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ABSTRACT Most existing line segment detection methods suffer from the over-segmentation phenomenon.
An improved line segment detection method is presented in this work, which can generate more and longer
line segments, yet still accurately reflect the structural details of the image. Line segment grouping, line
segment validation and a multiscale framework are adopted to reach this end. Specifically, smart grouping
rules are introduced to locate potential homologous line segments (derived from the same boundaries). Novel
merging criteria based on Helmholtz principle is then used to evaluate the meaningfulness between separate
line segments and their merged ones. The improved multiscale framework facilitates line segments merging
in detection and post-detection processes, yielding more high-quality line segments. Finally, the proposed
method is compared with four leading methods on the famous public dataset, YorkUrban-LineSegment.
Experimental results demonstrate that the method has good continuity and outperforms the leading methods
in F-measure.

INDEX TERMS A contrario approach, grouping rules, line segment detection, line segment validation,
multiscale.

I. INTRODUCTION
A line segment (LS) is a common and important geometric
primitive in a digital image as most objects in man-made
scenes are structured and can be outlined easily by LSs.
As such, LSs are widely used as low-level cues for many
vision tasks including object detection [1], shape identifi-
cation [2], vanishing point estimation [3], stereo matching
[4], [5], and 3D reconstruction [6]. As a fundamental
technique, LS detection has been studied extensively and
remains an active field within image processing research [7].
At present, LS detection algorithms can be used as an assis-
tant tool for generating image proposals that contain salient
straight lines and junctions, then feeding these image pro-
posals to convolutional neural network (CNN) for further
extracting wireframes of images [8]. This process achieves
desirable results and indicates that traditional image process-
ing techniques canwork in collaboration with advancing deep
learning methods. Ideally, an LS detection method should
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be capable of detecting LSs as accurately as human vision
systems. However, this goal remains out of reach. The two
main challenges of LS detection are that previous methods
tend to produce several broken LSs rather than a complete LS,
and that automatically tuning the thresholds for LS detection
under varying conditions is difficult. Furthermore, online
efficiency requirements of most real-world applications make
these problems increasingly challenging.

A. RELATED WORK
Existing methods for LS detection can be roughly classi-
fied into two categories: 1) Hough Transform; 2) Perceptual
grouping.

Hough transform (HT) introduced over half a century ago,
is an ingenious technique for feature extraction, which con-
verts a global pattern detection problem in the image domain
into an efficient peak detection problem in the parameter
space [9]. Generally, a standard Hough-based LS detector
commences by taking a binary edge map from the input
image, using an edge operator, e.g., the famous Canny oper-
ator [10], and then applying HT to the extracted map for
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finding all candidate lines, which are afterwards cut off into
LSs according to predefined gap and length criteria. This
type of methods enjoy the advantage of the global nature
of HT, and thus show a good robustness to image noise
and degraded configurations (e.g., occlusion), but there are
some drawbacks such as complicated threshold setting prob-
lems, false detection on well-textured regions (reporting false
positives) and low contrast area (reporting false negatives),
heavy computation load and excessive memory consump-
tion. To solve the aforementioned problems, every aspect of
HT has been scrutinized for decades, and many improved
or modified methods are put forward [11]. Early attempts
mainly focus on improving the efficiency of HT [12]–[15].
Kiryati et al. [13] proposed a method called Probabilistic
Hough Transform (PHT), where only a small subset (as low
as 2%) of the edge points are selected randomly as input toHT
rather than exhaustively.Within the same probabilistic frame-
work, Matas et al. [14] tried to use a false detection mech-
anism to automate the setting of the detection thresholds.
However, this method is still not fast enough in practice and
may result in bad accuracy or false negatives due to the lack
of scalable termination criteria. Recently, intrinsic properties
of LSs are exploited into HT to enhance the detection per-
formance [16], [17]. For example, Guerreiro and Aguiar [17]
suggested imposing the connectivity between adjacent lines
in the HT voting scheme via accounting for the contributions
of edge points lying in increasingly larger neighborhoods
and whose position and angle information agree with poten-
tial LSs. This mechanism can link several short LSs into a
long one, therefore providing a more complete description of
objects in real scenes. More recently, some researchers turn to
analyze HT butterflies to determine the true endpoints of LSs
[18]–[21], as the resulting butterfly from every single pixel of
a line is capable of providing highly accurate LS parameters.
In spite of all these improvements, Hough-based methods
suffer a common disadvantage that their performance hinges
on the quality of edge detection due to the utilization of an
edge map as input and not the original image.

Perceptual grouping (PG) look at the problem from a rather
different perspective. Methods in this class describe an LS
as connected area where exist sufficient similar and collinear
components. Hence, the key idea is to grow together com-
ponents, one by one, into a so-called line support region,
followed by an estimation of that area by using a validation
method. Burns et al. [22] first proposed to detect LSs based
on gradient orientation. In their method, an LS is detected
as a straight image region in which inner pixels (compo-
nents) share roughly the same orientation (similarities). This
method is superior to HT in terms of accuracy and false
detection rate. However, it needs to adjust a series of param-
eters empirically and manually, providing no satisfactory
solution on how to choose a proper criterion for LS detec-
tion. Besides, the exhaustive search strategy used makes it
unsuitable for practice. Later in [23], Von Gioi et al. thor-
oughly addressed the two issues mentioned above by intro-
ducing the Helmholtz principle and a heuristic algorithm, and

then developed a linear-time Line Segment Detector (LSD)
which has become a baseline in LS detection algorithms.
By taking the advantage of Helmholtz principle, no parameter
tuning is needed and false positives are well controlled in
LSD. In fact, Helmholtz principle which was introduced by
Desolneux et al. [24], [25], is an efficient technique for
automatic computation of thresholds and has been applied
to many detection problems where a detection can be mod-
eled as an aligned structure. To allow a detection method
parameter free, this principle converts the detection threshold
to an easy-to-set quantity, i.e., Number of False Alarms (or
NFA for short) by adopting the a contrario uniform random
assumption. A much faster version of LSD can be found in
Akinlar and Topal [26], termed as EDlines. It detects LSs
from edge pixels directly, and therefore runs up to eleven
times faster than LSD when processing the same image,
which makes it an ideal candidate for real-time applications.
However, EDlines neglects the role of points around an LS to
its accurate localization, thereby leading to a poor accuracy
when facing substantial noise.

All in all, compared to HT-based methods, PG approaches
are computationally simple and easy to implement. There-
fore, most existing LS detectors are based on local deci-
sions, which however, also makes them prone to generate
broken LSs.

B. PROPOSED METHOD
To alleviate the over-segmentation effect of PG approaches,
Salaün et al. [27] proposed a multiscale extension of the
prominent LS detector, LSD. However, their merging cri-
terion at each scale, as well as their brute force grouping
algorithm are not fully satisfactory. Hamid et al. [28] pre-
sented a merging method for LSD based on angular and
spatial proximity, however, this technique will merge close
parallel LSs into a single one, and their results are unreliable
due to a lack of a validation step. In this paper, advan-
tages from both methods are utilized and their drawbacks
are excluded. A perceptually accurate line segment detection
approach (PLSD) is proposed that can significantly reduce
the over-segmentation phenomenon and is also robust to low
contrast. Due to advantages of speed and being parameter-
less, the a contrario framework used in LSD is employed to
automatically determine which LSs should be detected and
merged.

Using the PLSD approach, an image pyramid is first built
based on the specific size of the original image. At each
scale, information from the previous scale is then explored
to refine detected LSs and standard LSD is used to locate
extra LSs that fail to be detected at coarser scales. Next,
all LSs are grouped adaptively according to spatial and
angular criteria at the finest scale. Finally, the meaning-
fulness of separated segments in each group is compared
with their merged segment through a novel NFA score, then
the passed candidate will be tested again using a density
criterion.
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C. NOVELTIES OF THE PROPOSED METHOD
The main contributions of this work are summarized as
follows:

• Unlike most existing LS detectors which are prone to
over-segmentation, a high-quality LS detection method
is proposed, which tends to generate long LSs.

• An efficient grouping algorithm is presented to greedily
cluster LSs as merged candidates.

• A novel merging criterion based on Helmholtz principle
is put forward to determine whether the LSs in each
group should be merged or not.

• More and longer LSs are detected under a novel multi-
scale framework, especially for high resolution images
where conventional methods do not work.

D. OUTLINE OF THE PAPER
The remainder of the paper is organized as follows. Section II
revisits the principle of LSD and analyzes its fragmentation
effect. Section III details the grouping rules used to propose
LS merging candidates. Section IV describes the validation
process, introducing a novel NFA for determining whether
or not separate LSs should be merged. A multiscale frame-
work designed to detect more and longer LSs is presented in
Section V, along with a complexity analysis. The experimen-
tal results are provided in Section VI,and finally, Section VII
concludes the work.

II. ANALYSIS OF THE OVER-SEGMENTATION
PHENOMENON OF LSD
The proposed method is a novel extension of LSD which
is discussed briefly in this section. The LSD algorithm was
originally proposed in [23] and also introduced in [29] by
the same author. It follows a three-stage detection framework
consisting of region growing, rectangular approximation and
LS validation. The process is outlined as follows.
Stage 1: In the region growing stage, the gradient magni-

tude map and the gradient orientation map (level-line angle
(LLA) field) is determined using a difference-based method.
These pixels are then re-sorted in a descending order accord-
ing to gradient magnitude. Finally, the region growing pro-
cedure is started from the pixel with the highest gradient
magnitude. The result is that the ordered pixels are recursively
assigned into different line support regions.
Stage 2: In the rectangular approximation stage, every line

support region is approximated with a rectangle, the end-
points and width of which uniquely position an LS. The
orientation of the rectangle is defined as the angle between the
positive horizontal axis and the first inertia axis of itself. The
value of length and width are determined by the minimums
permitting a complete covering of the line support region.
Afterwards, these rectangles are regarded as LS candidates.
Stage 3: In the LS validation stage, all LS candidates

are tested based on the a contrario statistical framework,
and only those that cannot be explained by the background
are retained as detections. Desolneux et al. [24] argued that

the expectation of a searched structure under a non-structed
model should be very small. Based on this theory, two critical
factors are required in the a contrario statistical approach: a
model for the background to describe the un-structured data
and a model for the object to measure the structuredness.
In LSD, an input image x following the background model
H0 (null hypothesis) is a random image X , in which LLAs
are independent random variables distributed over [0, 2π],
while the occurrence of an LS s corresponds to the situation
that sufficient aligned points have appeared in a rectangle
under H0. In the subsequent work in this paper, a pixel in
s is considered to be aligned only if its LLA is tangent to the
rectangle up to a given tolerance ζ . Specially, if ζ = 2pπ ,
then the probability that a pixel is aligned equals to p. Based
on this, theNFAof swith n(s) pixels and k(s, x) aligned points
can be calculated to efficiently determine whether or not s is
a true detection:

NFA(s, x) = NL · P(k(s,X ) ≥ k(s, x)) (1)

where NL denotes the number of possible rectangles in X and
P(k(s,X ) ≥ k(s, x)) is the probability of the event that s can
be observed underH0, which follows a binomial distribution:

P(k(s,X ) ≥ k(s, x)) = B(n(s), k(s, x), p) (2)

where

B(n(s), k(s, x), p) =
∑n(s)

i=k(s,x)

(
n(s)
i

)
pi(1− p)n(s)−i

is the tail of the binomial distribution used to calculate the
probability that at least k(s, x) out of n(s) pixels in s are
aligned. In practice, if NFA(s, x) ≤ ε, with a small ε (ε is
usually set to 1), the segment s is considered ε-meaningful
and should therefore be detected.

While LSD is a state-of-the-art LS detector which pro-
vides complete definitions about what an LS is, how to
detect and validate an LS, it yields too many fractured LSs.
The over-segmentation phenomenon of LSD is illustrated
in Fig. 1, in which the edges of desks are detected as multiple
shorter LSs rather than a single long LS. In practical use,
these short LSs are not expected. From the perception of
human visual systems, short LSs are not as salient as long
ones. It is therefore much easier to screen a long LS than a
short one. In addition, the localization accuracy of long LSs
is generally more accurate than that of short ones as long LSs
have a higher tolerance to inaccurate endpoints. Breaking up
a complete LS into fragments will also increase the number

FIGURE 1. Over-segmentation phenomenon of LSD.
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of LSs detected in an image, leading to extra computational
burden in subsequent applications like LS matching and 3D
reconstruction. In principle, this over-segmentation weakness
arises from the fact that a greedy mechanism is utilized to
form the line support region. In LSD, line support regions are
defined as connected pixels sharing similar LLAs. However,
this similarity criterion is not transitive. Therefore, when
image noise or lack of contrast occurs, disruptive pixels will
terminate the growing of the current line support region and
the remaining pixels that belong to an original LS then gener-
ate another region or several line support regions. This means
that LSD is prone to fragment a long LS into several short
ones. The process is detailed below.

In Stage 1, the gradient information of each pixel is cal-
culated by a 2 × 2 mask. This procedure can be formulated
as:

gx(x, y)

=
i(x + 1, y)+ i(x + 1, y+ 1)− i(x, y)− i(x, y+ 1)

2
(3)

and

gy(x, y)

=
i(x, y+ 1)+ i(x + 1, y+ 1)− i(x, y)− i(x + 1, y)

2
(4)

where i(x, y) denotes the gray-level value of a pixel at (x,y).
Correspondingly, LLA can be computed as:

LLA = arctan(
gx(x, y)
−gy(x, y)

) (5)

while the gradient magnitude G(x, y) is obtained according
to:

G(x, y) =
√
g2x(x, y)+ g2y(x, y) (6)

Additionally, the angle of an aligned point cluster is set to:

arctan(
6jsin(LLAj)
6jcos(LLAj)

) (7)

where the index j goes through the pixels in a cluster.
Starting from a seed pixel, the line support region

is enlarged gradually by adding the adjacent (eight-
neighborhood) aligned points into it according to the heuristic
principle. This method means that each pixel will be visited
once at most in LSD and thus provides a very fast speed.
However, its local nature prevents LSD from generating long
LSs. As shown in Fig. 2, ideally, there should be only one
LS detected in the image. However, if one of the aligned
points (in blue) exhibits a mutation due to noise (labeled by
yellow), then the LLA may disagree with its neighborhoods,
thus breaking the current growth of the region. As a conse-
quence, a complete cluster is divided into two small ones,
namely, R1 (in green) and R2 (in orange), which explains the
over-segmentation phenomenon of LSD.

The designer of LSD noticed this problem, and applied
a GaussianBlur filter to reduce the effect of noisy pixels
before further detection. However, the promotion is limited,

FIGURE 2. Over-segmentation phenomenon caused by disruptive pixels.

because the appearance of fractured LSs is related to not
only image noise but also the information of an image. For
example, the photosensitivity difference among the charge
coupled device (CCD) of a camera will lead to a non-uniform
alteration of gradient information in some certain pixels,
where a filter does not work. A more powerful method is thus
required to enhance the detection performance. As previously
mentioned, long LSs are more meaningful than short ones.
Based on this fact, a merging step can be added to refine the
output of LSD.

In the following two sections, efficient grouping rules are
determined to provide potential homologous LSs and a pow-
erful validation method is established to determine whether
the separated LS should be merged or not.

III. LINE SEGMENT GROUPING RULES
Considering that LSD detects LSs with uncertainty in the
endpoint location, caused by blurring, glitters, shadows and
other imperfections, merging separated segments into a single
LS should satisfy the following five conditions:

1) Segments should be close enough;
2) The direction of segments should be similar enough;
3) The ratio of the overlap between them should not be

more than a certain threshold;
4) The density of themerged LS should not exceed a certain

threshold;
5) The gradient information of pixels in the LSs to be

merged should be similar enough.

The first three rules are geometric constraints, while the
last two are gradient constraints. In terms of frequency,
the geometric constraints are of high frequency and are dis-
criminating enough to distinguish homologous LSs from sep-
arated LSs. Therefore, once these constraints are guaranteed,
LSs can be easily merged. However, this is not easy when
noisy LSs are present. Alternatively, the gradient constraints
are of low frequency. They are robust to noisy LSs and
can be adopted to build a strong probabilistic model such
as the Helmholtz principle, but are not as discriminating as
geometric constraints. The limitations of some existing LS
merging techniques [28], [30], [31] can be understood in rela-
tion to these constrains as such algorithms use part or all of
the geometric constraints without an efficient validation step
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FIGURE 3. Illustration of incorrect mergings. Close parallel LSs are merged incorrectly. Incorrect mergings can be seen in the area labeled by red
rectangles.

(constraint 4 and 5), leading to incorrect merging, as shown
in Fig. 3.

In this paper, the first three constraints are used to group
LSs and the last two are employed to validate a true detection.
The grouping rules are updated from those established in [28],
and are detailed as follows. The symbol S represents a set of
LSs detected in an image by LSD and si is the ith LS in S
(i = 1, . . . , #S). Subscript |si| denotes the length of si. For
constraint 1 and 2, the grouping criteria with regard to angle
and spatial proximity are proportional to the length of LSs
to be merged. Thus, they are set adaptively based on length.
For efficiency, all LSs are sorted by length beforehand, and
a histogram of LS orientations is computed and employed to
reduce the searching space. The grouping procedure proceeds
from the longest to the shortest LS in S, and the histogram is
utilized to pick out a set of similar angle LSs for the current
LS rather than exhaustively. Thus, the efficiency is increased.

FIGURE 4. The grouping geometry for angle and spatial proximity.

As illustrated in Fig. 4, given an LS si and its neighbors
sj and sk , the affect region of si is defined as a rectangle,
the width and length of which are 2w and |si|, respectively.
If any LS drops inside the affect region (e.g., sj), the vertical
distance from the endpoints of sj to si is determined and the
smaller is selected as the distance between li and lj, which
is denoted by d . If any LS falls outside that region (e.g.,
sk ), the Euclidean distance from the endpoints of si to those
of sk is computed and the smallest value is selected as the
distance between the two segments. If d is greater than the
spatial proximity criteria σs, the two segments should not
be grouped. Otherwise, the angle proximity between them is
inspected. The adaptive criteria σs is set as:

σs = ξs |si| (8)

where 0 < ξs < 1 is a user-specified parameter.

Next, the angle difference between two LSs is checked.
The angle difference between si and sj is denoted as 1θ .
If1θ is smaller than the angle proximity criteria σa, these two
segments are selected to be grouped. The adaptive criterion σa
is modeled by a logistic function

σa =

(
1−

1
1+ ea(λ+b)

)
α (9)

where a, b and α are user-specified parameters, and λ is a
combined normalized coefficient

λ =
sj
si
+

d
σs

(10)

Finally, the overlap between si and sj is examined to avoid
two parallel LSs from being grouped. As illustrated in Fig. 5,
pi and pj represent the projections of si and sj onto the y−axis
(x−axis) if the slope of si is more than (less than or equal to)
one. Then, o(pi, pj) denotes the length of overlap between pi
and pj, the ratio of overlap r(si, sj) between si and sj can be
defined by

r(si, sj) =
o(pi, pj)∣∣pj∣∣ (11)

FIGURE 5. The grouping geometry for overlap.

si and sj are grouped, if their overlap ratio is less than a
certain threshold σo.

IV. LINE SEGMENT GROUPING VALIDATION
LS grouping provides many LS clusters, with each clus-
ter considered as a merged LS hypothesis. Subsequently,
a probabilistic criterion is used to accept a cluster as a true
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FIGURE 6. The comparison of strategies of estimating the number of tests.

detection, using the concept detailed in [27], [32]. In [32],
Cao et al. explored the issues of validity, stopping criterion
and merging in clustering analysis based on acontrario statis-
tical framework. They argue that the appropriate way to deter-
mine whether or not two disjoint clusters C1 and C2 should
be merged into a union C (a minimal cluster containing C1
and C2) is to compare the joint NFA of C1 and C2 against
the NFA of C rather than to contrast the NFA of C1 (resp. C2)
against the NFA ofC . Later, Salaün et al. created a multiscale
extension of LSD, called multiscale line segment detector
(MLSD) [27]. However, the issue encountered in [27] is
that many repetitive LS configurations are counted into the
number of tests, which is one of the key coefficients in NFA
calculation, resulting in a wrong joint NFA for separate LSs.
As shown in Fig. 6(a), sk can be found in both si and sj, while
the exhaustive choice for the number of tests is to take all
searched structures (rectangles in this paper) without repeti-
tive configurations. To obtain a correct value of the number
of tests for LSs in an image, a novel strategy (first a 2D line
then 2D LSs) is proposed in this work which is different from
those used in LSD (finding possible endpoints of an LS) and
MLSD (first a 2D LS then 2D LSs). The new process is given
as follows: A line is defined as an LS joining two borders of
the image. Thus, there are (N+M )×(N+M )×

√
NM different

lines in aN×M image (
√
NM different width values for each

line is also considered). The lines are labeled baselines on
which all LSs can be searched. Given a baseline Li, an LSwith
support in Li is an LS contained in Li. Further, to guarantee
an LS with support in a unique baseline, in each baseline
only LSs whose width and angle are the same (or opposite)
as this baseline are selected. Then, the total number of LSs

with support in Li equals to
(
d|Li|e
2

)
. Obviously, using the

first 2D lines then 2D LSs strategy can ensure that the LSs
with support in Li will not be searched on another baseline.

To calculate the joint NFA of separated LS and the NFA of
their merged one, the same background and object models
used in LSD are employed, and their expression can be
defined according to:
Definition 1: For a merged segment s (the smallest rect-

angle containing the rectangles associated to s1 and s2) with
support in L, its NFAP (s) is defined as

NFAP (s) = #L
(
d|L|e
2

)
(n(s)+ 1)B(n(s), k(s, x), p) (12)

where #L denotes the number of different possible lines in the
image.

The joint NFA of separate segments can be determined in
the same way as the merged segment case.
Definition 2: For two separate segments s1 and s2 with

support in L1 and L2 respectively, their joint NFAP (s1, s2)
is defined as

#L(#L− 1)
2∏
i=1

(
d|Li|e
2

)
(n(si)+ 1)B(n(si), k(si, x), p)

(13)

Note that k(s, x) 6= k(s1, x) + k(s2, x), and the angle of s
is different from those of s1 and s2, they cannot directly be
added together. Instead, the p-aligned points in s must be re-
counted. As the value of these NFAs is considerably small, for
simplicity, it is a general practice to take logarithm of NFAs.
Thus, the merging function can be defined as

F = log
(

NFAP (s)
NFAP (s1, s2)

)
(14)

IfF < 0, the separate segments are considered less meaning-
ful than their merged one, and thus should be merged. This
step corresponds to constraint 5.

For a single segment, the proposed NFAP (s) is slightly
different from NFA(s, x) in LSD. Grompone von Gioi et al.
argued that this type of difference is only technical (more
details is provided in [33]).

Finally, the passed candidates are tested again according
to the density of aligned points in a rectangle. For a merged
LS s, its aligned point density can be expressed as

Ds =
k(s, x)

the length of s× the widht of s
(15)

If Ds ≥ 0.7, the merged LS s is regarded as a final detection.
This step corresponds to constraint 4.

V. MULTISCALE FRAMEWORK AND
COMPLEXITY ANALYSIS
Considering that the image with smaller size usually gener-
ates fewer yet proportionally longer LSs, whereas the original
image might produce more broken LSs, a mulitscale frame-
work is adopted to further alleviate the fractured effect of
LSD. In what follows, the scale of a picture is represented by
an upper index k , which varies from 1 to K . Specifically, xK

corresponds to the original picture, while xk is computed by
the product of a coefficient 22(k−K ) and the size of xK . Each
picture xk is also smoothed by a GaussianBlur filter before
further detection.

This framework begins from k = 1. First, standard LSD
is employed to detect LSs on x1, and at subsequent scale,
cues from the previous scale are explored to refine detected
LSs. For example, given a detected LS sk−1i with orientation
θ (sk−1i ), letRk

i denote the zoomed rectangular region of sk−1i
in xk , and Iki be the set of aligned pixels inRk

i

Iki =
{
q ‖ q ∈ Rk

i and |θ (q)− θ (s
k−1
i )|modπ < πp

}
(16)

42600 VOLUME 8, 2020



Q. Yu et al.: PLSD

A set Cki of connected clusters can then be formed from Iki
by an eight-neighborhood strategy. As Cki may contain a high
number of tentative LSs, it is not possible to exhaustively test
all fusions. Therefore, a greedy method is employed to search
potential LSs to merge. Starting with the cluster of the longest
length, clusters that satisfy the grouping rules defined in
Section III are searched, then the merging function (Eq. (14))
is computed for each cluster. If it is negative and the density
criterion is also satisfied, the current clusters are replaced by
their merged version as a new cluster. This process is repeated
until no more clusters can be merged.

Afterwards, only the clusters that pass the standard NFA
(Eq. (1)) are retained as LSs, then LSD is used to locate extra
LSs at current scale. For a detected LS sk−1i , a situation in
which no derived LS can be detected on xk may occur due to
noise or lack of contrast. In this case, the original coarse LS
with scale information is retained, but there are no attempts
to refine it at the same location at finer scales.

Finally, all LSs detected at the finest scale are tested to
be merged according to the directions in Section III and
Section IV to further ensure their completeness.

Algorithm 1 PLSD
Input: The gray image x
Output: A set of more meaningful LSs SP

REM Step1: compute the scale pyramid consisting of K
images by down-sampling
for k = 1 to K do

REM Step2: initialize LS set at current scale by
up-sampling the LS set from previous scale
if k == 1 then

SkP ← ∅
else

SkP ← Upscale(Sk−1P )
end

REM Step3: refine LSs at the same locations as LSs
from previous scale
SkP ← Refine(SkP )

REM Step4: add extra LSs detected by LSD at current
scale
SkP ← SkP ∪ LSD(xk )

end
REM Step5: merge LSs in the whole image at scale K

SKP ←Merge(SKP )
return SKP

The complete procedure is outlined in Algorithm 1. Note
that the proposedmultiscale framework is different from [27].
AsHelmholtz principle is a statisticalmodel, whichmay yield
incorrect merging by accident when the number of pixels is
not sufficient, LSs are only refined in coarser scales.

As a mulitscale framework is employed, when k > 1, it is
difficult to calculate the whole complexity of the proposed
method in a few terms. Thus, the computational cost when
k = 1 is analyzed. In the LS detection step, the computational

cost is O(Npixel), where Npixel is the number of pixels in an
image. In the procedure of LS grouping, the computational
complexity equalsO(N 2

line), whereNline stands for the number
of LSs. Validating merged candidates Ncan has an complexity
of O(Ncan). Hence, the entire complexity of the proposed
method in one scale isO(Npixel+N 2

line+Ncan). It is linear with
respect to the number of pixels. The proposed method takes
approximately 0.4s to process a 640× 480 image, indicating
that the proposed method can be used for online applications.

VI. EXPERIMENTAL RESULTS
In this section, extensive and detailed experiments are per-
formed to demonstrate the high-quality LS detection perfor-
mance of the proposed method compared to existing leading
methods.

A. EXPERIMENT SETUP
1) DATASET
The YorkUrban-LineSegment dataset [34] is a new bench-
mark for LS detection based on the YorkUrban dataset [35]
and was used to test the LS methods in this paper. It is com-
prised of 45 indoor and 57 outdoor images with a 640× 480
resolution, containing about 70k LS instances.

2) COMPARED METHODS
The proposed method is compared with four state-of-the-
art LS detection methods including LSD [29], EDlines [26],
LSM [28], and MLSD [27]. To ensure a fair comparison,
the source codes of the compared methods are obtained
online, and they are execute with default parameters. Apart
from LSM which is run in MATLAB, all methods are imple-
mented using the C++ programming language. The exper-
iments are carried out on a laptop (Intel Core i5-3317U,
1.7GHz CPU and 4GB memory) with Unbuntu16.04.

3) EVALUATION METRICS
To reasonably and comprehensively evaluate the performance
of the proposed method, the metrics employed are: the aver-
age precision (AP), the average recall (AR), F-measure, pro-
cessing time (in seconds). Based on the number of correctly
detected LSs (true positives (TP)), the number of incorrectly
detected LSs (false positives (FP)), and the number of LSs
that exist in the image but are not detected by the algo-
rithm(false negatives (FN)), precision, recall, and F-measure
can be defined as:

Precision =
TP

TP+ FP
, (17)

Recall =
TP

TP+ FN
, (18)

F − measure =
2× Precision× Recall
Precision+ Recall

. (19)

A detected LS s is regarded as a TP based on the overlap ratio
as follows:
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TABLE 1. Experimental results of different methods on the
YorkUrban-LineSegment dataset.

a) For each ground truth sg, a set of detections {s} are
searched which meet the following criteria:

dp(sg, s) ≤ Tdist , (20)

da(θg, θd ) ≤ Tang, (21)

where θg and θd are the direction of sg and s respectively.
dd (·, ·) represents the distance from the midpoint of sg
to s in the direction orthogonal to θg. da(·, ·) returns the
angular difference between two LSs.
b) The {s} is regarded as true when its intersection over
the ground truth sg is equal or superior to Tlen:

sg
⋂
{s}

sg
≥ Tlen. (22)

We set Tdist = 1, Tang = π
36 and Tlen = 0.75.

4) INVOLVED PARAMETERS
The default parameter settings that are generally used in
LSD are adopted along with seven new parameters which are
discussed as follows: w controls the size of the affect region
of an LS, which is used to classify LSs before calculating
spatial proximity. The w is fixed at 20, which works well
in experiments, and ξs is a coefficient of Eq. (8), which is
used to evaluate the distance deviation of two LSs. The ξs
is set to 0.08 empirically as this amount yields the optimum
results in the experiments. Additionally, a, b and α are three
coefficients of Eq. (9). They can be set to −2, −1.5, and
22.5◦, respectively. Overlap tolerance σo is used to filter
out parallel LSs and is set to 0.1, and K can be calculated
automatically based on the size of original image:

K = min
{
k ‖ k ∈ N and 2k lsize ≥ max(w′, h′)

}
(23)

where w′ and h′ are the width and height of original
image, respectively, lsize is set to 500 in this paper as
over-segmentation phenomenon is not obvious for images
with the size smaller than 500 × 500.

B. QUANTITATIVE COMPARISON
The LS detection results of different methods on the
YorkUrban-LineSegment dataset are provided in Table 1.
As illustrated by the results, the proposed method is superior
to other methods for AP, AR and F-measure. Owing to the
excellent ability of Helmholtz principle in pruning false posi-
tives, LSD, LSM,MLSD, and PLSD all display a comparable
performance in terms of AP. The proposed method slightly

FIGURE 7. Detailed detection performance of the proposed method
against other methods on the YorkUrban-LineSegment dataset,
(a) Precision, (b) Recall, (c) F-measure.

TABLE 2. The number of images with the highest score for each
algorithm in terms of precision, recall and F-measure on the
YorkUrban-LineSegment dataset.

TABLE 3. The average overlap ratio of correctly detected LSs on the
YorkUrban-LineSegment dataset.

outperforms LSD by 3% in AP because some short LSs
regarded as FP in LSD are merged into long LSs in PLSD.
When the length of these LSs increases, the angle difference
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TABLE 4. The statistical results on the 28th, 48th and the whole images of YorkUrban-LineSegment dataset.

between the ground truth and detected LSs is decreased to
an allowable tolerance. Both LSM and MLSD are derived
from LSD and fail to increase the AP of LSD. For LSM,
this is because it fails to prevent close parallel LSs from
being merged, and the endpoints of the new merged LS
are determined empirically by the original LSs, thus reduc-
ing its localization accuracy. More importantly, LSM lacks
an accurate validation method for merging (as discussed in
Section 3). MLSD fails to increase the AP of LSD because
the grouping step is not adequate and neglect the uncertainty
of endpoints of LSs detected by LSD. A key coefficient in
the NFA calculation is also incorrect in the MLSD method.
The method proposed in this paper does not encounter such
problems. Due to the merging step and multiscale nature,
MLSD and PLSD achieve higher AR than other methods
(The AR of PLSD is 16% high compared to that of LSD).
EDlines has a comparable performance to LSD as well as the
fastest processing time, which is more suitable for real-time
applications.

Detailed precision, recall and F-measure on theYorkUrban-
LineSegment dataset with respect to the image numbers are
provided in Fig. 7 and the number of images with the highest
score in precision, recall and F-measure for each algorithm
is listed in Table 2. Again, the proposed method displays the
best performance over other methods on most images of the
dataset, which implies that it is a high-quality LS detection
approach.

To comprehensively assess the detection performance of
the competitive LS methods, the intersection ratio Tlen is var-
ied from 0.55 to 0.9 with the step of 0.05. The corresponding
results are provided in Fig. 8. As illustrated, the F-measure
curve of the proposed method is above those of compared
methods on the dataset.

Localization accuracy is essential for line-based problems.
while accurate localization of LSs can ensure high accuracy
for subsequent missions, localization accuracy also helps a
detector distinguish close LSs. Thus, the localization accu-
racy of different LS detection methods are further tested
by computing the average overlap ratio (AOR) of correctly
detected LSs on the YorkUrban-LineSegment dataset. The
results show that the proposed method achieves a slightly
better performance than the compared methods in terms of
AOR, as shown in Table 3. In this category, line support

FIGURE 8. The LS detection performance of the proposed method against
other methods by varying intersection length ratio Tlen from 0.55 to
0.9 on the YorkUrban-LineSegment dataset.

region based methods generally obtain a high score as more
points are used to accurately locate an LS compared to other
methods.

C. QUALITATIVE COMPARISON
Fig. 9 and Fig. 10 show the visual results on the 28th and
48th images of the YorkUrban-LineSegment dataset using
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FIGURE 9. The visual results of different LS detection methods on the 28th image of the dataset.

FIGURE 10. The visual results of different LS detection methods on the 48th image of the dataset.

different LS detection methods. As illustrated, both LSM
and MLSD generate inaccurate LSs, mainly due to their
merging strategies which may fail when coping with close
parallel LSs. The LSD, EDlines, and PLSD methods achieve

comparable performance in terms of visual results. However,
as shown in Fig. 9(c), EDlines detects the least LSs on the
yellow wall, which is likely because EDlines uses a high
Gaussian kernel to ensure continuity of LSs, which will
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FIGURE 11. LSs detected by LSD, MLSD and PLSD on the image of a rabbit.

FIGURE 12. LSs detected by LSD, MLSD and PLSD on the image of a classroom.

reduce the contrast and degrade the details. The LSD employs
down-scaling to detect longer LSs at the cost of missing some
short LSs (see Fig. 9(b) and Fig. 10(b)). Unlike other methods
which struggle to balance details and continuity, the proposed
method is less prone to over-cutting and maintains good
structural information.

To confirm the superior performance of PLSD objectively,
statistical results with respect to Fig. 9, Fig. 10 and the whole
dataset are provided in Table 4 and show total length (TL)
in pixels, number of LSs (N), and the average length (AL)

in pixels. The length of the detected LSs of PLSD is longer
compared to those of LSD, EDlines and LSM,, which show
PLSD has good continuity. Though MLSD is superior to
PLSD in length, there are some incorrectly merged LSs in
MLSD, as shown in Fig. 9(e) and Fig. 10(e). These incorrectly
merged LSs are produced in MLSD due to their unreliable
merging criterion and brute force grouping algorithm, which
however makes their detected LSs longer.

To further demonstrate the performance of PLSD in high
resolution images, two pictures (5184× 3456 pixels) used in
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MLSD are selected, and the results using PLSD are compared
with LSD and MLSD. Note that due to the low contrast
of boundaries, classical LS detectors without a multiscale
framework generally work poorly on high resolution images,
thus only the results of LSD and MLSD are provided in this
case. As seen in Fig. 11(c), an LS detected by MLSD is
incorrectly merged as it extends across the ear of the rabbit.
Moreover, the proposed method provides a more complete
description of objects than that of MLSD, see the floor
in Fig. 11(d) and the ceiling in Fig. 12(d). It is therefore
evident that the proposed method demonstrates a better per-
formance than MLSD in high resolution images.

VII. CONCLUSION
A high-quality LS detection method is proposed in this
paper which tends to generate more and longer LSs but can
still accurately reflect structural information of the image.
An image pyramid is first constructed based on the size of
input image. At each scale, cues from the previous scale
are then used to refine detected LSs, and the standard LSD
algorithm is used to find extra LSs that fail to be detected
at coarser scales. At the finest scale, all LSs are grouped
based on spatial and angular criteria with adaptive parame-
ters. Finally, in each group, the meaningfulness of separated
segments and their merged one are compared using the a
contrario method. The passed candidate is then tested again
by a density criterion. Experimental results show that the
proposed method has good continuity and achieves the best
F-measure value compared to leading methods. As there is
no dataset for quantitative comparison of detection of LSs
in high resolution images, subsequent work will focus on
creating this benchmark.
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