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ABSTRACT Orthogonal moments are beneficial tools for analyzing and representing images and objects.
Different hybrid forms, which are first and second levels of combination, have been created from the
Tchebichef and Krawtchouk polynomials. In this study, all the hybrid forms, including the first and second
levels of combination that satisfy the localization and energy compaction (EC) properties, are investigated.
A new hybrid polynomial termed as squared Tchebichef–Krawtchouk polynomial (STKP) is also proposed.
The mathematical and theoretical expressions of STKP are introduced, and the performance of the STKP
is evaluated and compared with other hybrid forms. Results show that the STKP outperforms the existing
hybrid polynomials in terms of EC and localization properties. Image reconstruction analysis is performed
to demonstrate the ability of STKP in actual images; a comparative evaluation is also applied with Charlier
and Meixner polynomials in terms of normalized mean square error. Moreover, an object recognition task
is performed to verify the promising abilities of STKP as a feature extraction tool. A correct recognition
percentage shows the robustness of the proposed polynomial in object recognition by providing a reliable
feature vector for the classification process.

INDEX TERMS Orthogonal polynomial, orthogonal moments, energy compaction, localization property,
object recognition.

I. INTRODUCTION
Shape descriptors and features are considered substantial
tools in computer vision applications, such as pattern recog-
nition [1], face recognition [2], shot boundary detection
[3], [4], and information hiding [5]. Moments, which are
classified into geometric, continuous, and discrete types, have
been utilized as a shape descriptor in the past two decades
[6]–[8]. Geometric moments are nonorthogonal and cannot
reconstruct signals; thus, they cause information redundancy.
By contrast, continuous and discrete moments are orthogonal
and can reconstruct signals (1D and 2D); therefore, they solve
the problem of information redundancy. Discrete orthogo-
nal moments (DOMs) are more favorable than continuous
moments because DOMs alleviate computational complexity
and discretization error [9]. DOMs are defined as the sig-
nal projection on orthogonal polynomial functions [8]. The
Tchebichef polynomial (TP), Krawtchouk polynomial (KP),
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and Hahn polynomial are examples of discrete orthogonal
polynomials [10]. The TP shows remarkable energy com-
paction (EC) [7]; whereas KP outperforms TP in the ability
to extract local features from images [11].

On the basis of the idea that the orthogonal polynomial
can be generated bymultiplying two orthogonal polynomials,
different hybrid forms of KP and TP have been proposed.
Jassim et al. [8] proposed the Tchebichef–Krawtchouk
polynomial (TKP), Mahmmod et al. [12] presented the
Krawtchouk–Tchebichef polynomial (KTP), and Abdulhus-
sain et al. [13] recently proposed the squared Krawtchouk–
Tchebichef polynomial (SKTP).

The TKP and their discrete transform coefficients
(moments) have a remarkable localization property, but a
special type of window for signal framing is required for
signal processing [12]. The KTP and their moments perform
well in signal compression [12]. However, KTP requires
improvement in its EC property. SKTP was suggested to
improve the results in terms of localization and EC properties.
The SKTP is considered a second level of combination

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 41013

https://orcid.org/0000-0002-5555-6503
https://orcid.org/0000-0002-6439-0082
https://orcid.org/0000-0001-5522-5096
https://orcid.org/0000-0001-6571-9807


Z. N. Idan et al.: New Separable Moments Based on Tchebichef-Krawtchouk Polynomials

of orthogonal polynomials (OPs). It is performed by mul-
tiplying two OPs, each resulting from the hybrid OPs
(TKP and KTP) [13].

In this study, a mathematical analysis of the different com-
binations of hybrid OPs is performed. These combinations
are discussed in terms of localization and EC properties.
On the basis of the results obtained from the analysis, a new
separable OP proposed.

This paper is organized as follows: Section 2 presents the
mathematical fundamentals of TP, KP, and moment com-
putations. Section 3 introduces the proposed OP. Section 4
provides the performance evaluation of the proposed poly-
nomial. In Section 5, an object recognition system is used to
evaluate the performance of the proposed polynomial. Lastly,
Section 6 concludes the study.

II. PRELIMINARIES
In this section, the mathematical definitions of TP and
KP are provided. Then, the moment computation of
2D signals (images) is presented.

A. TCHEBICHEF ORTHOGONAL POLYNOMIAL
The nth order of the scaled TP, Tn(x) , with a positive integer
N that represents the signal size is given by [7], [13], [14]:

Tn(x) =

√
ωT(x)
ρT(n)

(1− N )n 3F2(−n,−x, 1+ n; 1, 1− N ; 1)

n, x = 0, 1, · · · ,N − 1 (1)

where n and x are the polynomial order and the signal length
indices, respectively; and ωT(x) and ρT(n) are the weight
function and the squared norm of TP, respectively, which are
defined as follows:

ωT(x) = 1 (2)

ρT(n) = (2n)!
(
N + n
2n+ 1

)
(3)

where
(a
b

)
is the binomial coefficient, which is defined as

a!
b!(a−b)! ; and 3F2(·) is the generalized hypergeometric func-
tion of TP and defined as:

3F2(−n,−x, 1+ n; 1, 1− N ; 1)=
∞∑
k=0

(−n)k (−x)k (1+n)k
(1)k (1− N )kk!

(4)

where (a)k is the pochhammer symbol (rising factorial) [6].
The Tchebichef polynomial coefficients (TPCs) can be

organized in a 2D array with n and x parameters; thus,
the three-term recurrence (TTR) algorithm can be used to
compute the TPCs. The TTR algorithm is used to replace the
hypergeometric and gamma function because TTR reduces
the numerical instabilities and computation time [6], [14].
Different TTR algorithms have been proposed to compute the

TPCs. In this study, the state-of-the-art TTR algorithm, which
is proposed in [7], is used and given as follows:

Tn(x) =



a1Tn(x − 1)+ a2Tn(x − 2)

0 < n <
N
2
, 2 < x <

N
2
− 1

b1Tn−1(x)+ b2Tn−2(x)
N
2
< n < N − 1, Lx < x <

N
2
− 1

1
a2

Tn(x + 1)+
a1
a2

Tn(x + 2)

N
2
< n < N − 1, Lx < x < Lx − 12

(5)

where a1, a2, b1, b2, and LX are computed as follow:

a1 =
(−n(n+ 1)− (2x − 1)(x − N − 1)− x)

(x(N − x))
(6)

a2 =
(x − 1)(x − N − 1)

(x(N − x))
(7)

b1 =
2x + 1− N

n

√
(4n2 − 1)
(n2 − N 2)

(8)

b2 =
1− n
n

√
2n+ 1
2n− 3

√
N 2 − (n− 1)2

(N 2 − n2)
(9)

Lx = 0.5N −
√
(0.5N )2 − (0.5n)2 (10)

This TTR can deal with a large signal size and has a low
computational cost [7].

B. KRAWTCHOUK ORTHOGONAL POLYNOMIAL
The nth order of the scaled Krawtchouk polynomial,Kn(x; p)
is defined as [13], [15]:

Kn(x; p,N − 1) =

√
ωK(x)
ρK(n) 2

F1(−n,−x;−N + 1;
1
p
)

n, x = 0, 1, · · · ,N − 1; p ∈ (0, 1) (11)

ωK(x) and ρK(n) are the weight function and the squared
norm of KP, respectively, which are defined as follows:

ωK(x) =
(
N − 1
x

)
px(1− p)N−x−1 (12)

ρK(n) = (−1)n
(
1− p
p

)n ( n!
(−N + 1)n

)
(13)

2F1(·) is the generalized hypergeometric function of KP
and is given by:

2F1(−n,−x;−N + 1;
1
p
) =

n∑
k=0

(−n)k (−x)k ( 1p )
k

(−N + 1)kk!
(14)

By varying the control parameter (p) related to KP,
the Krawtchouk moment has the capacity to extract features
from any region-of-interest (ROI) in an image. [11].

TTR relation is used to compute the KPCs and thus reduce
the computation complexity and maintain the stability of
the Krawtchouk polynomial coefficients (KPCs). Different
TTR algorithms have been proposed [11], [16]. In this study,
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FIGURE 1. KP plane portioned into four triangles [15].

the TTR algorithm, which was proposed by [15], is used.
In this TTR algorithm, the KP plane is divided into four
triangular parts bounded by primary and secondary diagonals,
as shown in FIGURE 1. The computation of the KPCs is
performed for one triangle only, and the other KPCs are
computed using the symmetry relations.

The steps to compute the KPC coefficients are as fol-
lows [15]:

1) Kn(0) and Kn(1) are computed.

K0(0) =
√
(1− p)N−1 (15)

Kn(0) =

√
(N − n)p
n(1− p)

×Kn−1(0)

n = 1, 2, · · · ,N − 1 (16)

Kn(1) =
−n+ p(N − 1)

p(N − 1)

√
(N − 1)p
(1− p)

Kn(0)

n = 0, 1, · · · ,N − 2 (17)

2) The KPCs in T1 (shown in FIGURE 1) are computed
using the n-direction relation, which is given by:

c1Kn(x + 1) = c2Kn(x)+ c3Kn(x − 1) (18)

c1 =
√
p(N − x − 1)(1− p)(x − 1) (19)

c2 = −n+ p(N − x − 1)+ x(1− p) (20)

c3 =
√
x(1− p)p(N − x) (21)

3) By using the symmetry property around the primary
diagonal, the KPCs in T2 are computed as follows:

Kn(x) = Kx(n) (22)

4) By using the symmetry property around the secondary
axis, the KPCs in T3 and T4 are computed as follows:

KN−x−1(x) = (−1)N−n−x−1Kn(x) (23)

5) When p > 0.5 and to avoid zero initial condition value,
the KPCs are computed as follow:

Kn(x; 1− p) = (−1)nKn(N − x − 1; p) (24)

C. MOMENTS COMPUTATION
The moments are considered an efficient data descriptor
because they prevent data redundancy. Consequently, the sig-
nals (1D and 2D) are characterized by the moments [8]. For
the 1D signal I (x) with a length N samples, the moment ηn
can be defined as:

ηn =

N−1∑
x=0

Rn(x; p,N ) I (x)

n = 0, 1, · · · ,N − 1 (25)

where Rn(x) is the OP. The reconstruction of the 1D signal
can be computed as follow:

Î (x) =
N−1∑
n=0

ηn Rn(x; p,N )

x = 0, 1, · · · ,N − 1 (26)

For 2D signal I (x, y) with a size of N × N , moment ηnm
can be defined as:

ηnm =

N−1∑
x=0

N−1∑
y=0

Rn(x; p,N )Rm(y; p,N )I (x, y)

n,m = 0, 1, · · · ,N − 1 (27)

The reconstruction of the 2D signal can be defined as
follows:

Î (x, y) =
N−1∑
n=0

N−1∑
m=0

ηnmRn(x; p,N )Rm(y; p,N )

x, y = 0, 1, · · · ,N − 1 (28)

The transform domain coefficients (moments) can be used
as a shape descriptor for different types of signals [17].
In addition, the basis functions of OPs can be used as an
approximate solution for differential equations [18].

III. THE PROPOSED SEPARABLE POLYNOMIAL
Mathematically, the combination of two orthogonal polyno-
mials is orthogonal [8]. Different forms are generated from
this mathematical point of view. The KTP and TKP are forms
of the first level of combination, whereas SKTP belongs to
the second level of combination. However, not all of combi-
nation forms can be used to satisfy the localization and EC
criteria. For the first level of combination, TABLE 1 shows
the forms that can be generated from the combination of KP
and TP.

TABLE 1. First level of combination for the orthogonal polynomial.

In TABLE 1, QK and QT are the matrix representations
of KP and TP. (·)T denotes the matrix transpose. KP (QK)
and its transpose (QTK) are equivalent [13]. Thus,QK ≡ QTK.
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TABLE 2. First level combination of KP and TP.

Therefore, only four forms can be generated from TABLE 1.
These forms are shown in TABLE 2. The localization prop-
erty for each form is tested to filter the forms in TABLE 2.
The localization property is applied as described in [13].

The second level of combination is considered to achieve
improved results in terms of localization and EC. The combi-
nation of the forms shown in TABLE 2, which are KTP and
TKP, produces different forms in the second level.However,
not all of these forms can be used because some of the
combinations produces the identity matrix. For the orthog-
onality condition, the polynomial, Rn(x) , should satisfy the
following [8]:

N−1∑
x=0

Rn(x; p,N )Rm(x; p,N ) = δnm

n = 0, 1, · · · ,N − 1 (29)

Different relations for Rn(x) that can satisfy (29) exist,
as defined in the matrix representation as follows:

R = XY

R = XYT

R = YX

R = YTX (30)

where X and Y are the matrix forms of the OPs that resulted
from combing two orthogonal polynomials TP and KP.

With (30) applied, TABLE 3 summarizes the second level
of combination and the different forms. The first four entries
of TABLE 3 show the generation formula of SKTP, whereas
the next eight entries result in an identity matrix. The remain-
ing entries show a new formula that is investigated in this
study.

On the basis of the mathematical analysis, only one form
can be used to verify the localization and EC properties.
The proposed polynomial is considered orthogonal because
it is generated from multiplying two orthogonal polynomials
(KTP and TKP). The new hybrid polynomial form of the nth
order, Rn(x) , can be defined as follows:

Rn(x; p,N ) =
N−1∑
i=0

Xi(x; p,N )Yi(n; p,N )

n, x = 0, 1, · · · ,N − 1 (31)

where Xn(x; p,N ) and Yn(x; p,N ) are OPs that resulted from
combining TP and KP as follows:

Xn(x; p,N ) =
N−1∑
j=0

Tj(n)Kj(x; p)

n, x = 0, 1, · · · ,N − 1 (32)

Yn(x; p,N ) =
N−1∑
j=0

Tj(x)Kj(n; p)

n, x = 0, 1, · · · ,N − 1 (33)

From (31), (32), and (33), the proposed polynomial can be
expressed as follows:

Rn(x; p,N ) =
N−1∑
j=0

N−1∑
i=0

N−1∑
h=0

Ti(j)Ki(x; p)Th(n)Kh(j; p)

n, x = 0, 1, · · · ,N − 1 (34)

A. THE MATRIX REPRESENTATION OF THE PROPOSED
POLYNOMIAL
The polynomial can be expressed using a second form in
the matrix form. In this manner, implementation becomes
faster [19]. Thus, (32), (33), and (34) are represented in
the matrix form as follows: R,X,Y,QK,QT for the poly-
nomials Rn(x),Xn(x;P,N ),Yn(x;P,N ),Kn(x), and Tn(x) ,
respectively. The matrix representation is defined as follow:

R = YTX

X = QTTQK

Y = QTKQT

R = (QTKQT)
T (QTTQK)

R = (QTTQK)2 = RSTKP (35)

Rn(x) represents the square of the multiplication of TP
and KP. Therefore, the proposed polynomial is defined as
STKP. This second level of combination leads to an EC
higher than those of the existing hybrid forms discussed in
Section IV-B. The generation process of STKP is illustrated in
FIGURE 2.

Moreover, FIGURE 3 shows the 2D and 3D plots of
the proposed polynomial for N = 64 and different val-
ues of p. FIGURE 3 a, b, and c are the 2D plots for
p = 0.5, 0.25, and 0.75, respectively, and signal order n =
0, 30, 31, and 63. These figures show that the moment and
the signal indices are associated. In other words, the low-
order coefficients of the polynomial for n = 0, 1, · · · ,
N/2 − 1 associated with the left half of the signal and the
high-order n = N/2,N/2 + 1, · · · ,N with the right half.
Moreover, the polynomial coefficients shift depending on
the variation of the p value. For the 3D plot ( FIGURE 3
d, e, and f), when p = 0.5 as n and x change in contrast
(n = N/2,N/2 + 1, · · · ,N , x = 0, 1, · · · ,N/2 and vice
versa), the values of the polynomial are low.

IV. EXPERIMENTAL ANALYSIS
This section discusses the performance of STKP in terms
of two criteria, namely, localization (where the frequencies
exist) and EC. Then, the performance is compared with the
existence polynomials.
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TABLE 3. First level combination of KP and TP.

FIGURE 2. STKP generation process.

A. THE LOCALIZATION PROPERTY
A relationship between the time function and transform coef-
ficients should be considered to improve the overall quality
of the polynomial [8]. Different methods are implemented
to test the localization in space property of the proposed
polynomial.

The moment of STKP can be computed from the separable
basis function. Two 1D steps on row and column are used
in the computation because of separability [20]. FIGURE 4
shows the basis function of an 8× 8 block size with different
values of p. The constant-value basis function at the corners
is often called the DC basis function, and the horizontal
frequencies increase from left to right. Vertical frequencies
increase from top to bottom, as shown in FIGURE 4a for
p = 0.5. The low frequencies shift to the left when p = 0.25
(FIGURE 4b) and to the right when p = 0.75 (FIGURE 4c).
Therefore, the STKP coefficients shift as the value of p is
deviated by 1p.
Another test for localization can be performed on the abil-

ity of the STKP to represent 2D images. Thus, four 256×256

test images are concatenated to form a single 512× 512 test
image, as shown in FIGURE 5. In addition, for p = 0.5,
the test image’s moment matrix is divided into four parts,
namely, P1, P2, P3, and P4, as shown in FIGURE 6. The
specific part of the moment is retained to find the ROI in the
moment domain. The other parts are set to zero by masking
them with a binary mask. The mask comprises 1’s for the
ROI and 0’s for the remaining parts. To reconstruct the image,
Eq. (28) is used, as shown in FIGURE 7 a-d. The first part of
the image in region P1 = IN/2−1x,y=0 can be reconstructed by
keeping P1 in the moment matrix and setting the other parts
to zero by masking them. Thus, the mask values are 1 in the
region where n, x = 0, 1, · · · , (N/2 − 1) and 0 elsewhere.
Therefore, no extra computations are needed to find ROI
as the symmetric relation between the spatial and moment
domains. By contrast, KTP and TKP are demanded for further
computations to find the desired part because the recon-
structed image part is diagonally opposite to the moment part
[8], [9]. The other benefit can be obtained when using the
block processing because no additional index computation is
needed. The four image quarters in FIGURE6 are represented
by the moment domain of the complete image. The moment
can represent more images when the block size is reduced.
For example, when the number of blocks is 4×4, the number
of image blocks that can be represented by the moment is 64.
This property is beneficial for the local feature extraction of
each image part without requiring the block processing of the
entire image.

B. THE ENERGY COMPACTION
The EC property is the ability of the transform to redis-
tribute the signal energy to a few polynomial coefficients.
As the coefficient number becomes smaller, an improved EC
is gained [21]. The standard method to compute the EC of
the polynomial is applied by using the first-order Markov
model [22]. A stationary Markov sequence of the first-order
zero mean with length N is used to find the moment energy
distribution [13], [19]. The covariance function (CF) of the
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FIGURE 3. The 2D and 3D plots of STKP (a) 2D for p = 0.5, (b) 2D for p = 0.25,(c) 2D for p = 0.75,
(d) 3D for p = 0.5, (e) 3D for p = 0.25, (f) 3D for p = 0.75.

different coefficients (ρ) for the Markov sequence is the
Toeplitz matrix, which has a constant element on the main
sub-diagonals and is defined as [22]:

CF =



1 ρ ρ2 · · · ρN−1

ρ 1 · · · · · ·
...

ρ2
...

. . .
... ρ2

...
...

. . . 1 ρ

ρN−1 · · · · · · ρ 1


(36)

The transformation of the covariance matrix (CF) into
moment domain is accomplished using the following:

6 = RCFRT (37)

where R is the matrix form of the OP. The variance of the
transform coefficients (σ 2

d ) is denoted by the diagonal of
(6). In this study, two values of covariance coefficients are
checked, ρ = 0.8 and ρ = 0.9 and N = 8. TABLE 4 illus-
trates the transform coefficient variance of DKTT, DTKT,
SKTT, and STKT as a function of the diagonal index (d).

DTKT, DKTT, SKTT, and STKT are the transforms of TKP,
KTP, SKTP, and STKP, respectively.

For DKTT and SKTT, the maximum values of variance
are located in the middle of the coefficient vector d and
decreases gradually to the edges, whereas the maximum
values of DTKT and the proposed (STKT) are at the edges
and decreases toward the center. From the reported results,
the priority of the moment selection order (n) for STKT,
which represents the significant signal position, is defined as

n = 0,N − 1, 1,N − 2, · · · ,N/2− 1,N/2 (38)

For EC evaluation, the normalized restriction error (JM ) is
defined as follows [22]:

JM =

∑N−1
q=n σ

2
q∑N−1

q=0 σ
2
q

n = 0, 1, · · · ,N − 1 (39)

The descending order arrangement of σ 2
d is represented

by σ 2
q . FIGURE 8 illustrates the restriction error for DTKT,

DKTT, STKT, and STKT as a function for moment order (q)
and computed for two values of ρ. From the point view of data
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FIGURE 4. Basis function of STKP for (a) p = 0.5,(b) p = 0.25,(c) p = 0.75.

FIGURE 5. Test images.

compression, STKT improves quality when the number of
retained samples is used for reconstruction. From FIGURE 8,
the data compression is 192

1024 for ρ = 0.75 (i.e. 1:5.3),
and 200

1024 for ρ = 0.85 (i.e. 1:5.12). Thus, space saving is
∼ 81.25% for ρ = 0.75 and ∼ 80.47% for ρ = 0.85.
Thus, STKT uses fewer transform coefficients comparedwith
DKTT, DTKT, and SKTT to reconstruct the signal efficiently.

FIGURE 6. Moment matrix.

C. IMAGE RECONSTRUCTION ANALYSIS
Image reconstruction analysis is performed to demon-
strate the ability of a polynomial for feature representa-
tion by utilizing a minimal number of polynomial transform
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FIGURE 7. The reconstructed image parts using STKP.

TABLE 4. The variance distribution of the transform coefficient for
N=8 and ρ = 0.8,0.9.

coefficients (moments). This section illustrates the image
reconstruction analysis of STKP. A comparison is also per-
formed to the Charlier polynomial (CHP) and the Meixner
polynomial (MXP). The nth order of the CHP Cn(x; a1) is
given by [20]:

C =

√
ωC

ρC
2F0(−n,−x;−;−

1
a1

)

n, x = 0, 1, . . . ; a1 > 0 (40)

where ωC and ρC are the weight and norm of the CHP,
respectively, and are given by:

ωC(x) =
e−a1ax1
x!

(41)

ρC(n) =
n!
an1

(42)

The nth order of the MXPMn(x; b1, c1) is given by [20]:

M =

√
ωM

ρM
2F1(−n,−x; b1; 1−

1
c1
)

n, x = 0, 1, . . . ; b1 > 0, and c1 ∈ (0, 1) (43)

FIGURE 8. Restriction error for DTKT, DKTT, SKTT, and STKT (a) ρ = 0.75,
(b) ρ = 0.85.

where ωM and ρM are the weight and norm of the MXP,
respectively, which are given by [20]:

ωM(x) =
cx10(b1 + x)

x!0(b1)
(44)

ρM(n) =
n!(b1)n

cn1(1− c1)
b1

(45)

The functions of the CHP and MXP are orthogonal in an
unlimited interval, which is [0,∞].
In the experiment, an image of a cameraman is utilized

for testing. First, the image is transformed into a moment
domain using STKP, CHP, and MXP. Thereafter, the image
is reconstructed using a limited number of moments.

In FIGURE 9, the CHP and MXP show a rippling artifact
near the sharp edges (ringing effect). This rippling artifact is
reduced for CHP and MXP as the moment order increases.
However, the rippling artifact is still observed even when the
moment order value is 256. The image reconstruction process
using STKP shows improved results compared with CHP
and MXP at the same moment order. Specifically, the arti-
facts are observed at the image boundary, whereas the visual
content is clear at the image center. After the moment value
of 128, the visual content of the image becomes clear, and a
small amount of ringing effect can be observed. Therefore,
the image reconstruction ability of the STKP is better than
that of CHP and MXP.

For further elucidation, the normalized mean square
error (NMSE) is utilized to measure the difference between
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FIGURE 9. Reconstructed images using CHP, MXP, and STKP.

the reconstructed (Î ) and original (I ) image. The NMSE
formula is defined by [23]:

NMSE =

∑
x,y

(
I (x, y)− Î (x, y)

)2
∑

x,y I (x, y)
2 (46)

The procedure is performed to compute the NMSE by
gradually increasing the number of moments used to recon-
struct the image. The result is shown in FIGURE 10

In FIGURE 10, the NMSE is plotted for the reconstructed
image with a size of 256×256, and the parameter values used
for the polynomials are as follows: 1) for CHP, a1 is set to 128;
2) for MXP, b1 and c1 are set to 60 and 0.5, respectively; and
3) for STKP, p is set to 0.5. This figure reveals that the NMSE
of the CHP has the highest error in comparison with those
of MXP and STKP. The NMSE for MXP starts at an NMSE

FIGURE 10. NMSE of the Reconstructed images for CHP, MXP, and STKP.

value of ≈ 2.5 and reduces to ≈ 7.3× 10−3. Compared with
the NMSE of CHP and MXP, that of STKP has the lowest
reconstruction error, which starts from ≈ 0.1 and decreases
to≈ 0.02 at a moment order of 48. For moment orders greater
than 48, the NMSE is decreased to zero when the moment
order is 256.

To conclude, the STKP performance in terms of EC and
reconstruction error is more convenient for image reconstruc-
tion than other orthogonal polynomials.

V. THE APPLICATION FRAMEWORK USING THE
PROPOSED POLYNOMIAL
In this section, an object recognition system (ORS) is chosen
to test the performance of STKP. The recognition process
using features that are extracted via the STKP is performed.
An SVMclassifier is used for the classification process. How-
ever, a K-nearest neighbor (KNN) classifier is used for the
classification process to verify the results. Then, a compari-
son is performed with different state-of-the-art polynomials,
such as KTP, TKP, and SKTP, to evaluate the performance of
STKP.

A. ORS IMPLEMENTATION
The fundamental objectives of ORS are to identify the
objects in a given image and distinguish different kinds of
objects [24]. FIGURE11 illustrates the basic steps of theORS
model utilized in this study. Two phases are implemented in
the recognition process, which are the training and testing
phases. In the training phase, the ORS is trained with several
images. The images are represented by related features. The
image is transformed into the moment domain to extract
distinctive features using STKP. Then, these features are used
by the classifier to recognize objects. Therefore, the OPs
(STKP) are first generated to extract the features. Thereafter,
the object images Io of N × M dimensions are transformed
into the moment domain as follows:

η = R1 Io R2 (47)

whereR1(N ,N ) andR2(M ,M ) are the generated polynomials
for each image dimension. The moment (η) is considered a
feature vector, and each feature vector is collective with the
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FIGURE 11. Th e object recognition schematic model.

label of the object image ID. As the object is recognized
by applying the classifier, the feature vector is specified as
input to the classifier [25]. During the test phase, the test
images are categorized by the classifier. The SVM, which
is a machine learning technique, is used for classification.
In this study, the SVM classifier is used for many reasons.
First, SVM maximizes the margin between the separating
hyperplane and data. Therefore, SVM minimizes the struc-
tural risk by controlling the out-of-sample error [26], [27].
By generating a hyperplane, SVM can separate the positive
and negative images [28]. Second, SVM is well-suited for the
recognition task and highly resistant to noisy data [27]. The
package LIB-SVM with kernel function is utilized for SVM
implementation [29], [30]. Using a suitable kernel function
provides an improved description to frame information. The
radial basis function (RBF) kernel is considered a reasonable
choice because the nonlinear relation between class labels
and attributes is addressed by this kernel [30]. For the cor-
rect prediction of testing data, the cross-validation procedure
is applied to identify good parameters of the RBF kernel.
The parameters that need to be tuned are the SVM penalty
parameter (cost parameter (C)) and gamma (g), which is a
RBF parameter. Five folds of CV with exponential growing
sequences of C and g are applied. This CV considered a prac-
tical method to identify good parameters. The range of C from
(20, 21, . . . , 25) and the range of g from (2−15, 2−9, . . . , 20)
are chosen. The obtained CV accuracy is considered the
percentage of data correctly classified. The pair of parameters
with a minimum training error and optimized accuracy on the
dataset is selected by iterating the (C, g) pair.

B. PERFORMANCE EVALUATION OF ORS BASED STKP
In this section, the performance of the STKP is evaluated.
The Columbia Object Image Library (COIL-20) database
[31] is used to validate the recognition process that is based

FIGURE 12. The processed images of COIL-20 dataset.

TABLE 5. Comparison of computation time and accuracy for different
training sample size.

on STKP. This database, which contains 20 different objects
with 72 grayscale processed images for each object, is widely
used for classification. Therefore, the total number of images
is 1,440 and each image of size of 128 × 128. The images
are taken in different poses with a five-degree angle for each
pose. FIGURE 12 the COIL-20 database images.

The correct recognition percentage (CRP) is applied to
evaluate the recognition accuracy. The CRP is defined as:

CRP =
number of correctly predicted subjects
total number of subjects in testing set

× 100%

(48)

An experiment is performed for different training set (NTr )
and fixed number of features (Nf ) to find the optimal number
of samples in NTr . TABLE 5 shows the results for Nf =
924, which represents 5.5% of the total features, and NTr =
18, 22, and 25. The results are obtained for five runs. Each
run comprises randomly selected samples for the training and
testing sets. The parameter C is equal to 32. TABLE 5 shows
that as the size of training set increases, the time required for
the classification process is increased, and the classification
accuracy is comparable. Therefore, in the next experiment,
the number of samples in the training set is set to 18 (25%).
Thus, the number of samples in the testing set is 54 (75%).

The number of moments is varied to find the moments
that affect the accuracy and computation speed of the classi-
fication process. The following factors are reported: 1) best
parameter values for SVM (C and g), 2) the time required
for feature extraction (moments) and classification time, and
3) average value of CRP. The results shown in TABLE 6
are obtained after five runs. In each run, the samples for the
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TABLE 6. CRP values for STKP. Note that, the number of trained images are 72.

FIGURE 13. The highest energy regions for (a) STKP and TKP, and (b) SKTP
and KTP.

training and testing sets are selected randomly. In addition,
the number of moments is selected from the center of the
maximum energy moment for each varied polynomial such
that the most energy of the moments is selected, as shown in
FIGURE 13a.

TABLE 6 shows that when the number of moments used
as a descriptor decreases from 6612 to 924, the average
CRP increases. In addition, the feature extraction time and
classification time are decreased. However, when the number
of features equals 684, the average CRP is decreased. Thus,
the optimal number of moments is 924, i.e., 5.64%, and can
be used for an improved CRP.

The robustness of STKP is verified by comparing the
mean value of the CRP results with that of KTP, TKP, and
SKTP. The more energy parts of the moment are chosen
to form the feature vector and efficiently representing the
images as shown in FIGURE 13. For STKP and TKP, FIG-
URE 13a illustrates that the highest energy exists at the
corners. For SKTP and KTP, the highest energy exists in
the middle, as shown in FIGURE 13b. Experimentally, only
5.64% of the moments are extracted, i.e., 924moments. Thus,
the feature vector length is 1× 900. The training and testing
phases are executed (100) times to test the stability of the
ORS. For the training phase, 18 images for each object are
trained, and 54 images for each object are used for testing
phase. In addition, the Gaussian noise with (σ 2

= 1%
and 5%) and salt-and-pepper noise with (σ 2

= 10%) are

FIGURE 14. The mean value of CRP for STKP, SKTP, KTP, and TKP using
SVM.

added to the dataset images. The noisy images are utilized to
show the capability of utilizing STKP in extracting features.
FIGURE 14 illustrates the mean value of CPR for STKP,
SKTP, KTP, and TKP for noise-free and noisy images.
The results show that STKP is considered a good tool for
extracting features and performs perfectly irrespective of the
noise type. Moreover, STKP achieves the highest CRP for
noise-free and noisy images in the classification process,
as depicted in FIGURE 14. For instance, the average CRP
value is 98.36% when utilizing STKP as a feature extraction
tool. The best CRP for other polynomials is 98.00%,which
is when KTP is used. In addition, for noisy environments,
the CRP value is 98.75%, when STKP is used for Gaussian
with σ 2

= 0.01, whereas the best CRP for other polyno-
mials is 98.27% when KTP is used for feature extraction.
The results also show that STKP overcomes state-of-the-art
polynomials for images degraded by Gaussian noise with
σ 2
= 0.05 and Salt-and-Pepper noise. Therefore, STKP can

be used for feature extraction because it shows more stable
and remarkable results compared with the state-of-the-art
polynomials.

The KNN classifier is utilized to confirm the results
because of its simplicity and powerful capability [32]. The
value of k stands for the number of nearest neighbors. For
a classification task, the output of the KNN classifier is
the class membership. The object is assigned to the most
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FIGURE 15. The mean value of CRP for STKP, SKTP, KTP, and TKP using
KNN.

common class of the (k) neighbor. Therefore, the majority
voting between the neighbor classes is used [33]. The value of
k is empirically selected to obtain the optimal value of k; thus,
the ORS is conducted for several times. Empirically, k = 1
is found to be the suitable choice for the ORS. In addition,
the Euclidean distance is utilized in the ORS.

FIGURE 15 illustrates the obtained results using the KNN
classifier. The results are measured using the same procedure
for SVM, i.e., 5.64% of the moment. The training set includes
18 objects, and the testing set incorporates 54 objects. The
CRP is implemented 100 times through random object selec-
tion for the training and testing sets for noisy and noise-free
images. The CRP for STKP shows improved performance for
noisy and noise-free images. For example, the CRP value in
a noise-free environment is 94.46% when STKP is utilized,
whereas the best CRP for other polynomials is 94.62% when
KTP is used for feature extraction. In addition, the average
value of CRP for all noisy environments is 94.25% when
STKP is used but 93.09% when KTP is used as a feature
extraction tool. The attained results reveal that STKP outper-
forms the state-of-the-art polynomials.

The obtained results strengthen the performance of STKP
for ORS application. However, FIGURE 14 and FIGURE 15
show that the results of ORS based on SVM (ORS-SVM)
for noise-free and noisy environments are more remarkable
than that of ORS based on KNN (ORS-KNN). For instance,
for noise-free images, the CRP for ORS-SVM is 98.36%,
whereas the CRP for ORS-KNN is 94.46%. In addition,
the average result of noisy images is 98.17% for ORS-SVM
and 94.25% for ORS-KNN. Thus, the results show that
(1) STKP outperforms the state-of-the-art polynomials com-
posed of TP and KP, and (2) ORS-SVM is more effective than
ORS-KNN.

VI. CONCLUSION
In this study, a new separable polynomial and their moments
based on the second level of combination of TP and KP are
proposed. Compared with the existing hybrid forms (KTP,
TKP, and SKTP), the proposed polynomial, STKP, achieves
remarkable results in terms of localization and EC properties.

Compared with CHP and MXP, STKP achieves optimal
image representation and reconstruction features. A compar-
ative study is performed via an object recognition application
using STKP and state-of-the-art polynomials. The experi-
mental results of the ORS show that STKP has the best CRP
values and an interesting feature extraction ability. STKP and
its moments demonstrate superior performance and potential
in signal representation and feature extraction, thus outper-
forming other hybrid forms. However, invariant moments can
be used to improve the CRP. Thus, the invariant moment of
STKP will be investigated in the future. In addition, different
applications, especially for video content analysis, can be
implemented to examine features by using STKP.
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