.

Our proposed SelfSphNet adopted two kinds of loss
functions, which required minimizing them into two main
streams, Stream A and Stream B, and consequently,
we adopted two CNNs as feature extractors. The net-
work blocks of Stream A consisted of conv1/BN[16],
conv2/BN[32], conv3/BN[64], conv4/BN[128], conv5/BN[256],
and conv6/BN[256]. The notation of conv/BN[c] is the com-
bination of a convolution layer with c filters of size
7/5/3/3/3/3 with stride 2 × 2, and a batch normalization
(denoted as BN) [45] layer before a nonlinear ReLU [46]
activation layer. We found that batch normalization exhibited
stable convergence of the multiple losses. The composition
of Stream B was similar to that of Stream A, except for
the concatenation after two conv/BN layers. After feature
extraction, each last convolution layer in both streams was
flattened using global average pooling [41]. The outputs of
the two streams were two motion parameters, [Rt,t+1, t̂t,t+1]
and [Rt,t+2, tt,t+2], which were regressed by Lself. The out-
puts Rt,t+1 and Rt,t+2 were normalized as 1, to convert
them into a quaternion representation, which is numerically
stable compared to the Euler-angle configuration. To give the
network a good starting point for the learning, the initial value
of the quaternion [qw, qx , qy, qz]T was set to [1, 0, 0, 0]T ,
which implies zero rotation. The direction of the translation
t̂t,t+1 was also normalized to consider a unit sphere.

D. TRAINING DETAILS
The learning process was conducted for 100 epochs using the
Adam optimizer [47]. In the beginning, the learning rate was
0.0002, which then decreased to 0.0001 after 60 epochs, and
the batch size was fixed to 4 in the entire training process.
The scale factors of the two loss functions were determined
by specifying an initial set of λepi, λrep as 0.6 and 1.0, respec-
tively. The minimization of Lrep was largely dependent on
the depth map, which was estimated from the minimization
of Lepi, therefore, λepi was set to be gradually reduced to
0.15 during 20 epochs. We further confirmed that the total
loss Lself converged more stably with this setting. This entire
process was implemented on an NVIDIA GeForce RTX
2080 Ti (GPU) and an Intel Core i9-7900X (CPU). In terms
of the computational time, the training including the optical
flow calculation took approximately 5.3 hours and the testing
took approximately 6 minutes (5 fps).

E. EVALUATION FOR MOTION ESTIMATION
A comparison with fully supervised learning and [33] was
conducted on the same classroom dataset. The results of
estimating the spherical camera motion were evaluated on the
entire test data. The evaluation indices of the motion error in
the N test data are as follows:

Rotation Error :
1
N

∑
i

2cos−1(q̂i · qi), (12)

Translation Error :
1
N

∑
i

‖t̂i − ti‖2. (13)

The rotation errors between the ground-truth quaternion q̂i
and the estimated quaternion qi were evaluated as an average
of the angular error (in degrees), in the angle-axis config-
uration. The translation errors between the ground-truth t̂i
and the estimated ti were evaluated as an average distance
error (meters), along the x-, y-, and z-axes. To ensure a fair
comparison, the estimated translation of our SelfSphNet was
multiplied by the metric scale of |tt,t+1|, as our scale was
fixed to 1, without loss of generality. The results of this
camera trajectory estimation were also evaluated using the
Absolute Trajectory Error (ATE) [48] index in various points
(Trajectory A, B, C, and D), as shown in Fig. 10. In our
dataset, the motion between frames was such that the optical
flow could be calculated. Therefore, these frames can be
regarded as keyframes. Considering this, 60 keyframes were
used for evaluation in each trajectory.

All the estimation errors of the motion and trajectory
are shown in Table 1. First, we confirmed that our Self-
SphNet performed comparably with the fully supervised
approach without the need for any labeled training data.
Concretely, the errors in the rotation estimation were approx-
imately 12.2% and the translation estimation approximately
29.3%. Next, the results showed that our SelfSphNet out-
performed [33], in the rotation by approximately 31.6% and
in the trajectory estimation by approximately 52.6%, 55.9%,
65.9%, and 59.7%, in Trajectory A, B, C, and D, respec-
tively. However, its estimation of the translation was slightly
lower by approximately 12.2%. Additionally, this proved
that, as compared to the translation, the rotation is a more
important factor in deciding the correct trajectory.

Moreover, to confirm the contribution of the distortion
weight wd (z) and multi-scale reprojection in our SelfSphNet,
ablation studies without these factors were also conducted,
and the results are presented in Table 1. This shows an almost
equal accuracy in the translation, whereas the rotation and tra-
jectory results were less accurate compared with SelfSphNet
(full). These results confirmed that the rotation was critically
important to accurately estimate the trajectory. We confirmed
that the distortionweight was effective to consider the varying
contribution of the distortion in all pixels in minimizing the
total-pixel error. We also confirmed that the various res-
olutions for composing the reprojection error enabled the
network to achieve a coarse-to-fine loss minimization, which
is robust in case of an image hole, such as textureless regions.
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FIGURE 10. Estimated trajectories. (Top) 3D trajectories estimated by our SelfSphNet (full), the fully supervised learning method, the previous
SfMLearner [33], and the ground truth. (Bottom) 2D trajectories projected into the XY-plane.

TABLE 1. Ablation study and quantitative comparison. The entire end-to-end training was conducted with our spherical image dataset without
pre-trained weights. To ensure a fair comparison, the image warping part of [33] was modified to consider the spherical projection. The fully supervised
learning with our SelfSphNet baseline was also carried out with the labeled dataset. Except for the fully supervised learning, all networks were trained
with the unlabeled dataset.

F. TRANSFER LEARNING IN NEW ENVIRONMENTS
To confirm the versatility of our SelfSphNet, we used our
network to conduct transfer learning in entirely new envi-
ronments: an indoor corridor scene and an outdoor urban
scene (constructed by [7]), as shown in Fig. 11 and Fig. 13,
respectively. As previously explained, the fully supervised
learning approach cannot conduct transfer learning if the
training data are not labeled, whereas our SelfSphNet can
realize learning by capturing unlabeled frames. Specifically,
our network was retrained for 30 epochs with a fixed learning
rate of 0.0001 and a batch size of 64. In addition, all retraining
was accomplished by setting the pre-trained parameters of
the classroom scene as initial parameters. The retraining time
was approximately 7 minutes. The quantities of the training
frames were 5,271 and 4,991, in the corridor and the urban
scenes, respectively. In addition, 896 and 332 frames were
used for testing, respectively.

First, the estimation results in the corridor scene (Fig. 11)
are provided in Table 2, with the estimated trajectory during
40 keyframes (Fig. 12). In Table 2, we confirmed that the
transfer learning drastically increased the accuracy of the esti-
mated translation and trajectory by approximately 50.0% and

TABLE 2. Results in a corridor scene. Motion and trajectory estimation of
the fully supervised learning, normal SelfSphNet, and the fine-tuned
SelfSphNet.

48.4%, compared to the fully supervised learning approach,
respectively, and by approximately 44.4% and 47.6%, com-
pared to SelfSphNet (not fine-tuned), respectively. In Fig. 12,
the estimated trajectory of the fully supervised learning and
SelfSphNet (not fine-tuned) were largely quite different from
the ground truth, especially in the latter part. They both
moved in a similar wrong direction, which suggests that the
pre-training was overfitted in the classroom scene. Mean-
while, the fine-tuned SelfSphNet showed a good fit in the
new corridor scene with only a few minutes (7 minutes) of
retraining.
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FIGURE 11. Indoor corridor scene. A new, unknown scene.

FIGURE 12. Fine-tuned trajectory in an indoor corridor scene. Fine-tuned
SelfSphNet through transfer learning can estimate more accurately,
compared to the fully supervised learning approach whose network
cannot be retrained without the labeled training data.

The estimation results for the urban scene (Fig. 13)
are presented in Table 3, with the estimated trajectory
during 332 keyframes (Fig. 14). The results in Table 3
confirm that the rotation, translation, and trajectory estima-
tion accuracy increased drastically by approximately 76.2%,
85.0%, and 87.4%, compared to the fully supervised learning
method, respectively, and by approximately 66.1%, 88.3%,
and 82.8%, compared to SelfSphNet (not fine-tuned), respec-
tively. Fig. 14 shows that the trajectory estimated by our
fine-tuned SelfSphNet (after transfer learning) is equivalent
to the ground truth, whereas other trajectories were entirely
incorrect.

All the results for the corridor and urban scenes indicate
that our transfer learning method succeeded alleviating the
overfitting in the trained classroom scene, thus optimizing
the network using the newly collected unlabeled data from
the indoor corridor scene and the outdoor urban scene. The

TABLE 3. Results in an urban scene. Motion and trajectory estimation of
the fully supervised learning, normal SelfSphNet, and the fine-tuned
SelfSphNet.

FIGURE 13. Outdoor urban scene. A new, unknown scene.

FIGURE 14. Fine-tuned trajectory in an outdoor urban scene. Fine-tuned
SelfSphNet through a transfer learning can estimate more accurately,
compared to the fully supervised learning approach whose network
cannot be retrained without the labeled training data.

translation depends on the structure of each scene because
the depth information varies across different scenes. There-
fore, the translational optical flow differs and the estimation
may fail because of the differences among these structures.
Our transfer learning method overcame these problems by
effectively filling the gap left by this difference and improved
the accuracy of the trajectory estimation. This means our
self-supervised learning network (SelfSphNet), which does
not require any labeled training data, can learn the structure
of the new scenes efficiently.

VI. DISCUSSION
Here, we discuss the experimental results, optical flow-based
depth generation, and transfer learning in new scenes.

A. OPTICAL FLOW-BASED DEPTH GENERATION
The main purpose of this research was to propose a
self-supervised learning network to estimate the motion of
a spherical camera without using labeled training data. Esti-
mation of the camera motion required the depth map to be
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accurately estimated. Many previous studies have attempted
to estimate the depthmap from a single raw image, which was
often affected by overfitting caused by RGB pixel intensities.
Owing to overfitting in the trained environment, estimation in
the new environment may be inaccurate, which implies that
the generality of the learning is not guaranteed. To avoid this
problem, our approach adopted the optical flow, which repre-
sents the pixel movement between two consecutive frames,
and which is independent from the RGB pixel intensities.
In addition, the optical flow generated from spherical images
can be derotated and can decouple the rotational and trans-
lational components separately. As a result, the depth map
could be generated using the derotated optical flow. The
results in Table 1 and Fig. 10 show that our optical flow-based
approach outperformed the single image-based approach [33]
in terms of trajectory estimation. However, one drawback
of this approach is that the motion between frames has to
be sufficiently large to enable the optical flow to be accu-
rately calculated. To resolve this, we ensured that the motion
occurred within the required ranges during data collection.
In addition, it is necessary to adopt a keyframe selection
method as a pre-processing step when using datasets captured
in real environments.

B. TRANSFER LEARNING IN NEW SCENES
Self-supervised learning has the advantage that it can train
the network using unlabeled training data, whereas fully
supervised learning requires labeled data. This indicates that
the network can be fine-tuned by using the newly collected
data captured in untrained environments via self-supervised
learning. In the transfer learning experiment, our SelfSphNet
that was pre-trained on the classroom scene, was retrained
by using new datasets captured in the new environment.
The experiment demonstrated that the fine-tuned SelfSphNet
produced superior results compared with the fully supervised
learning approach. Considering real applications, it is essen-
tial to conduct rapid retraining (approximately 7 minutes)
by using the unlabeled data. Our transfer learning approach
could realize this because it did not require a time-consuming
labeling work of the retraining data.

VII. CONCLUSION
In this research, we proposed a self-supervised learning net-
work (SelfSphNet) to estimate the motion of an arbitrarily
moving spherical camera. Using the unique properties of the
spherical camera, two loss minimizations were conducted to
estimate the camera motion without labeled training data.
The epipolar angular loss made it possible to estimate 5 DoF
motion parameters between the first two consecutive frames.
Subsequently, the disparity map, which corresponds to the
magnitude of the derotated (translational) spherical optical
flow, was triangulated to fix the translation scale from the
next frames. The triangulated depth map was used to syn-
thesize the third frame and the photometric reprojection loss
was minimized to estimate the full 6 DoF camera motion.
The novelty of our idea is that we designed and struc-
tured the self-supervised learning network to estimate the

6 DoF camera motion using the two loss functions. These
loss functions were unique to the spherical camera because
the optical flow was derotated to decouple the translational
and rotational components in the 5 DoF epipolar angular loss.
In addition, spherical warping was employed to generate the
synthetic images in the photometric reprojection loss. This
process obviates the need to use labeled training data for our
network; instead, a collection of simple raw images without
labels is sufficient.

Experiments demonstrated that our SelfSphNet outper-
formed a previous self-supervised method, SfMLearner, with
respect to camera trajectory estimation. To ensure the effec-
tiveness of our self-supervised method, and obtain a lower
bound for the estimation error, fully supervised learning
adopting the same baseline as SelfSphNet was also conducted
using labeled training data. As a result, we confirmed that the
results obtained with fully supervised learning were compa-
rable to those of SelfSphNet.

To confirm the versatility of our SelfSphNet, we conducted
transfer learning of the network in entirely new environments:
an indoor corridor scene and an outdoor urban scene. This
transfer learning experiment showed our SelfSphNet can
learn newly collected data without time-consuming labeling
work. As a result, the accuracy with the transfer learning
was much higher than that obtained with fully supervised
learning.

The frame-to-frame motion error was allowed to accu-
mulate by including a large displacement in the estimated
trajectory. Therefore, the use of an optimization method such
as loop closure is required to recognize the points that have
already been visited in the entire trajectory. Furthermore,
training with additional frames should be explored. These
tasks remain as future works.
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