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ABSTRACT Accurate and efficient lane-level traffic flow prediction is a challenging issue in the framework
of the connected automated vehicle highway system. However, most existing traffic flow forecasting
methods concentrate on mining the spatio-temporal characteristics of the traffic flow rather than increasing
predictability of traffic flow. In this paper, we propose a novel hybrid model (CEEMDAN-XGBoost) for
lane-level traffic flow prediction based on complete ensemble empirical mode decomposition with adaptive
noise (CEEMDAN) and extreme gradient boosting (XGBoost). The CEEMDAN method is introduced to
decompose the raw traffic flow data into several intrinsic mode function components and one residual
component. Then, the XGBoost methods are trained and make predictions on the decomposed components
respectively. The final prediction results are obtained by integrating the prediction outputs of the XGBoost
methods. For illustrative purposes, the ground-truth lane-level traffic flow data captured by remote traffic
microwave sensors installed on the 3rd Ring Road of Beijing are utilized to evaluate the effectiveness of
the CEEMDAN-XGBoost model. The experimental results confirm that the CEEMDAN-XGBoost model is
capable of fitting the complex volatility of traffic flow efficiently at different types of lane sections.Moreover,
the proposed model outperforms the state-of-the-art models (e.g., artificial neural networks and long short-
termmemory neural network) and other XGBoost-basedmodels in terms of prediction accuracy and stability.

INDEX TERMS Data mining, lane-level traffic flow, short-term prediction, hybrid model, extreme gradient
boosting, complete ensemble empirical mode decomposition, urban expressways.

I. INTRODUCTION
Accurate and timely traffic flow forecasting is critical for
the successful development of intelligent transportation sys-
tems (ITS). It can benefit both traffic management agencies
and travelers by contributing to various kinds of key applica-
tions such as variable speed limit control and route guidance
systems. During the past three decades, the combination of
unprecedented data availability and the ability to process
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these data has brought on immense development and spread
of ITS technologies [1]. At the same time, a novel data-driven
research area has been systematically growing in parallel
to the ell-founded mathematical models that are based on
macroscopic and microscopic theories of traffic flow [2].

However, with the rapid improvement of the connected
automated vehicle highway (CAVH) system [3], short-term
traffic flow forecasting has been gradually shifting from
the section-based or network-based methods to lane-based
methods [4]. In the environment of the CAVH system, the
traffic flow on the road is generally mixed with human-driven
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vehicles (HDVs) and connected automated vehicles
(CAVs) [5]. Forecasting the traffic flow of the lane sections in
a future periodwhich varies from several minutes to dozens of
minutes is necessary for both CAVs and HDVs. On the one
hand, the lane-level prediction of dynamic traffic flow can
provide more real-time and detailed traffic state information
for the HDVs to choose the appropriate travel route and over-
come the influence of the limited sight distance [6]. On the
other hand, high-efficiency lane-level prediction can assist
the CAVs in making lane selection and planning the optimal
travel trajectory in terms of the level of service based on the
predicted traffic flow [7]. Sequentially, the overall distribu-
tion of various vehicles on the roads can be more balanced
and the road capacity will be improved correspondingly.

Although many methods for short-term traffic flow pre-
diction have been proposed during the past several decades,
some limitations and challenges still exist as follows. 1) Most
existing studies forecast aggregated traffic flow rather than
lane-level traffic flow with the implicit hypothesis that traffic
patterns between different lanes are the same or exactly simi-
lar. The traffic flows are often aggregated for simplifying the
model complexity or lacking lane-level traffic data. However,
some studies have found that the traffic flows of different
lanes indicate different patterns[8]–[10]. Furthermore, com-
pared with the traffic flow at the road sections, the volatil-
ity and uncertainty of the traffic flow at lane sections are
more significant due to the lane failure phenomenon [11] and
lane-drop bottleneck [12], which increases the difficulty of
making lane-level traffic flow prediction. 2) Most existing
methods attempt to improve the performance of the predic-
tion model by considering spatio-temporal dependence and
correlation of traffic flow rather than focusing on improving
the predictability of traffic flow waveform itself. Meanwhile,
though the traffic flow prediction methods [13]–[15] based
on advanced deep learning approaches have the advantages
of capturing the complex characteristics of the traffic flow,
the training time consumption of deep learning-based meth-
ods are still too long to satisfy the real-time requirements of
the CAVs and CAVH.

To overcome the aforementioned problems, this paper
intends to put forward a novel hybrid model named
CEEMDAN-XGBoost for forecasting lane-level traffic flow
through increasing the predictability of the complex lane-
based traffic flow. We exploit the complete ensemble empir-
ical mode decomposition with adaptive noise (CEEMDAN)
to decompose the complicated and irregular traffic flow into
several low-noise components. Then, an improved boosting
method named extreme gradient boosting (XGBoost) is cho-
sen as the predictor in the framework of the proposed model.
The XGBoost predictors are trained and make predictions on
each component. By combining the prediction values of all
XGBoost predictors, the proposed model can make full use
of the temporal feature of traffic flow and obtain the precise
prediction results in this way.

In summary, the major contributions of this paper are
presented as follows:

• In this study, the raw traffic flow data of the lane sections
are selected as the research target instead of those of road
sections or large-scale road network.

• To the best of our knowledge, a valid signal process-
ing method named complete ensemble empirical mode
decomposition with adaptive noise is first introduced to
produce the predictable and regular decomposed com-
ponents of the raw traffic flow, which can decrease the
unpredictability of the lane-level traffic flow.

• A novel hybrid model named CEEMDAN-XGBoost,
which fuses CEEMDAN and XGBoost algorithm effec-
tively, is established to realize both single-step-ahead
and multi-step-ahead lane-level traffic flow prediction.

• Validated by real-world traffic flow data of lanes
captured by several remote traffic microwave sen-
sors (RTMS) installed on the 3rd Ring Road of
Beijing with the sampling time interval of 2 min,
the CEEMDAN-XGBoost model outperforms both the
traditional and state-of-the-art benchmark models in
terms of prediction accuracy and stability.

The remainder of this paper is organized as follows. A gen-
eral overview of existing literature on traffic forecasting is
provided in section II. Section III gives a detailed description
of the CEEMDANmethod, XGBoost algorithm, and the pro-
posed hybrid method. Section IV introduces the experimental
dataset, environment, and evaluation index. Section V dis-
cusses the experimental results and analysis. At last, the con-
clusion and future work are given in section VI.

II. RELATED WORK
On the whole, the existing traffic flow prediction models
can be categorized into the following three groups from the
perspective of methodology: traditional parametric models,
artificial intelligent-based models, and hybrid models.

A. TRADITIONAL PARAMETRIC MODELS
The classical parametric approaches for traffic flow predic-
tion mainly include the Kalman filtering methods [16], expo-
nential smoothing methods [17], auto-regressive integrated
moving average (ARIMA) models [18], the structural time-
series models [19], and multivariate time series models [20].
In the beginning, the parametric models such as ARIMA
and ARIMA-based models [21]–[23] illustrated great per-
formance in terms of making traffic prediction in the short
term. Hamed et al. [24] applied an ARIMAmodel to forecast
traffic volume prediction in urban arterial roads. Neverthe-
less, most of these parametric models cannot process the
complex patterns in traffic flow because they are built with
some presumption [25]. To solve the above-mentioned prob-
lem, relevant scholars put forward many artificial intelligent-
based models [26] whose structures and parameters are more
flexible.

B. ARTIFICIAL INTELLIGENT-BASED MODELS
The common artificial intelligent-based models contain sup-
port vector machines [27], fuzzy logic system methods [28],
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k-nearest neighbour [29]–[31] and artificial neural networks
(ANN) [32]–[34]. Among these models, ANNs are consid-
ered as another popular countermeasure for traffic prediction
due to their capability of handling multi-dimensional data
and mining the complex patterns of the measured histori-
cal data [2]. Vlahogianni et al. [35] put forward a neural
predictor, which was composed of time-optimized multi-
layer perceptron (MLP) structures, to provide accurate short-
term traffic flow prediction by using spatio-temporal data.
Tang et al. [36] proposed an improved fuzzy neural network
for multi-step traffic speed forecasting by considering the
periodic characteristic of the traffic flow. With the remark-
able improvements of data storage and processing technol-
ogy, the popular short-term traffic prediction methods have
shifted from ANN-based methods to deep learning methods
which can automatically discover the implicit relationships
inside the data using a general-purpose learning procedure.
Ma et al. [37] firstly introduced long short-term memory
(LSTM) neural network, which can capture the long temporal
dependency for the input sequence, to predict the traffic speed
data of the expressways in Beijing. Chen et al. [38] proposed
an improved LSTM network considering spatio-temporal
correlation in traffic system via a two-dimensional network
to achieve better prediction performance. Yang et al. [39]
built a stacked auto-encoder Levenberg-Marquardt model to
improve forecasting accuracy. Though the deep learning-
based models can learn the spatio-temporal characteristics
efficiently, their prediction performance heavily depend on
the quantity and quality of the dataset. Therefore, single
models, even the deep learning models, are still difficult in
dealing with the dynamic fluctuations of the traffic flow.

C. HYBRID MODELS
To address the aforementioned problems, hybrid mod-
els [40]–[43] may be a better choice to solve the traffic
prediction problem. Vlahogianni [44] proposed a surrogate
model considering fusing three different models to fore-
cast the short-term speed on the freeway. Li et al. [45]
put forward a deep belief network optimized by the multi-
objective particle swarm algorithm to realize multi-time-
step forecasting. Wu et al. [14] established a hybrid deep
neural network, which employs a convolutional neural
network to mine the spatial features and uses the recur-
rent neural network to mine the temporal features of traf-
fic flow, to predict traffic flow in a long-term horizon.
Gu et al. [4] put forward an improved Bayesian combina-
tion method which fuses a traditional parametric model, a
non-parametric model, and an RNN-based model to take
advantage of each method. Wang et al. [46] combined the
empirical mode decomposition (EMD) with the ARIMA
model to predict traffic speeds in varying scenarios such as
mixed traffic flow. Based on Wang’s study, Li et al. [47]
fused an ensemble EMD and random vector functional
link network to predict travel time. Wei and Chen [48]
developed a hybrid model combining the EMD model and
back-propagation neural networks (BPNN) to forecast the

short-term metro passenger flow. Therefore, the thought of
decomposing the raw traffic flow data to obtain more pre-
dictable components has proved to be an efficient way to
improve the performance of normal methods.

Hence, this paper aims to establish a decomposition-based
hybrid model for lane-level traffic flow prediction. In the
proposedmodel, a novel signal decompositionmethod named
CEEMDAN is introduced to deal with raw traffic flow data so
as to improve the predictability of sensitive lane-level traffic
flow. Then, the XGBoost predictors are trained and employed
to make predictions on the decomposed components respec-
tively. Finally, the predicted values of all components are
integrated to obtain the forecasted traffic flow.

III. METHODOLOGY
In this section, the theoretical backgrounds of the CEEMDAN
approach and the XGBoost method are introduced. Then,
a detailed description of the CEEMDAN-XGBoost model is
presented.

A. COMPLETE ENSEMBLE EMPIRICAL MODE
DECOMPOSITION WITH ADAPTIVE NOISE
CEEMDAN is a variation of ensemble empirical mode
decomposition (EEMD) algorithm [49], which provides an
exact reconstruction of the original signal and a better spectral
separation of the modes with a lower computational cost.
Hence, we first introduce the EEMDmethod and then extend
it to the CEEMDAN.

EEMD is an efficient noise-assisted data analysis method
based on EMD [50]. It can overcome the mode mixing
problem of the EMD by adding white Gaussian noise to
the raw data [51]. The EMD approach decomposes the raw
data into several intrinsic mode functions (IMF) or modes.
Note that a signal considered as an IMF must satisfy the two
following conditions. First, the number of extrema points and
the number of zero-crossing points must be equal to 1 or differ
at most by 1. Second, the mean value of the upper and lower
envelope is 0 everywhere.

EEMD defines the final IMF components as the mean of
the corresponding IMFs obtained via EMD over an ensemble
of trials, generated by adding different realizations of the
white noise of finite variance to the original data Y (n). Note
that the generated IMF components are defined as IMFm(n),
m = 1, 2, . . . ,M and M is the number of the IMF compo-
nents. The process of implementing the EEMD algorithm can
be described in the following steps:

Step 1: Add different realizations of white Gaussian noise
ωk (n), k = 1, 2, . . . ,K to the raw data Y (n) and generate the
noise-added data Y k (n) = Y (n) + ωk (n), k = 1, 2, . . . ,K ,
where K is the number of realizations.

Step 2: Each Y k (n), k = 1, 2, . . . ,K is decomposed by
using the EMD algorithm to achieve the mode IMFkm(n),
where IMFkm(n),m = 1, 2, . . . ,M refers to the m-th IMF
mode of Y k (n), k = 1, 2, . . . ,K and M is the number of
modes.
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Step 3: Calculate the m-th IMF mode of Y (n), which is
obtained as the average of the corresponding IMFkm(n) and
is defined as follows:

IMFm(n) =
1
K

K∑
k=1

IMFkm(n) (1)

Though the EEMD algorithm is able to overcome the mode
mixing problem by populating the whole time-frequency
space to take advantage of the dyadic filter bank behaviour of
the EMD algorithm. Some weakness still exists. For instance,
the reconstructed signal includes residual noise and different
realizations of signal plus noise may produce a different
number of modes [49].

To address the above problem and improve the effect of
decomposition, Torres et al. [49] proposed a novel signal
decomposition approach named CEEMDAN. It has been
illustrated in the EEMD algorithm that each Y k (n) is decom-
posed independently from the other realizations and a residue
τ km(n) for each one can be obtained as follows:

τ km(n) = τ
k
m−1(n)− IMF

k
m(n) (2)

In the CEEMDAN method, the decomposition modes are

donated as _IMFm (n) and the first residue can be formu-

lated as:

τ1(n) = Y (n)−_IMF1 (n) (3)

where_IMF1 (n) is achieved by utilizing the same way in the

EEMD.
Then, the first EMD mode can be computed over an

ensemble of τ1(n) plus different realizations of a given noise

obtaining_IMF2 (n) by averaging. The next residue can be

written as:

τ2(n) = τ1(n)−
_IMF2 (n) (4)

This procedure continues with the rest of the modes until
the stopping criterion is satisfied. Let define the function
Em which produces the m-th mode obtained by using EMD
algorithm and define the function Num(·) which generates
the number of extreme points. ωk is the white noise with
a distribution of N (0,1) and εk is the noise standard devi-
ation. Therefore, if Y (n) is the raw data, the pseudo-code
of implementing the CEEMDAN algorithm is described in
Algorithm 1. The given raw data Y (n) can be expressed in
the following equation:

Y (n) =
M∑
m=1

_IMFm + r(n) (5)

Note that the coefficients εk allow selecting the signal-
noise ratio (SNR) at each stage of the decomposition. Accord-
ing to related studies [49], [52], a few hundred of realizations
and the same SNR for all the stages can be employed in the
CEEMDAN algorithm.

Algorithm 1 The Realization of the CEEMDAN
Approach
Input: Y (n)—The raw time-series data

K— The number of realizations
Output: _IMFm (n),m = 1, 2, . . . ,M and r(n)

1 for k = 1 to K do
2 IMFk1 (n)← E1(Y (n)+ ε0ωk (n))
3 end

4
_IMF1 (n)← (

∑K
k=1 IMF

k
1 (n)))

/
K

5 τ1(n)← Y (n)−_IMF1 (n)

6 m = 1
7 while Num(τm(n)) ≥ 2 do
8 for k = 1 to K do
9 IMFkm+1(n)← E1(τm(n)+ εmEm(ωk (n)))
10 end

11
_IMFm+1 (n)← (

∑K
k=1 IMF

k
m+1(n))

/
K

12 τm+1(n)← τm(n)−
_IMFm+1 (n)

13 m← m+ 1
14 end
15 M ← m− 1

16 r(n)← Y (n)−
∑M

m=1
_IMFm

B. EXTREME GRADIENT BOOSTING ALGORITHM
Extreme gradient boosting (XGBoost) [53] is a scalable
and portable boosting algorithm in ensemble learning,
which follows the gradient boosting framework proposed by
Friedman [54]. XGBoost has gained great popularity and
attention since its release due to its excellent performance on a
broad range of machine learning competitions [53]. XGBoost
considers the regularization term and the target function is
defined as follows:

L(θ ) =
∑
i

l(ŷi, yi)+
∑
k

ψ( f k ) (6)

ψ(f ) = γT +
1
2
λ ‖w‖2 (7)

where ŷi is the predicted value; yi is the ground-truth value;
l is a differentiable convex loss function. f k corresponds to an
independent tree structure q and leaf weights w; ψ penalizes
the complexity of the model; T represents the number of
leaves in the tree; λ is donated as the punishing regularization
term helping to smooth the final learnt weights to solve the
over-fitting problem; γ stands for the punishing regulariza-
tion of the leaf tree which has pruning function.

The tree ensemble model in (6) and (7) contains the func-
tions as parameters which cannot be solved through using
traditional optimization methods. Therefore, another way is
used to train the model. Donate ŷ(t)i as the predicted value
of the i-th data at the t-th step. Another tree f t is added to
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minimize the objective as follows:

L(t) =
N∑
i=1

l(yi, ŷ
(t−1)
i + f t (xi))+ ψ( f t ) (8)

Taylor formula can be utilized to transform the objective
function (8) into a second-order polynomial [55], which is
given by:

L̃(t) =
N∑
i=1

[l(yi, ŷ
(t−1)
i )+ h′i f t (xi)+

1
2
h′′i f t (xi)]+ ψ( f t )

=

N∑
i=1

[h′i f t (xi)+
1
2
h′′i f

2
t (xi)]+ ψ( f t )+ c (9)

where h′i = ∂ŷ(t−1) l(yi, ŷ
(t−1)) and h′′i = ∂

2
ŷ(t−1)

l(yi, ŷ(t−1)) are
the first-order and the second-order gradient statistics on the
loss function respectively; c represents the constant item.

By removing the constant terms, (9) can be simplified as:

L̃(t) =
N∑
i=1

[h′i f t (xi)+
1
2
h′′i f

2
t (xi)]+ ψ( f t ) (10)

Set Qj = {i|q(xi) = j} as the instance set of the j-th leaf
node and model objective function is calculated as:

L̃(t) =
N∑
i=1

[h′i f t (xi)+
1
2
h′′i f

2
t (xi)]+ γT +

1
2
λ

T∑
j=1

w2
j

=

T∑
j=1

[(
∑
i∈Ij

h′i)wj +
1
2
(
∑
i∈Ij

h′′i + λ)w
2
j ]+ γT (11)

For a fixed tree structure q(x), the optimal weight w∗j of
the j-th leaf node and the corresponding optimal objective
function values can be respectively expressed as:

w∗j = −

∑
i∈Ij h

′
i∑

i∈Ij h
′′
i + λ

(12)

L̃(t)(q) = −
1
2

T∑
j=1

(
∑

i∈Ij h
′
i)
2∑

i∈Ij h
′′
i + λ

+ γT (13)

Equation (13) can be utilized to measure the quality of the
tree structure. However, it is impossible to iterate over all
possible structures of the trees. Hence, a greedy algorithm
which starts with a leaf and iteratively adds branches to
the tree is introduced to look for the optimal tree structure.
In practice, the evaluation index for the split candidates is
formulated as:

Lsplit

= −
1
2

[
(
∑

i∈IL h
′
i)
2∑

i∈IL h
′′
i +λ
+

(
∑

i∈IR h
′
i)
2∑

i∈IR h
′′
i +λ
−

(
∑

i∈I h
′
i)
2∑

i∈I h
′′
i +λ

]
− γ

(14)

where IL and IR are the instance sets of left and right nodes
after splitting; I = IL ∪ IR.

Algorithm 2 Sparsity-Aware Split Finding
Input: I—Instance set of the current node

Ik = {i ∈ I |xik 6= missing}
d—Feature dimension

Output: Split and default directions with max gain
1 gain← 0 G←

∑
i∈I h

′
i H ←

∑
i∈I h

′′
i

2 for k = 1 to m do
3 GL ← 0,HL ← 0
4 for j in sorted (Ik , ascent order by xik ) do
5 GL ← GL + h′j,HL ← HL + h′′j
6 GR← G− GL ,HR← H − HL
7 Gb←

G2
L/(HL + λ)+ G

2
R/(HR + λ)− G

2/(H + λ)
8 score← max(score,Gb)
9 end
10 GR← 0,HR← 0
11 for j in sorted (Ik , ascent order by xik ) do
12 GR← GR + h′j,HR← HR + h′′j
13 GL ← G− GR,HL ← H − HR
14 Gb←

G2
L

/
(HL + λ)+ G2

R

/
(HR + λ)− G2

/
(H + λ)

15 score← max(score,Gb)
16 end
17 end

However, a challenging problem is to find the optimal
splitting in (14) because it is difficult to compute all possible
splits of continuous features. As the input x of the short-term
traffic flow prediction is sparse, a sparsity-aware split finding
algorithm proposed by Chen and Guestrin [53] is exploited
to look for the optimal splitting in this paper. Algorithm 2
shows the pseudo-code of the sparsity-aware split finding
algorithm. It illustrates that the instance is classified into
the default direction when a value is missing in the sparse
matrix x. The optimal default directions are learnt from the
data.

C. A HYBRID MODEL BASED ON CEEMDAN
AND XGBOOST
To improve the predictability of lane-level traffic flow data
and forecast lane-level traffic flow more efficiently, this
paper establishes a novel decomposition-based hybrid model
named CEEMDAN-XGBoost. The proposed hybrid model
combines the CEEMDANmethod and the XGBoost method.
This section introduces the overall architecture of the pro-
posedmodel revealed in Figure.1 and illustrates how to utilize
it to implement lane-level traffic flow prediction.

Firstly, the original traffic flow data of the target lane
section can be captured with a sampling interval by detectors.
The raw traffic flow data (volume or speed) of the lane can
be donated as Y (n).

Secondly, the CEEMDANmethod is introduced to decom-
pose the original traffic flow data Y (n) into several IMF
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FIGURE 1. The architecture of the CEEMDAN-XGBoost model.

components _IMF i (n), i = 1, 2, . . . , I and a residual

component R(n). I is the number of IMF components.
The specific decomposition algorithm of the CEEMDAN is
shown in Algorithm 1. The CEEMDAN method enables to
transform the complicated raw traffic flow data of the lane
section into several regular de-noised components, which are
beneficial to reduce the difficulty and complexity of predict-
ing the lane-level short-term traffic flow.

Then, the XGBoost predictors can be trained in parallel
based on the historical time series data of the decomposed
components by using Algorithm 2. Let qi(t) donate the ele-

ment of the_IMF i (n) and R(n) at the time interval t . For all

XGBoost predictors, the input time step and the maximum
depth of a tree of each component are set as hs and m
respectively. Hence, the input of the i-th component at the
time interval t can be defined as Qi(t), i = 1, 2, . . . , I + 1,
which is written as:

Qi(t) = [qi(t − hs), qi(t − hs + 1), . . . , qi(t − 1)]T (15)

Meanwhile, during the training process of the XGBoost pre-
dictors, the training output of the i-th component at the time
interval t is defined as qi(t). Based on the above discus-
sion, the implementation of training a CEEMDAN-XGBoost
model can be divided into two phases illustrated in Algo-
rithm 3.

Afterwards, the trained XGBoost predictors are exploited
to make predictions on the decomposed components sepa-
rately at each prediction time interval. The prediction output
of the i-th XGBoost predictor at the time interval t donated
as_qi(t) can be obtained.

Algorithm 3 Realization of Training a CEEMDAN-
XGBoost Model
Input: Q(n)—The raw time series data of traffic flow

hs—The input time step
m—The maximum depth of a tree

Output: The trained CEEMDAN-XGBoost model
1 Phase I: Raw traffic flow decomposition
2 Decompose Q(n) into i(n) and R(n) by Algorithm 1
3 Phase II: Training process of the XGBoost predictors
4 for i = 1 to I + 1 do
5 Tin← [Qi(hs + 1),Qi(hs + 2), . . . ,Qi(n)]T

6 Tout ← [qi(hs + 1), qi(hs + 2), . . . , qi(n)]T

7 Train i− th XGBoost Predictor with Tin and Tout by
Algorithm 2

8 end
9 return trained CEEMDAN-XGBoost model

At last, the prediction traffic flow data of the lane section
at the time interval t is the sum of the prediction values of
all XGBoost predictors in the CEEMDAN-XGBoost model.
The final fusion prediction result is written as q̄(t), which can
be calculated as follows:

q̄(t) =
I+1∑
i=1

_qi(t) (16)

On the whole, the procedures for implementing lane-based
traffic flow prediction by utilizing the CEEMDAN-XGBoost
model are summarized as follows:

Step 1: Collect the raw traffic flow data of the target lane
section by detectors.

Step 2: Employ the CEEMDAN method to decompose
the raw data into several IMF components and a residual
component, and divide the decomposed time series data into
a training dataset and a testing dataset.

Step 3: Train the XGBoost predictors in parallel with the
training dataset by setting relevant parameters.

Step 4: Predict the values of the components by using the
trained XGBoost predictors at each prediction time interval.

Step 5: Calculate the predicted traffic flow of the lane
section at each prediction time intervals by accumulating the
predicted values of all XGBoost predictors.

IV. EXPERIMENT
A. EXPERIMENTAL DATASET AND ENVIRONMENT
To test the practicability and accuracy of the proposed model,
the real-world traffic flow data of lanes captured by the
remote traffic microwave sensors (RTMS) located at six road
sections of the 3rd Ring Road in Beijing were employed to
carry out relevant experiments. TABLE 1 and Figure.2 pro-
vide observation locations and detailed information about
the lane sections. The sampling periods of the traffic flow
range from 2014.1.6 to 2014.1.19 and from 2014.2.17 to
2014.2.23 with the sampling time interval of 2 min. Hence,
the entire length and the total number of the records at each
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TABLE 1. The detailed information of the observation lane sections.

FIGURE 2. The location of the observation lane sections.

FIGURE 3. The example of raw traffic flow of at road section P1 during
a day.

lane section are three weeks and 15120 with data validity rate
higher than 95% [56].

To ensure the quality of the raw traffic flow data and
improve the reliability of the prediction results, we took
the threshold approach and traffic flow rule-based approach
to identify and eliminate abnormal data. Then, the miss-
ing and erroneous records were properly remedied by using
temporally adjacent records [37]. Figure.3 reveals the raw

traffic flow data during a workday at three lanes of the road
section P1.

Note that the entire dataset was divided into three parts.
The first part (2014.1.6-2014.1.10 and 2014.1.13-2014.1.17)
and the second part (2014.1.11-2014.1.12 and 2014.1.18-
2014.1.19) were used to train the parameters of the mod-
els. The two parts contained the data during workdays and
weekends respectively. The rest part (2014.2.17-2014.2.23)
of the dataset was employed to test the models with trained
parameters.

The experimental environment is based on a Dell computer
with Intel(R) Core(TM) i7-8700 CPU@3.20 GHz and 8GB
RAM. We employ python 3.6.5 with XGBoost 0.9, Tensor-
flow 2.0, and Keras 2.2 to implement relevant models.

B. MEASURES OF EFFECTIVENESS
To evaluate the performance of the CEEMDAN-XGBoost
model and benchmark models, the evaluation measures of the
experiments include mean absolute error, root mean square
error, mean absolute percentage error, and equality coeffi-
cient [57]. Taken together, the four measures evaluate an
assessment to bemade of accuracy and precision of prediction
reference. These measures are defined as follows.

Mean absolute error (MAE):

MAE=
1
S

S∑
t=1

∣∣ŷt − yt ∣∣ (17)

Root mean square error (RMSE):

RMSE=

√√√√ 1
S

S∑
t=1

(
∣∣ŷt − yt ∣∣)2 (18)

Mean absolute percentage error (MAPE):

MAPE= 1
S

S∑
t=1

∣∣∣ ŷt−ytyt

∣∣∣× 100% (19)

Equality coefficient (EC):

EC=1−

√∑S
t=1

(
ŷt − yt

)2√∑S
t=1

(
ŷt
)2
+

√∑S
t=1 (yt)

2
(20)

where ŷt is the predicted traffic flow and yt is the actual traffic
flow. S is the number of the prediction time intervals.

Note that the MAE, RMSE, and MAPE represent the
accuracy of the prediction models. EC reflects the prediction
stability and fitting degree.

C. BENCHMARK MODELS
In order to demonstrate the superiority of the proposed
model, ARIMA, MLP, BPNN, LSTM, Gated Recurrent
Unit neural network (GRU), XGBoost, Wavelet-XGBoost,
EMD-XGBoost, and EEMD-XGBoost are selected as bench-
mark models. Note that the decomposition-based models
including theWavelet-XGBoost, the EMD-XGBoost, and the
EEMD-XGBoost are utilized to compare the performance of
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different decomposition approaches including the Wavelet,
the EMD, and EEMD, and the CEEMDAN approach. The
relevant parameters and settings of the baseline models are
illustrated as follows.

For the ARIMA, the optimal order p, d, q are determined
by the best Akaike information criterion (AIC) value using
the time series data in the two training datasets. For the
traditional non-parametric such as the MLP, the BPNN, and
the XGBoost model, the traffic flow of target lanes and their
adjacent lanes at the same road section during previous ten-
time intervals are utilized as the input variables of these
models considering the strong relevance of the traffic flow
between lanes shown in Figure.4. Besides, the MLP selects
the following architecture: 30 units in the input layer, two
hidden layers with 60 units in each hidden layers, and one
unit in the output layer. The activation function is set as
Relu function. The BPNN has an input layer with 30 units,
a hidden layer with 60 units and an output layer with one
unit. For the deep learning models including the LSTM and
the GRU which can both capture nonlinear traffic dynamic
effectively and automatically determine the optimal time lags,
the number of the hidden layer is 100 and the largest time
lags are chosen to be 10. The optimizers of two deep learning
models are both set as Adam which uses an adaptive learning
rate for stochastic optimization.

FIGURE 4. Correlation analysis of the traffic flow at different lanes.

For the XGBoost-based models including the XGBoost,
the Wavelet-XGBoost, the EMD-XGBoost, the EEMD-
XGBoost, and the CEEMDAN-XGBoost model, the learning
rate and the maximum depth of a tree are selected as 0.1 and 6
respectively. The early stopping round is 20 and the objective
function is to minimize the root mean square error between
the predicted values and the ground-truth values. Note that
the noise standard deviation of the EEMD and CEEMDAN
are both set as 0.2. In addition, the numbers of realizations
of the EEMD and CEEMDAN are chosen to be 500, and
the maximum number of sifting iterations of the above two

FIGURE 5. The decomposition result of the CEEMDAN method at lane
section P1-L1 during a day (2014.1.6).

decompositionmethods are 100.Meanwhile, thewavelet type
of the Wavelet-XGBoost is set as db [43].

V. RESULTS AND DISCUSSION
A. THE RESULT OF THE CEEMDAN METHOD
Figure.5 reveals the decomposition results of the traffic flow
during a day at the observation location P1-L1. It can be
found that complicated original traffic data shown in Figure.3
is decomposed into 15 low-noise IMF components and one
residual component. If these components in Figure.5 are syn-
thesized, the wave of the original traffic flow in Figure.3 can
still be obtained. If the prediction errors on each simple wave
are lower, the prediction results achieved by integrating the
results of simple waves will be more precise than the results
forecasted based on the complicated original wave. There-
fore, it is supposed that the decomposition-based models
enable to decrease the unpredictability of lane-level traffic
flow prediction through making predictions on the regular
decomposed waves of the traffic flow.

B. COMPARISONS OF THE PREDICTION RESULTS
OF DIFFERENT MODELS
In this section, Table 2 shows the overall performance of the
different models in the task of making a single-step-ahead
prediction by taking the results of all lanes as a whole. Among
the single models, different models reveal pretty similar per-
formance in the aspect of prediction accuracy and fitting
degree. Meanwhile, it is interesting to find that the MAE,
MAPE, and RMSE of the ARIMA model are slightly lower
than those of the non-parametric methods (MLP, BPNN,
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TABLE 2. Comparison of the overall performance of different models.

and XGBoost) and deep learning models (LSTM and GRU).
Meanwhile, the models such as the MLP, the BPNN, and
the XGBoost model which consider the spatio-temporal
characteristics of the traffic flow don’t show obvious
advantages compared with the ARIMA, LSTM and GRU
which only learn the temporal characteristics of the traffic
flow.

However, compared with the single models using raw
traffic flow data, the decomposition-based hybrid models
demonstrate huge improvements on the MAEs, MAPEs,
RMSEs, and ECs. The EMD-XGBoost model outperforms
the XGBoost model with improvements 8.40% and 2.28 on
MAPE and RMSE respectively.

In addition, the proposed CEEMDAN-XGBoost model
illustrates the best performance among the hybrid models.
The MAE, MAPE, and RMSE of the CEEMDAN-XGBoost
model are 0.25, 1.55% and 0.32 lower than those of the
EEMD-XGBoost model which reveals the second-best per-
formance among the eight models. Meanwhile, the EC of
the CEEMDAN-XGBoost model is 0.0042 more than that
of the EEMD-XGBoost model. The experimental results also
prove that the decomposition effectiveness of the CEEMDAN
approach is more efficient than that of the Wavelet approach,
the EMD approach and the EEMD approach. Hence the
CEEMDAN approach can improve the accuracy and fitting
degree of the XGBoost model more significantly.

To compare the prediction results of different models at
different lanes, the lanes are divided into three types including
the inside lanes, middle lanes, and outside lanes according
to their physical characteristics. Table 3 shows the overall
prediction results of different models at the above three types
of lanes. It is demonstrated from the MAPEs and ECs that
the accuracy and the fitting degree of different models at the
inside lanes and middle lanes are superior to those of the
models at the outside lanes. The possible reason for this phe-
nomenon is that the frequent acceleration and deceleration of
merging vehicles at the outside lanes affect the continuity and
consistency of the traffic flow, which makes the traffic flow
more unstable and difficult to forecast.

As shown in Table 3, the CEEMDAN-XGBoost model
always has the lowest MAE, MAPE, and RMSE at different
lanes. Even at the outside lanes, the EC of the CEEMDAN-
XGBoost model can reach up to 0.9633, which is even higher

TABLE 3. Comparison of the overall performance of different models at
different types of lanes.

FIGURE 6. The prediction results of the lane-level traffic flow of the
CEEMDAN-XGBoost model at P1. (a) On a workday; (b) On a weekend.

than that of the Wavelet-XGBoost and the EEMD-XGBoost
model at the middle lanes. Therefore, the CEEMDAN-
XGBoost model can effectively fit the complex nonlinear
changes in traffic flow at different lanes and predict the traffic
flow in the future accurately and stably.

Figure.6 presents the prediction results of the
CEEMDAN-XGBoost model at three lanes on a workday
(2014.2.17) and on a weekend (2014.2.22). In Figure.6, the

42050 VOLUME 8, 2020



W. Lu et al.: Hybrid Model for Lane-Level Traffic Flow Forecasting Based on Complete EEMD and XGBoost

FIGURE 7. Comparison of the prediction errors for different methods
(a) MAE; (b) MAPE.

CEEMDAN-XGBoost model is capable of capturing the
tendency and volatility of the traffic flows of the different
lane sections during the whole day. Even during the morning
and evening peak periods on the workday when the traffic
volume fluctuates greatly due to the complex traffic condi-
tion, the CEEMDAN-XGBoost model still has a dominant
performance in fitting the sudden change of traffic volume
and maintaining the prediction errors stable.

Figure.7 gives the overall prediction errors produced by
these different methods in several lane sections. As shown
in Figure.7, the proposed model outperforms other models
in terms of the maximum, the minimum and the median
of errors. Besides, it can be found that the CEEMDAN-
XGBoost model has a smaller distance between Q1 and Q3
and the error distributions of the CEEMDAN-XGBoost
model are more concentrated than those of other models.
Hence, the MAE and MAPE of the proposed method shown
in Figure.7 are lower than those of other methods, indicating
that the CEEMDAN-XGBoost model is more precise and
stable.

Figure.8 illustrates the correlation distribution between
the actual values and the predicted values from six models
including the ARIMA, the BPNN, the LSTM, the XGBoost,
the EMD-XGBoost, and the CEEMDAN-XGBoost model
in seven days. R2 represents the correlation coefficient to
evaluate the relevance between observed results and pre-
dicted results. From the observation in Figure.8, it can be
found that the distributions of traffic flow sampling data are
continuous from the low values to the high values. More-
over, it can be concluded that the CEEMDAN-XGBoost
model produces better prediction results with higher R2 com-
pared with other models. In addition, the EMD-XGBoost
achieves higher R2 than four single models and it indi-
cates the common superiority of the decomposition-based
methods.

FIGURE 8. Correlation distribution of the predicted results of the
different models (a) ARIMA; (b)BPNN; (c) LSTM; (d) XGBoost;
(e) EMD-XGBoost; (f) CEEMDAN-XGBoost.

FIGURE 9. Prediction performance of the CEEMDAN-XGBoost model with
different parameters. (a) MAE; (b) RMSE; (c) MAPE; (d) EC.

C. PARAMETER ANALYSIS OF THE
CEEMDAN-XGBOOST MODEL
In the framework of the proposed model, the input time step
hs and the maximum depth of a tree m in the XGBoost
algorithm are the two critical parameters which may affect
the prediction performance of the CEEMDAN-XGBoost
model. Therefore, as shown in Figure.9, we examine the
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CEEMDAN-XGBoost models with different settings of the
two parameters. The input time step hs is tuned from 1 to 20
with a step of 1, which means the input time horizon increase
from 2 min to 40 min. Meanwhile, the maximum depth of a
tree m is tuned from 1 to 20 with a step of 1.
Figure.9 indicates that when the input time step is fixed,

the MAEs, RMSEs, and MAPEs firstly drop and then rise a
little with the increase of the maximum depth of a tree. On the
contrary, the ECs firstly rise and then drop a little with the
increase of the maximum depth of a tree. In addition, when
the maximum depth of a tree is fixed, the MAE, RMSE, and
MAPE firstly decrease and then stable with the increase of
the input time step. It can be learned from Figure.9 that the
recommended values of the input time step hs and the maxi-
mum depth of a treem both range from 5 to 10 considering the
time consumption and prediction performance of the model.

FIGURE 10. Prediction performance of the XGBoost-based models in
longer prediction horizon. (a) MAE; (b) RMSE; (c) MAPE; (d) EC.

D. COMPARISON OF THE XGBOOST-BASED MODELS IN
THE MULTI-STEP-AHEAD PREDICTION
Forecasting traffic flow over several time intervals in the
future allows a wider range of applications to take advantage
of predictions. Figure.10 compares the prediction results of
the XGBoost-based models with the look-ahead time step
increasing from 1 to 10, which corresponds to the prediction
horizon ranging from 2 min to 20 min. In general, the accu-
racy and the fitting degree of the CEEMDAN-XGBoost
model deteriorate slightly with the increase of the look-ahead
time step, and the CEEMDAN-XGBoost model shows better
performance than the EMD-XGBoost and EEMD-XGBoost
model in terms of the MAE, RMSE, MAPE, and EC. It is
worth noting that when the prediction horizon reaches up to
20 min, the prediction performance of the proposed model
is still better than that of the single models including the
ARIMA, BPNN, MLP, XGBoost, LSTM, and GRU with the
prediction horizon set as 2 min shown in TABLE 1. Hence,
the CEEMDAN-XGBoost model can deal with multi-step-
ahead traffic prediction efficiently.

VI. CONCLUSION AND FUTURE WORK
Reliable lane-level short-term traffic prediction is of critical
importance for both CAVs and HDVs in the CAVH system.
This paper presents a novel hybrid model for short-term
traffic flow prediction by fusing complete ensemble empirical
mode decomposition with adaptive noise and extreme gradi-
ent boosting algorithm. The CEEMDANmethod is utilized to
decompose the traffic flow into multiple highly predictable
IMF components including one residual component. The
decomposed components are sent to the XGBoost algorithm
for training and forecasting separately. At last, the predicted
values of all decomposed components are accumulated to
obtain the predicted traffic flow of the proposed model.
To validate the effectiveness of the proposed CEEMDAN-
XGBoost model, the real-world traffic flow data from the
3rd Ring Road of Beijing were collected by RTMSs to con-
duct experiments with the data of the first two weeks for
training and the data of the rest week for testing. In addi-
tion, the ARIMA, MLP, BPNN, LSTM, GRU, XGBoost,
Wavelet-XGBoost, EMD-XGBoost, and EEMD-XGBoost
model were employed as the benchmark models. The perfor-
mance of the proposed method was evaluated in terms of four
measurement criteria: MAE, RMSE, MAPE, and EC.

Several useful findings and recommendations can be gen-
erated in this study. (1) Experimental results indicate that
the CEEMDAN-XGBoost model can efficiently learn and
capture the traffic patterns under different traffic condition
at different types of lanes. (2) Comparisons with benchmark
models reveal that the proposed model achieves superior
prediction accuracy and stability over the ARIMA, MLP,
BPNN, LSTM, GRU, XGBoost, Wavelet-XGBoost, EMD-
XGBoost, and EEMD-XGBoost model in the task of making
short-term lane-level traffic flow prediction. (3) The input
time step and the maximum depth of a tree both affect the
prediction performance of the CEEMDAN-XGBoost model.
The proposed model obtains its satisfactory prediction per-
formance with the two parameters both ranging from 5 to 10.
(4) The CEEMDAN-XGBoost model outperforms the other
XGBoost-based models such as the Wavelet-XGBoost,
EMD-XGBoost and EEMD-XGBoost model in the task
of forecasting both single-step-ahead and multi-step-ahead
lane-level traffic flow.

The future work will be conducted by considering both
spatial and temporal information into the XGBoost models.
The periodic characteristics of the original traffic flow can
be mined to improve the performance of the proposed
model. In addition, the CEEMDAN-XGBoost model pro-
vides another unique perspective on solving the complex
nonlinear issues such as the vehicle trajectory prediction and
the travel time estimation.
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