SPECIAL SECTION ON ARTIFICIAL INTELLIGENCE IN PARALLEL
AND DISTRIBUTED COMPUTING

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 5, 2020, accepted February 18, 2020, date of publication February 28, 2020, date of current version March 10, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2976879

A Real-Time Naive Bayes Classifier
Accelerator on FPGA

ZHEN XUE"“12, JIZENG WEI', AND WEI GUO'-2

I College of Intelligence and Computing, Tianjin University, Tianjin 300354, China
2Tianijn Key Laboratory of Advanced Networking, Tianjin 300354, China

Corresponding author: Jizeng Wei (weijizeng @tju.edu.cn)

This work was supported in part by the Tianjin Key Laboratory of Advanced Networking (TANK), and in part by the Science and Technology
Key Project of Tianjin under Grant 17YFZCGX01180 and Grant 18JCQNJC00400.

ABSTRACT In this paper, we propose a real-time hardware naive Bayes classifier (NBC) which is
implemented on field programmable gate array (FPGA). We first use logarithm transformation based look-up
table and float-to-fixed point process to simplify the calculations in naive Bayes classification algorithm.
The methods clear up the multiplication and division operations of floating points completely. Based the
simplified algorithm, we design our hardware architecture which includes both training and inference part.
A novel format of logarithm look-up table with very limited items and a shifter in it are working together
to calculate the logarithm value of any number. There are several processing element (PE) arrays in the
accelerator where each PE in an array is running in parallel, which speed up the classification process
remarkably. The experiments prove that the proposed accelerator has much better real-time efficiency
than the general processor, some hardware Bayes classifiers and convolutional neural network (CNN)
accelerators. It outperforms the NBC and semi-NBC accelerators and costs far less resources on chip than
many CNN accelerators. Its utilization of LUT, FF and BRAM is only 10%, 0.05% and 2% of CNN
accelerators on average. The experimental results over five datasets of different magnitudes show the
accelerator has almost no loss of classification accuracy comparing with ARM Cortex-A9 processor. Their
deviation of the classification accuracy is only 0.39% on average. What’s more, it improves the performance

of the training phase and the inference phase about 7.9+e4 and 8.3+e4 on average, respectively.

INDEX TERMS Accelerator, FPGA, hardware architecture, naive Bayes classifier.

I. INTRODUCTION

Recently, Artificial Intelligence & Internet of Things (AIOT)
[28] has gained widely concern with the rapid development
of 5G communication. AloT is an integrate technology of
artificial intelligence (AI) and Internet of Things (IoT), which
produces and collects massive data to execute high-level
Al applications on edge devices. As is well known, edge
devices usually have limited resources such as storage space
and computing power. Therefore, there are new and higher
requirements to the implementation of machine learn-
ing (ML) algorithms [1] on edge devices. However, most of
current ML applications running on general processors have
not been able to meet the needs of AloT. Fortunately, cus-
tomized hardware accelerators can fit the scenarios perfectly
because of the efficiency and low-cost. From this point of

The associate editor coordinating the review of this manuscript and

approving it for publication was Songwen Pei

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

view, it is an inevitable trend to customize special hardware
accelerators for ML algorithm.

As an important kind of ML methods, classification
algorithms have been broadly studied and improved,
including naive Bayes classifier (NBC) [18], [38], [41],
neural network (NN) [19], [31], [40], deep learn-
ing (DL) [20], [39], [42], decision tree (DT) [21], [43], [44],
etc. Naive Bayes classifier has been well developed because
of its computational simplicity and high efficiency, which are
widely used in various scenarios such as spam filtering [4],
image classification [5] and so on. A NBC is a probabilistic
machine learning model that is used for classification task.
The mathematic crux of it is based on Bayes theorem. It cal-
culates the posteriori probability of a test feature vector of
each possible category and then selects the category with the
maximum probability as the classification result. Although
NBC is simpler than other ML algorithms, it can get fairly
good classification precision in so many complex real situa-
tions. At the same time, there are only a few arguments in it

40755

https://orcid.org/0000-0002-8972-7606
https://orcid.org/0000-0003-0810-1458

IEEE Access

Z. Xue et al.: Real-Time NBC Accelerator on FPGA

and is very highly scalable, which makes NBC can response
in real time and pretty hardware-friendly. These good features
make NBC a really ideal machine learning classification
algorithm orienting hardware construction to maximize its
performance.

At present, although NBC has been applied in various
fields, the design of special hardware architecture is rare.
Most naive Bayes Classifiers are implemented on general
processors. It is not only inefficient and costly, but also
can cause difficulties in the developing of AloT, which
involves large data processing such as edging computing and
interaction.

With the rapid development of big data, there is massive
data movement between edge devices and cloud in a AloT
system. Traditionally, edge devices collect a lot of data and
send them to the cloud, where a ML algorithm, e.g. CNN
trains the data and then the cloud sends the model to the
edge device. Although CNN is a very efficient ML method,
this processing pattern costs much time and area resources.
As the training part of CNN is too costly to implement on a
edge device, making the training and inference part have to
be implemented apart in cloud and edge devices. However,
to some lightweight applications which NBC algorithm can
handle, the resources of edge devices are sufficient to imple-
ment both training and inference part. Thus, much data move-
ment can be avoided, which can reduce a lot of time cost and
resource consumption. Considering all the above, we propose
a NBC accelerator including both training and inference part
to make lightweight applications more efficient.

Motivated by all the above, we design our hardware NBC
accelerator including both training and inference part. It com-
pletely avoids multiplications and divisions of floating points
by shift operations and logarithm transformation Based a
novel logarithm look-up table (LUT). As far as we know,
we are the first who use shift operations and a logarithm
LUT to clear up division. Firstly, we simplify NBC algorithm
to make it more suitable for hardware implementation. The
methods used are float-to-fixed point process and logarithm
transformation basing LUT method. By using logarithm
transformation, multiplications and divisions can be replaced
by additions and subtractions. The logarithm LUT stores only
a small quantity of data and can get the logarithmic value
of any number. What’s more, all the data in the hardware
accelerator is converted to fixed-point numbers. These opti-
mization methods working together help reduce resource con-
sumption and simplify calculations greatly. Then, we design
our hardware NBC basing on the optimized algorithm, which
includes both training part and inference part. Roughly,
the accelerator consists of many PE arrays and memories.
Each PE in a PE array has the same function and archi-
tecture. When a PE array is running, PEs are executing in
parallel so that the classifier can be speeded up. Therefore,
the efficiency of NBC accelerator is improved remarkably.
Finally, from experiments using several datasets, it can be
found that our hardware accelerator has better performance
than software implementation, some other NBC, semi-NBC

40756

and CNN accelerators under the same conditions. It not only
has almost no loss of classification accuracy comparing with
ARM Cortex-A9 processor, but also consumes very limited
resources on chip.

The contributions of this paper are summarized as follows:
(1) We optimize naive Bayes classification algorithm to
make it more friendly to hardware implementation. Float-
to-fixed point process and logarithm transformation based
LUT method are used to simplify the calculations in NBC.
Moreover, a novel format of logarithm LUT is designed,
which can get the logarithmic value of any number by storing
only a few logarithmic data.

(2) Basing the optimized algorithm, we propose our NBC
hardware architecture which includes both training and infer-
ence part. The NBC accelerator is sped up in many processes
by running PEs in parallel in the same PE array. What’s more,
multiplication and divisions of floating points are completely
avoided in the NBC accelerator. Moreover, shift operations
and the logarithm LUT are used to replace division operations
innovatively, which improves the performance greatly.

(3) A set of experiments demonstrate that our design has
a much better real-time performance than software NBC,
some hardware Bayes classifiers and CNN accelerators. It has
almost no accuracy loss comparing with general processors
implementation and outperforms the NBC and semi-NBC
accelerator. Moreover, the NBC accelerator outperforms
ARM Cortex-A9 processor 7.94+e4 and 8.3+e4 times in
training and inference part, respectively. What’s more, our
design costs very limited resources comparing with many
CNN accelerators. The utilization of LUT, FF and BRAM is
only 10%, 0.05% and 2% of CNN accelerators on average.

This paper is organized as follows. Section Il reviews some
related works. We introduce the mathematical principles of
naive Bayes Classifier in section III. In section IV, some
methods are discussed to optimize naive Bayes Classifier
algorithm, which include logarithm based LUT method and
float-to-fixed point. We propose the hardware architecture in
section V, where the training part and the inference part will
be discussed in detail. Section VI shows some experiment
results and analyzes the merits of our design. The factors
affecting classification precision, time cost or resources uti-
lization will also be exploited. Finally, in section VII, we will
conclude the paper briefly.

Il. RELATED WORKS

As the simplest form of Bayes classifier, naive Bayes clas-
sifiers are implemented on hardware platforms for different
application scenarios [23]-[27]. At present, many special
hardware design of NBC has been proposed. Meng et al. [12]
have proposed a novel hardware architecture of naive Bayes
classifier for visual object recognition. They aim at binary
feature vectors and assume the training data obeys Bernoulli
distribution. By using this novel method, about half of the
probability calculation can be avoided by doing subtractions.
As the sum of probabilities of components value taking
“1” and “0” is bound to be 1. What’s more, they convert

VOLUME 8, 2020

Z. Xue et al.: Real-Time NBC Accelerator on FPGA

IEEE Access

multiplication of probabilities in inference part of NBC into
addition and subtraction operations by using logarithm LUT.
Therefore, the performance of the classifier is remarkably
improved on the premise of a high accuracy.

To be more efficient, many acceleration methods are
applied to hardware NBC. Usually, there is a need to use
transcendental functions log() to simplify the computation
to speed up a hardware accelerator. Therefore, avoiding
the computation of log() is very necessary. So far, there
are so many useful methods to solve the problem. Refer-
ences [2], [3], [6], [16], [17], [22], [45] Paul et al. [2] have
shown an efficient approach to compute log() and antilog()
in hardware. The approach is based on LUTs and followed
by an interpolation step, resulting in an area-efficient, fast
design. The main idea of their approach is to use LUTs along
with linear or quadratic interpolation, which avoids multipli-
cation and division subtly. Bariamis et al. [3] present a novel
method called ALA (Adaptable Logarithm Approximation),
which approximates the base-2 logarithm of integers at an
arbitrary accuracy on a hardware platform. Their approach
is implemented based on a piecewise liner approximation
methodology. So the logarithm function can be approximated
by an arbitrary number of linear segments.

GI Webb et al. [13] propose a new efficient technique that
uses a weaker attribute independence assumption than NB
called AODE (Aggregating One-Dependence Estimators),
which averages all of a constrained class of classifiers. AODE
improves prediction accuracy without undue computational
overheads and it is particularly suited to incremental learn-
ing. Choi and Lee [14] designed and implemented a parallel
hardware of semi-naive Bayes Classifier on FPGA. They
proposed a method called parallel semi-naive Bayes (PSNB)
classification based on stochastic discrimination (SD) theory
innovatively, which simplifies the calculation process and
improves the classification efficiency.

Instead of aiming at binary feature vectors like [12],
the design proposed in this paper can deal any kind of numeric
feature vectors. It is known that the main computation bot-
tleneck of NBC algorithm is the division and multiplica-
tion computation in the training and the inference phase.
To improve the efficiency and reduce the time and area cost
of the NBC accelerator, we remove all the multiplication and
division operations of floating points in our design, while [12]
use a float-point division operator. What’s more, we cus-
tomize a novel logarithm LUT for our NBC accelerator to
calculate logarithm values more efficiently. While the loga-
rithm computation hardware architectures above mentioned
are designs to calculate log() function rather than aiming at
specific applications.

Ill. THE THEORY OF NAIVE BAYES CLASSIFIER

Assume there is a dataset {(Xi, yi), i=1,2,...,N} from C
categories. X i = (xé, xi, e, x,’;_l) is a n-dimensional feature
vector and y' is its label, i.e. the category, and {y' =c,c =0,
1, ..., C—1}. There is a new feature vector X whose label is

VOLUME 8, 2020

unknown. Its label can be predicted as y:

y= argmax P(y= c|X))
c=0,1,...,C—1

The Bayes theorem can be used to compute y:

P(y = o)P(xXo, X1, - -

P(X)
There is a very important presupposition in naive Bayes,
which is that all components in a feature vector are com-

pletely independent. Thus, the joint probability equals the
product of their probabilities.

S Xa—ily=o0)

@

y = argmax
¢=0,1,...,C—1

n—1
P&, 50, Gily=0=][[P&Ely=c) ()
k=0

What’s more, P(S(\) is always the same to a specified data set.
Thus,

n—1
= argmax P(y=rc) l_[PGrly =) “)
C=0,1 Cc—1 k=0

The relative frequency can be used to estimate probability, i.e.

Numy—.

Poy=c=—" &)

If set My, = {my|l < i < t} denotes the value set of
component x,(0 < k < n—1) of a feature vector and
|My| = t. Then the conditional probability can be got.
Numy:cﬂxk =ny,;

POy =myly=c) = (6)

Numy—
In (5) and (6), Num is the number of the data set and
Numy—. is the number of samples whose label is c.
Numy—cny, —my, denotes the number of samples whose label is
¢ and the value of component x; is my;.
Laplace smooth is usually applied to (5) and (6) to avoid
zero probabilities:

Numy—. + 1
Pyl=c)= ——— 7
(y=o0) Num +C (N
P(oo = e ¥ L
X = Mmpg. =C) =
k kil Numy—. +t

In conclusion, NBC get Numy—. and Numyzcnxkzmki by
doing some counting operations through training data in the
training phase. Then it calculates all kinds of probabilities
using (7) and (8). NBC uses (4) to compute the predic-
tion label y of a test feature vector in the inference phase.
Table 1 summarizes some common arguments in this paper.

IV. HARDWARE DESIGN ORIENTED NBC ALGORITHM

Although NBC is a relatively simple ML classification algo-
rithm, it involves a lot of complex calculations of floating
points such as multiplications and divisions. All these com-
putation will damage the efficiency of the NBC accelerator if
they are implemented on the FPGA directly. Because of these
factors, it is very necessary to simplify the NBC algorithm

40757

IEEE Access

Z. Xue et al.: Real-Time NBC Accelerator on FPGA

TABLE 1. Common arguments in this paper.

Arguments Description
The number of samples in the training set

N

C The number of categories
c

n

m

t

The label of a sample
The dimension of feature vectors
ks The value of the kth component
The number of possible values of a component

to make it more suitable to hardware design. According to
section III, the main computation in NBC is the divisions
in the training phase and the multiplications in the inference
phase.

To make NBC algorithm more friendly to hardware imple-
mentation, we clear up all the multiplications and divisions
of floating points in it by using logarithm transformation
based on LUT and float-to-fixed point process. According to
section III, there are massive floating-point calculations of
multiplications and divisions in both training and inference
phase, which require lots of time and space. In general, edge
devices in a AIoT system have very limited resources, includ-
ing storage space, computation power, bandwidth and so on.
Therefore, it will damage the efficiency of NBC certainly if
the large quantities of complex floating-point computation
operations are put into hardware directly. Under the premise
of almost no loss of classification accuracy, we use loga-
rithm transformation based on LUT method to simplify the
calculations in NBC algorithm. In this way, all the compu-
tation operations in NBC are converted into additions and
subtractions. What’s more, all the floating-point numbers
are converted into fixed-points, which fits real edge-device
scenarios perfectly.

A. LOGARITHM TRANSFORMATION

We store many base-2 logarithm values in memory and using
them to transform the multiplications and divisions into addi-
tion and subtraction operations. By using (5) and (6), it needs
to do lots of divisions to get the various probabilities. There
are also massive multiplications when computing posteriori
probabilities in the inference part of NBC, according to (4).
Thus, if all the divisions and multiplications are avoided,
much time and space resources will be saved.

After taking logarithm of the right side of (4), the
equality is still tenable. Meanwhile, the divisions and mul-
tiplications are converted into additions and subtractions.
According to the inference phase of naive Bayes classi-
fier in section III, the prediction result is the label which
makesP(c)]_[Z;g) P(x;|c) take the maximum value. In this
sense, there is no need to calculate the precise posteriori prob-
abilities as (4) is still right when its right side is monotonically
transformed (It takes the minimum if it is transformed by a
monotonic decreasing function). That is, P(c)]_[Z;(l) PG |c)
can be the variable of any monotonic function as the trans-
formation does not change the prediction label, i.e. the result
of (4). Fortunately, logarithmic function is a monotonic

40758

function and it can be used to avoid multiplication and
division operations. What’s more, the probabilities are suit-
able for the definition domain of variables of logarithmic
functions as they are non-negative values. Basing on the
above-mentioned considerations, we use logarithm transfor-
mation to convert multiplications and divisions into addition
and subtraction operations. We discuss the logarithm transfor-
mation in the inference phase firstly and then in the training
phase in the following paragraphs.

In the inference part, all the multiplications are transformed
into additions. According to section III, (4) is used to compute
the prediction label of a feature vector. The label can also be
got by taking the logarithm of the right side of the equation:

n—1
$= argmax |logyP(y=c)+ » log, P(Gly=c)| (9)
C:O,l C—l k:0

So these complex multiplications are converted into com-
paratively simple additions. To get the final prediction label,
we need to obtain the various probabilities which are calcu-
lated in the training phase. Similarly, the logarithm values of
the probabilities replace the probabilities in (7) and (8) by
using logarithm transformation in the training phase.

log, P(c)=log, (Numy—.+1)—log, (Num+C) (10)
lngP(Xk =my; |C) = l()g2 (Numyzcﬁxk =my;) - log2 (Numyzc + t)
(11)

So far, all the multiplications and divisions in NBC have been
converted into additions and subtractions, which reduces the
time and space cost remarkably.

B. LOGARITHM LUT

We get logarithm values of probabilities by using logarithm
transformation and a novel format of logarithm LUT, which
stores only a few logarithm values and can get the loga-
rithm of any number by fetching and some addition opera-
tions. In section IV A, although logarithm transformation is
used to simplify the computation in training and inference,
the numerical calculation is still very complex because it
involves transcendental functions, i.e. logarithm functions.
Thus, to make it more friendly to edge-device computation,
we build a LUT to store the logarithmic values rather than
calculate them in real time. It is referred as logarithm LUT.
In this way, a lot of computation operations in NBC can
be replaced by memory access operations to reach higher
efficiency and performance.

The basic idea of the logarithm LUT is selecting a few
appropriate numbers in a small interval and storing their
base-2 logarithm values in memory. The logarithm value of a
number can be calculated by decomposing it into the product
of a number in this interval and a power of two. According
to (10) and (11), all data needing to take logarithm is the
counting results after Laplace smoothing, which is denoted
by N. Therefore, N can be equal to Numc, Numy—, + 1,
Numy—_. +t or Numyzmxk:mki + 1. The other count results
are unknown before the counting work is finished excepting

VOLUME 8, 2020

Z. Xue et al.: Real-Time NBC Accelerator on FPGA

IEEE Access

Num + C is constant to a training dataset. Easily, it can be
known that the antilogarithm range is the integer interval
[0, Num 4 C]. So the range of the logarithmic results is a
real interval [—oo, log, (Num + C)]. Such a large number
of values stored in on-chip memory not only occupies too
many memory cells, but also lead to low utilization because
of the dispersion of the count results. Considering all of these
factors, we explore a way of appointing a small real interval
[a, b]. It equidistantly takes out some numbers and then stores
their base-2 logarithmic values in a LUT. Meanwhile, N is
decomposed into the product of two numbers, m and 2*. And
m is a fixed-point real number in [a, b].

logoN = logy(m x 2%) (12)
Equal to:
logoN = logom + x (13)

In this way, the depth and range of the logarithm LUT is very
flexible and not limited by the number of training samples.
The logarithm LUT stores the logarithm value of m. There is
aneed to fetch logom from the LUT and execute an addition
operation to get the logarithm value of N. Moreover, we opt
base-2 logarithm because any value stored in FPGA is binary,
which makes it possible to decompose N by shift operations.
The number of shift bits is denoted as x.

In our design, [a, b] = [0.5, 1], e.g. m € [0.5, 1]. When
N is decomposed, we follow the rule that m should be less
than 7/ and the number of significant bits of it should be as
many as possible. Therefore, the integer part of m is zero
as m is bound to be in (0, 1). Further more, m has very
limited fractional bits as it is fixed-point. So the significant
bits of m should be set as many as possible to make the
logarithm value of N more accurate. All the fractional bits
of m can be made being significant. In this sense, the first
bit of the fractional part is always one, so m € [0.5, 1).
While being decomposed, N is reduced by shifting bit by bit.
Shift operations stop immediately once m is less than /. Thus,
after the decomposition, the integral part of m is 0 and the
fractional part’s first bit is bound to be /. w can be used to
denote the width of the rest part of the fractional part. m; is
the binary form of m.

mp = 0.1 addr (14)
w bits

There is 2" possible values of m, so the logarithm LUT
should store 2" logarithmic results. What’s more, there is no
need doing extra computation to get the address of a logarithm
value logom. Because addr can be used as the address of the
logarithm LUT directly to obtain the corresponding value,
which is the fixed-point form of logym and can be donated
as [. According to logarithm functions, logom is in interval
[—1,0) as m € [0.5, 1), so the integer part of / needs only
one bit. It is important to note that the data in the logarithm
LUT is the absolute value of logym.

Figure 1 is an example of a logarithm LUT architec-
ture. Assume the width of addresses of the logarithm LUT

VOLUME 8, 2020

0x0000
0x0001

Address: (0x22b8)h = (010001010111000)b
10g2(0.1010001010111000) =0.1010011

o : nnnoonn

0x22b9 \ J—

Integer Part Fraction Part
(1 bit) (7 bits)

Ox7fff

FIGURE 1. An Example of a Logarithm LUT. The logarithm LUT has
215 = 32768 items. The address of an item is 0 x 22b8, whose
binary form is 010_0010_1011_1000, i.e. addr = 010_0010_1011_1000,
which is 15-bit. According to (14), the corresponding my, is 0.1 addr =
0.1010_0010_1011_1000. After taking logarithm, log,m = 0.1010011,
which is the value of the item in the logarithm LUT. Each item in the LUT
is 8-bit, including one-bit integer part and 7-bit fraction part. The shaded
portion in the diagram is the integer part of the value.

is 15-bit. Therefore, the LUT has 2> items. Its width
of the items is 8-bit, and the fractional part takes up
7 bits. There is an item whose address in the LUT is 0 x
2208, i.e. addr = 010_0010_1011_1000. Thus, m; =
0.1010_0010_1011_1000, and logzm = 0.1010011, which is
the value in the logarithm LUT corresponding to the address
0 x 22b8.

V. NBC SPECIFIC HARDWARE ACCELERATOR

A. OVERVIEW

Basing on the simplified NBC algorithm in previous sections,
we design our NBC accelerator considering both training and
inference part, which is shown in Figure 2. Instead of dealing
binary feature vectors only [12], our architecture is designed
for any kind of numeric feature vectors, i.e. a component
value of a feature can be equal to any number. Moreover, there
are no floating-point multiplications and divisions in the NBC
accelerator, while [12] use a floating-point division operator.
Our design consists of a controller, a counting processing
element array (CNT PEs), a counting adder-LUT array (CNT
A-LUTs), a probability computation PE array (PC PE array),
a probability LUT (P-LUT), a posteriori probability compu-
tation PE array (POS PEs) and a comparer.

The NBC controller coordinates the other parts of the NBC
accelerator to make them run orderly, which receives some
state signals from other parts and then sends controlling sig-
nals. The timeline in Figure 2 shows the execution sequence
of all the parts of the NBC accelerator:
t1: The CNT PE array counts the number of all kinds of labels
and components to get Numy—. and Numy:mxk:mki. There
are several counting PEs working in parallel. In every clock
cycle, each counting PE counts the label or a component of a
training sample. Meanwhile, its address is computed and sent
to the corresponding adder-LUT. The counting adder-LUT
array has as many elements as the counting PE array, as shown
in Figure 2. When receiving an address, an adder-LUT adds
one to the corresponding item in the LUT.
t2: The probability computation PE array computes the
logarithm probabilities in (10) and (11) by using the

40759

IEEE Access

Z. Xue et al.: Real-Time NBC Accelerator on FPGA

NBC Controller
___________________ - ¥ ___ __
I | [LB [B
[| CNT PE || POSPE |
| C-PE eece C-PE I CB | I
| I | | PP I_. |
1 1
|| CNTPE > : CB | || pOSPE = |
=7
L-PE [Log LUT = result

[—1 2 E T i
| ° L I I . I . :
| Y . I O | ® m’ I
| cpE| + |cpe] ! | |

CNT PE | POS PE Comparer
| CB I |
| ' | |
| CNT PEs CNT A-LUTs PC PE Array | P-lut ~ POSPEs |

t |] |] N

tl €2 3 t4 t5

Training part

FIGURE 2. The architecture of the NBC accelerator.

logarithm LUT. After counting operations are finished,
the label PE (L-PE) in the PC PE array calculates logarithm
values of all kinds P(c) in (10) and sends them to the proba-
bility LUT. When receiving a reading address, the adder in
CNT A-LUTs sums up all the items corresponding to the
same address in each adder-LUT and sends them to the PC
PE array. That is, Num, Numy—. and Numy—ny, —mj, are sent
to the PC PE array. The probabilities of labels are calculated
in the L-PE firstly because Numy—. + t are also computed in
it, which will be used to calculate logaP(xy = my;|c) in the
component PEs, according to (11).

t3: There are several component PEs (C-PE) in the PC PE
array calculating logarithm probabilities of components. All
the component PEs are running in parallel. Once working
out a logarithm probability, the PC PE array sends it to the
probability LUT, which stores the training results for the
inference part.

t4: The POS PE array has several POS PEs, which calcu-
late the posteriori probabilities of different labels. To a test
feature vector, each PE computes the posteriori probability
corresponding to one label simultaneously. After that all the
posteriori probabilities are sent to the comparer.

t5: The comparer selects the maximum posteriori probability,
whose corresponding label is the prediction result.

In Figure 2, the parts running during t1, t2 and t3 form the
training part of the NBC accelerator. The parts running during
t4 and t5 belong to the inference part. The hollow arrows are
controlling signals and the solid arrows are data paths.

40760

Inference part

B. COUNTING ADDER- LUT AND PROBABILITY LUT

We combine adders and LUT to avoid too much data transfer-
ence. The LUT part of a counting adder-LUT stores all kinds
of Numy—. and Numy:mxk:mki. When receiving a writing
address, a counting adder-LUT accesses the corresponding
location and increases its value by one. There is an adder
in each adder-LUT for increasing the items when writing.
There is also an adder for all the adder-LUTs to get the
whole counting result when reading, as Figure 2 shows. In this
way, the counting adder-LUT array outputs the sum of the
counting values from every adder-LUTs while receiving a
reading address. Each counting PE relates an adder-LUT and
they work in parallel. If we use only an adder-LUT, it can
cause data conflicts because many counting PEs may produce
the same address. Thus, there is a need to change the item of
the same location at one time. Rather, the data can be read by
sending the same address to each adder-LUT concurrently.
So an adder is enough to sum and output the whole counting
result.

The LUT part of an adder-LUT is divided into many
blocks. There are one label block(LB) and several component
blocks(CB). The label block stores the numbers of training
samples having different labels, i.e. Numy,—., and the com-
ponent blocks stores the numbers of samples corresponding
to different component values, 0, 1, ... i.e. Numy:mxk:mki.
Therefore, the label block at least has at least C items. What’s
more, there are at least component blocks and C x n items
in each of them.

VOLUME 8, 2020

Z. Xue et al.: Real-Time NBC Accelerator on FPGA

IEEE Access

We arrange all kinds of the counting results in a specific
order. In the counting adder-LUT, the label block is located
at the lower addresses and the component blocks are located
at the higher addresses. Each of the CBs corresponds to a
component value, and the CB corresponding to 0 is at the
lower addresses. In the label block and every component
block, the counting results having different labels are stored
in ascending order, from lower to higher addresses. What’s
more, the counting results corresponding to the same label
are arranged in order of increasing dimension (0 to n-/) in
each component block. For a training sample whose label is
¢ and the value of the k-th component is my,. Its address in
a counting adder-LUT corresponding to its label is ¢, which
locates in the label block. The address corresponding to the
component c is

LBjze + CByize X my; +c xn+k (15)

LBgi;. and CBgi are the number of items in the label block
and a component block in a counting adder-LUT, respec-
tively.

The probability LUT has the same structure as the LUT
part of a counting adder-LUT. It also has one label block and
several component blocks, which have the same number of
items as a counting adder-LUT. That is because there is a one-
to-one corresponding relationship between the probabilities
and the counting results.

C. COUNTING PE

Each counting PE goes through every training sample in its
local training data memory to do counting operations until all
the training samples are dealt with. Figure 3 is the structure of
a counting PE. As is shown, there are two local memories in a
counting PE, which store training labels and training feature
vectors, respectively. And their items of the same location
correspond to the same training sample. The local memories
are implemented by BRAMs. The address generator increases
the training data memory address to fetch a new training
sample when the counter finishes the last one. What’s more,
the address generator checks whether the address reaches the
bound of the training data memory by comparing the current
address with the maximum address of the training data mem-
ory. If all the training data are gone through, the generator
will not increase the address.

In every clock cycle, the counter computes an address to
update the counting adder-LUT using (15) in subsection V B.
To a training sample, the address of the label is calculated in
the first clock cycle, and then the address of each component
is calculated in the following clock cycles. The label or the
component data is selected by a multiplexer to determine
which kind of addresses to compute. The address computer
(Addr Computer) in the counter calculates the address corre-
sponding to a label or a component using (15).

The several counting PEs in the NBC accelerator are
running in parallel. Each of them is related to a counting
adder-LUT. In our design, the capacity of each local training

VOLUME 8, 2020

| Counting PE Controller I

il

Label Memory

Feature Vector
Memory

somduo)
appy

Address Generator Training Data Memory Counter

FIGURE 3. The architecture of a counting PE.

memory is the same. The counting process is finished only
when all the counting PEs finish their counting operations.

D. PROBABILITY COMPUTATION PE

The probability computation PE array calculates the loga-
rithm probabilities in (10) and (11) and sends them to the
probability LUT. There are many PEs in the PC PE array,
including one label PE and several component PEs. They
are used to calculate the logarithm probabilities of labels
and components, respectively. After the counting operations
are completed, the PC PE array gets counting results from
the counting adder-LUTs. Then it calculates their logarithm
values by shift operations and the logarithm LUT, according
to subsection IV B. After that, the PC PEs work out all
kinds of logarithm probabilities using (10) and (11) and store
them in the P- LUT. The computation there only involves
fixed-point additions and subtractions.

Figure 4 (a) is the structure of a component PE. There are
five adders, a multiplexer, a label register array, a shifter and a
probability computer in the component PE, which are yellow-
shaded. The dotted rectangles are parts outside of the PE.
Using logarithm data from the log LUT and the number of
shift bits (SFT bits) from the shifter, the probability computer
calculates the logarithm probabilities and sends them to the
P-LUT. As the data in logarithm LUT is absolute values,
additions and subtractions should be selected as appropriate
when computing the logarithm value of a number. According
to (10), (11) and (13), all probabilities can be get in this way:

logr P(C)=logr(Num~+C)~+logy—.—sft_bits (16)
loga P(xx =my;|c) =log_reg.+10gy—cny, —my; — sft_bits (17)

where logy—. and logy:mxk:mki are the corresponding item
in the logarithm LUT to label ¢ and component xi. log_reg,
is equal to loga(Numy—. +t) in (11). Process 1-5 depict the
data flow in a probability computation PE.

Process @ - @ depict the data flow in a probability compu-
tation PE.
@®: After the last logarithm probability is calculated,
the address adder (Addr Adder) increases the current count-
ing address (CNT Addr) by one to access the next counting
result in the counting adder-LUT array.

40761

IEEE Access

Z. Xue et al.: Real-Time NBC Accelerator on FPGA

Shifter

Label Register Array

|

Counting Result SFT bits

x 4 Loe A0y (bl aock1[0 o ooot]o]1] o
! A‘Ilil' Msn| | | + g Probability Computer clock2| 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1
© e z

HEDoonooooE

S Adder
Z B 1 " r Addor § aos[0JoJ1]o1]o]o]o] s
.f_ b o M e “| aws[oTTTo 10 0 0 0]

Ocnr |
!_\;ITl_h_! CNT Adtir:: :(::.0 }'I:-I:vg_LI;: Logarithm Value !-_P-I:Vl'__j clock 6 Migl\? | 1 | 0 | 0 | 0 | 0 | ?/l s
l ——a _T_ Log Address

()

(b)

FIGURE 4. (a) The architecture of a component PE in the PC PE array. (b) An example of the shift process.

®: When receives a new address, the counting adder-LUT
array sends the corresponding counting result to the Laplace
smooth adder (LS Adder).

®: The multiplexer and the LS Adder work together to do
Laplace smooth. They add 1 or ¢ to the counting result if it is a
label count, and add 1 if it is the number of the k-th component
of a feature vector.

®: The shifter reduces the received number through left shift
operations. In each clock cycle, the shifter left shifts the
number and checks whether the most significant bit(MSB)
is 1. If it is not, the shift adder in the shifter increases the
shift bits by one. Instead, the shifter outputs the shift bits to
the probability computer. Meanwhile, it outputs the logarithm
address to fetch the corresponding log value, which is the
low w bits of the shifted number. Figure 4 (b) is an example
to explain this shift process. Supposing that there is a 8-bit
number (0000_0101)b. In every clock cycle, it is left shifted
one bit and the shift bits is increased if the MSB is not /. After
5 clock cycles, its MSB turns to be /. Then shift operations
are over. Thus, the address of the logarithm LUT is the low 7
bits, which is (1010_0000)b. And the number of the shift bits
is 5.

®: According to (17), there are an addition and a subtraction
operation to get a component probability. The label adder
does the first addition, which is the sum of log_reg, and
logy—cn —my - The log adder does the second addition to get
logr P(xy = my;|c).

There is a difference between the label PE and the com-
ponent PEs, as the computation ways of the two kinds of
probabilities are not the same, according to (16) and (17).
The label PE also computes loga(Numy—. + t) in (11), which
are stored in a register array referred as label register array.
Therefore, the label PE should run before the component PEs,
as the latter need the values in the label register array to
compute logarithm probabilities.

E. INFERENCE PART
For a test feature vector, the inference part computes the
posteriori probabilities of every label and then get the

40762

TABLE 2. The basic properties of the five datasets.

Dataset N* n* c* t*
MNIST 60000 784 10 2
Car 1728 6 4 4
Connect 67557 42 3 3
Voting 435 16 2 3
Monk 432 8 2 4

*N: The number of samples in the training set; n: The dimension of feature
vectors; C: The number of categories; #: The number of possible values of a
component. The arguments are all shown in Tablel.

prediction result, which is the label taking the maximum pos-
teriori probability. The posteriori probability computation PE
array does some additions to get the posteriori probabilities,
where each POS PE computes the posteriori probability of
a label. In every clock cycle, a POS PE gets the value of
a component of the feature vector, and then computes its
corresponding address in the P-LUT by using (15). Therefore,
the hardware structure of the address computer in a POS PE
is the same as the counter of a counting PE in Figure 4 (a).
Meanwhile, the posteriori probability (PP) is accumulated.
After the feature is gone through completely, the label proba-
bility is added to the current PP. What’s more, all the PEs run
in parallel.

After working out the posteriori probability of each label,
the comparer selects the maximum. The corresponding label
of it is the inference result. This highly parallel infer-
ence structure makes the NBC accelerator very suitable for
real-time applications running on edge devices.

VI. EXPERIMENTS
The proposed hardware accelerator is implemented on a
Xilinx ZYNQ 7020 device, using Verilog HDL and Vivado
2018.1. We make experiments on five data sets of different
magnitudes. They are MNIST data set and some UCI data
sets which are Car Evaluation Dataset (Car), Connect-4 open-
ing dataset (Connect), 1984 United States Congressional
Voting Records Dataset (Voting) and The Monk’s Prob-
lems DataSet (Monk). All the datasets are shown in Table 2.
All the data sets are preprocessed into a uniform format.
Their label values are quantified into integers from zero

VOLUME 8, 2020

Z. Xue et al.: Real-Time NBC Accelerator on FPGA

IEEE Access

to C-1 and the value of a component x; is also a inte-
ger of interval [0, — 1]. In order to apply MNIST dataset
into naive Bayes classifier more effectively, we convert the
original images of 28*28 pixels into binary vectors with
size of 784-bit [15]. Not only fitting binary feature vectors
like [12], our design also fits all kinds of classification
datasets.

As CNN accelerators ([9], [10], [35]) are very pop-
ular ML accelerators these days, we compare our design
with some state-of-the-art CNN accelerators [32]-[34], [36].
Table 3 shows the resources usage of the NBC accelerator
is very limited. The CNN accelerators and our design are all
implemented on Xilinx boards. The NBC accelerator are con-
figured with six counting PEs, five computation probability
PEs, including one label PE and four component PEs, and ten
posteriori probability computation PEs.

TABLE 3. Hardware resource consumption of our design and the CNN
accelerators.

Resource [32] [33] [34] [36] A

7Cc706 . 2y Zynq Zynq

[36] B Ours

Board ZC706 ZC706 XC7Z045 XCTZ045 7020
LT 90000 155000 03000 149037 93977 11243
FF 92000 153000 96000 95284 57033 49
BRAM 540 732 528 2115 99.5 1

As shown in Table 3, the resource consumption of the NBC
accelerator is much less than the CNN accelerators. Its LUT
utilization is about 10% of the CNN consumption on average.
The FF and BRAM is only 0.05% and 2% on average, respec-
tively. Comparing with the CNN hardware implementations,
our NBC accelerator costs far limited resources, which makes
it more suitable for edge devices in the AloT.

A. PERFORMANCE

We compare the time cost of the training and the inference
part of the NBC accelerator with the software implementa-
tion on a general purpose CPU integrated in Xilinx Zyng-
7000 SoC ZC702 board, i.e., ARM Cortex-A9 processor.
Table 4 and Table 5 show their time cost. The clock frequency
of ARM Cortex-A9 is 400MHz and the NBC accelerator is
100MHz.

TABLE 4. Time cost of the training part.

Dataset ARM Cortex-A9 NBC Accelerator
CC RT (ns) CC RT (ns)
MNIST 2.7+el0 6.8+e10 8.0+e6 8.0+e7
Car 3.3+e7 8.3+e7 3.7+e3 3.7+e4
Connect 2.0+ell 5.0+ell 5.4+e5 5.4+e6
Voting 1.24e7 3.0+e7 1.8+e3 1.8+e4
Monk 4.5+e6 1.1+e7 1.1+e3 1.1+e4

As Table 4 and Table 5 show, the time cost of the training
and the inference part of the NBC accelerator are both far
less than the counterparts of the ARM Cortex-A9 processor.
As to clock cycles (CC), our design improves the efficiency
of the training part up to 3.7+e5 times and 7.94-e4 times

VOLUME 8, 2020

TABLE 5. Time cost of the inference part.

Dataset ARM Cortex-A9 NBC Accelerator
CC RT (ns) CC RT (ns)
MNIST 3.9+e7 9.8+e7 800 8.0+e3
Car 6.2+e4 1.6+e5 13 1.3+e2
Connect 1.7+e7 4.2+e7 48 4.8+e2
Voting 1.5+e5 3.8+e5 21 2.1+e2
Monk 3.9+e4 9.8+e4 13 1.3+e2

on average. What’s more, the NBC accelerator improves the
performance of the inference part 8.3+e4 times on average,
up to 3.5+4-e5 times. Similarly, the running time (RT) of the
training and the inference part are reduced 2.0+4-e4 times and
2.14-e4 times on average, respectively. Therefore, the pro-
posed NBC accelerator improves the training and the infer-
ence efficiency so remarkably, comparing with the software
implementation.

Generally, the response time in the order of microseconds
can be referred as a real-time response [29], [30]. As it
shows, the time cost of the inference part of our design shown
in Table 5 are all in the order of microseconds or nanoseconds.
So the inference part of our NBC accelerator can satisfy the
real-time requirement of AloT platforms.

We implement the NBC accelerator in [12] and the
semi-NBC accelerator in [14] on the Xilinx ZYNQ
7020 board to compare their performance (Per. in Table 6)
with our design. Table 6 shows the resource consumption
of the three designs and the running time (7C (ns)) of
inferring a feature vector from the dataset Connect and the
classification accuracy (Acc. (%)). To compare the per-
formance of the two accelerators and our design, we use
Time Cost / (LUT * BRAM) to evaluate the time cost of each
unit resource consumption. The experimental results shows
that our design outperforms the other two accelerators, as it
has the smallest unit time cost.

TABLE 6. Hardware resource consumption, time cost, classification accu-
racy and performance of the NBC accelerator in [12], the semi-NBC accel-
erator in [14] and our design.

Accelerator LUT FF BRAM IO
Design [12] 6785 32 2 42
Design [14] 36776 89 16 46
Our Design 11243 49 1 38

TC (ns) Acc. (%) Per.
3.6+e3 71.89 0.27
7.2+e4 83.36 0.12
4.8+e2 72.21 0.04

The simplicity of NBC algorithm makes its hardware
implementation cost less resources than the counterpart of
semi-NBC. As semi-NBC relaxes the independence assump-
tion, it has higher classification accuracy. However, there are
much more complex computation such as multiplications in
the semi-NBC accelerator than NBC hardware implemen-
tation. Therefore, the design [14] consumes more hardware
resources and time cost than our design, which leads to higher
unit time cost.

Because of the parallel PE processing and no multipli-
cation and division operations of floating points in our
design, the NBC accelerator can reach a higher performance.

40763

IEEE Access

Z. Xue et al.: Real-Time NBC Accelerator on FPGA

The accelerator in [12] has no parallelism strategy, which
makes it consume more time when inferring a test feature
vector. What’s more, the design in [12] has a float-point
divider in its hardware implementation, which can cost much
hardware resources and damage the efficiency. We use a novel
format of logarithm LUT and a shifter working together to
avoid division operations completely. Moreover, we convert
all the floating points in our design into fixed points. All these
methods make our NBC accelerator have a lower unit time
cost, that is to say, have higher performance.

As a popular image dataset, MNIST is widely used to
many CNN hardware accelerators, Table 7 shows their time
cost of the inference and classification accuracy. The NBC
accelerator outperforms the design [11], which is the most
efficient CNN accelerator of the four. The inference time cost
of our design is only 31% of it, with classification accuracy
sacrifice of 12.4%. If we use accuracy / time cost (A/T) to
measure the overall performance of a hardware accelerator,
our design is the best. It’s A/T is about 2.8 times as much
as the design [11]. Considering the time and resources cost,
the NBC accelerator is more suitable for the AloT system to
some lightweight applications which NBC can handle.

TABLE 7. The time cost and classification accuracy of the CNN accelerators
and the NBC accelerator.

Performance [371A [37]1 B [37] C [11] Ours
Time Cost(us) 928 637 637 25 8

Accuracy(%) 96.33 94.67 88.00 96.8 84.44
A/T 0.10 0.15 0.14 3.87 10.56

The classification performance is affected by the number
of counting PE. By changing the number of counting PEs in
the counting PE array, we explore the influence in the time
cost of the training part and resource consumption. Basing
the dataset Voting, different numbers of counting PEs are
configured to discuss the changes of training time cost and
some key resources consumption, including LUT, FF, BRAM
and 10. As Figure 5 shows.

@ Training Time
= wr
A FF

BRAM

10

Training time(us)
Training time(us)

40
2 4 6 8 10 12
The number of PEs

2 4 6 8 10 12
The number of PEs

100 100 ¢—
80 __ 80
60

40

Training time(us)

20 20

Training time(us)
IS
8

2 4 6 8 10 12
The number of PEs

2 4 6 8 10 12
The number of PEs

FIGURE 5. The training time cost and resources consumption under differ-
ent numbers of counting PEs.

40764

When the number of counting PEs are increasing, the time
cost of the training part becomes less while the consump-
tion of LUT, FF and BRAM become higher. Increasing the
number of counting PEs does not involve the usage of IO,
so there is no change of the cost of 10 resource. As the
fourth figure shows. Moreover, the time cost curve tends to
be smoother with the increase of the counting PE array scale.
Because the interactions between the CNT PEs and CNT
A-LUTs will make more contributions to the training time
cost when the number of the counting PEs becomes larger.
Thus, in practical applications, the number of counting PEs
should be selected considering both efficiency and resources
cost.

B. PREDICTION ACCURACY

Under the configuration mentioned above, and each item in
the logarithm LUT has 8 bits composed by one-bit integer part
and seven-bit fraction part, we get the prediction accuracy of
every dataset in Figure 6.

100

T
I ARM Cortex-A9
I NBC Accelerator

90.57 99,34

84.77 84.44

75.00 75.00

Classification Accuracy(%)
@
2

72.2272.21

mnist car connect voting monk
Dataset

FIGURE 6. The classification of each dataset running on the NBC acceler-
ator and ARM Cortex-A9 processor.

Figure 7 above shows that the NBC accelerator almost
has no loss of classification precision, comparing with NBC
running on ARM Cortex-A9 processor. The average deviation
of classification accuracy between the two kinds of NBC
implementation is about 0.39%, which is very little.

The fractional width of the logarithm LUT is a main factor
influencing the classification accuracy. We explore the rela-
tionship between them using dataset MNIST and Connect by
changing the number of the bits of items in the logarithm
LUT. In section IV, we convert float-point logarithm values to
fixed-point to reduce area and time cost on FPGA. The integer
part of each item in the LUT is one-bit. The width of the
fractional part depends on the fix-point processing strategy
selected. Figure 7 shows the classification accuracy under
different width of fractional bits of the logarithm LUT.

As can be seen from Figure 7, the classification accuracy
rises at the beginning and then flattens gradually with the
increase of the width of the logarithm LUT. When the width
is 4-bit or more, the classification accuracy of MNIST is not

VOLUME 8, 2020

Z. Xue et al.: Real-Time NBC Accelerator on FPGA

IEEE Access

Mnist
— Connect

84
72

Classification Accuracy(%)
@
2

74 64
0 5 10 1520 25 30 35 0 5 101520 2530 35

The Width of Log LUT (bit)

FIGURE 7. The classification accuracy under different width of the loga-
rithm LUT.

improved significantly. For dataset Connect, the classifica-
tion accuracy remains unchanged if the width of the logarithm
LUT is more than 8 bits. By doing the same experiment,
it can be got that one or two bits are enough to the other
three datasets. Thus, to ensure the classification accuracy
and reduce the resources consumption, we set the logarithm
LUT’s fractional part to 7 bits, and integer part to 1 bit.

VIi. CONCLUSION

Motivated by higher requirements put forward by the emer-
gent AloT, we design our NBC specific hardware accelera-
tor, which can complete training and inference in the AloT
environment. We use logarithm transformation basing on
LUT and float-to-fixed point process to simplify the NBC
algorithm. Due to removing multiplication and division oper-
ations in original NBC algorithm, these technologies help
the NBC more effectively to hardware implementation. After
the optimization, we design the NBC specific accelerator
which is comprised of a controller, a training part and an
inference part. The controller coordinates the other parts
in the accelerator to make them running orderly. Multiple
parallel processing methods are widely used to sped up the
training and inference part. Moreover, a logarithm LUT with
a novel format and shift operations are working together to
compute the logarithm value of a number efficiently. The
experiments use five datasets of different magnitudes to prove
our design outperforms the general processor, many state-
of-the-art hardware Bayes classifiers and CNN accelerators.
The proposed accelerator has almost the same classification
accuracy as the general processor. What’s more, it utilizes
very limited hardware resources comparing with the CNN
accelerators.

In the future, we will make the NBC accelerator con-
figurable by packing it into a AXI IP. As an edge device,
the variables in the NBC accelerator such as the training data,
feature vector dimension and so on can be sent to the IP
through the AXI bus. Therefore, there is no need to synthesize
the core code when the dataset is changed.

VOLUME 8, 2020

REFERENCES

[1]
[2]

3

[l

[4]

[5]

[6

—

[7

[8]

[91

(10]

(11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

(19]
(20]
[21]

(22]

(23]

(24]

E. Alpaydin, Introduction to machine learning. Cambridge, MA, USA:
MIT Press, 2004, pp. 33-39.

S. Paul, N. Jayakumar, and S. P. Khatri, “A fast hardware approach for
approximate, efficient logarithm and antilogarithm computations,” /EEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 2, pp. 269-277,
Feb. 2009.

D. Bariamis, D. Maroulis, and D. K. Iakovidis, “Adaptable, fast, area-
efficient architecture for logarithm approximation with arbitrary accuracy
on FPGA,” J. Signal Process. Syst., vol. 58, no. 3, pp. 301-310, May 2009.
O. M. E. Ebadati and F. Ahmadzadeh, “Classification spam email with
elimination of unsuitable features with hybrid of GA-naive Bayes,” J. Inf.
Knowl. Manage., vol. 18, no. 1, Mar. 2019, Art. no. 1950008.

J. M. Haut, M. E. Paoletti, J. Plaza, J. Li, and A. Plaza, “Active learning
with convolutional neural networks for hyperspectral image classification
using a new Bayesian approach,” IEEE Trans. Geosci. Remote Sens.,
vol. 56, no. 11, pp. 6440-6461, Nov. 2018.

M. Ha and S. Lee, “Accurate hardware-efficient logarithm circuit,” JEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 8, pp. 967-971, Aug. 2017.
S. Saurav, “Hardware accelerator for facial expression classification using
linear SVM,” in Advances in Signal Processing and Intelligent Recognition
Systems. Cham, Switzerland: Springer, 2016, pp. 39-50.

X. Lian, Z. Liu, Z. Song, J. Dai, W. Zhou, and X. Ji, “High-performance
FPGA-based CNN accelerator with Block-Floating-Point arithmetic,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 8,
pp. 1874-1885, Aug. 2019.

L. Lu, Y. Liang, R. Huang, W. Lin, X. Cui, and J. Zhang, “Speedy: An
accelerator for sparse convolutional neural networks on FPGAs,” in Proc.
ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, New York, NY, USA,
Feb. 2019, p. 187.

W. You and C. Wu, “A reconfigurable accelerator for sparse convolutional
neural networks,” in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate
Arrays, New York, NY, USA, Feb. 2019, p. 119.

Y. Zhou and J. Jiang, “An FPGA-based accelerator implementation for
deep convolutional neural networks,” in Proc. 4th Int. Conf. Comput. Sci.
Netw. Technol. (ICCSNT), Harbin, China, Dec. 2015, pp. 829-832.

H. Meng, K. Appiah, A. Hunter, and P. Dickinson, “FPGA implementa-
tion of naive Bayes classifier for visual object recognition,” in Proc. CVPR,
Colorado Springs, CO, USA, Jun. 2011, pp. 123-128.

G. I. Webb, J. R. Boughton, and Z. Wang, “Not so naive Bayes: Aggregat-
ing one-dependence estimators,” Mach. Learn., vol. 58, no. 1, pp. 5-24,
Jan. 2005.

S.-W. Choi and C. H. Lee, “A FPGA-based parallel semi-naive Bayes
classifier implementation,” IEICE Electron. Express, vol. 10, no. 19,2013,
Art. no. 20130673.

K. Appiah, A. Hunter, P. Dickinson, and H. Meng, ““Binary object recog-
nition system on FPGA with bSOM,” in Proc. 23rd IEEE Int. SOC Conf.,
Las Vegas, NV, USA, Sep. 2010, pp. 254-259.

R. Shrestha and R. P. Paily, “VLSI design and hardware implementation
of high-speed energy-efficient logarithmic-MAP decoder,” J. Low Power
Electron., vol. 11, no. 3, pp. 406412, Sep. 2015.

A. Klinefelter, J. Ryan, J. Tschanz, and B. H. Calhoun, ‘“Error-energy
analysis of hardware logarithmic approximation methods for low power
applications,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Lisbon,
Portugal, May 2015, pp. 2361-2364.

D. M. Chickering, D. Heckerman, and C. Meek, “Large-sample learn-
ing of Bayesian networks is NP-hard,” J. Mach. Learn. Res., vol. 5,
pp. 1287-1330, Oct. 2004.

T. Kohonen, “An introduction to neural computing,” Neural Netw., vol. 1,
no. 1, pp. 3-16, Jan. 1988.

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural Comput., vol. 18,n0.7, pp. 1527-1554, Jul. 2006.
J. R. Quinlan, “Introduction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81-106, 1986.

M. S. Ansari, B. F. Cockburn, and J. Han, “A hardware-efficient logarith-
mic multiplier with improved accuracy,” in Proc. Design Autom. Test Eur.
Conf. Exhibit. (DATE), Florence, Italy, Mar. 2019, pp. 928-931.

M. Li and K. Liu, “Causality-based attribute weighting via information
flow and genetic algorithm for naive Bayes classifier,” IEEE Access, vol. 7,
pp. 150630-150641, 2019.

L. Li, Y. Zhang, W. Chen, S. K. Bose, M. Zukerman, and G. Shen, “‘Naive
Bayes classifier-assisted least loaded routing for circuit-switched net-
works,” IEEE Access, vol. 7, pp. 11854-11867, 2019.

40765

IEEE Access

Z. Xue et al.: Real-Time NBC Accelerator on FPGA

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

P. Valdiviezo-Diaz, F. Ortega, E. Cobos, and R. Lara-Cabrera, ““A collab-
orative filtering approach based on Naive Bayes classifier,” IEEE Access,
vol. 7, pp. 108581-108592, 2019.

R. Zhu, Y. Dai, T. Li, Z. Ma, M. Zheng, Y. Tang, J. Yuan, and Y. Huang,
“Automatic real-time mining software process activities from SVN logs
using a naive Bayes classifier,” IEEE Access, vol. 7, pp. 146403-146415,
2019.

E. Manino, L. Tran-Thanh, and N. R. Jennings, “On the efficiency of data
collection for multiple Naive Bayes classifiers,” Artif. Intell., vol. 275,
pp. 356-378, Oct. 2019.

L. C. Chunjie, “AloT bench: Towards comprehensive benchmarking
mobile and embedded device intelligence,” in Proc. Int. Symp. Benchmark-
ing, Measuring Optim. Cham, Switzerland: Springer, 2018, pp. 31-35.
M. Ben-Ari, “Principles of concurrent and distributed programming,” in
The Metropolis, Singapore: Pearson, 2006, pp. 150-174.

Y. Zhao, J.Liu, and E. A.Lee, “A programming model for time-
synchronized distributed real-time systems,” in Proc. 13th IEEE Real Time
Embedded Technol. Appl. Symp. (RTAS), Bellevue, WA, USA, Apr. 2007,
pp. 259-268.

X. Zhang, X.Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Salt Lake City, UT, USA,
Jun. 2018, pp. 6848-6856.

Y. Liang, L. Lu, Q. Xiao, and S. Yan, “Evaluating fast algorithms for
convolutional neural networks on FPGAS,” in Proc. IEEE 25th Annu. Int.
Symp. Field-Program. Custom Comput. Mach., Apr. 2017, pp. 101-108.
L. Lu and Y. Liang, “SpWA: An efficient sparse winograd convolutional
neural networks accelerator on FPGAs,” in Proc. 55th ACM/ESDA/IEEE
Des. Autom. Conf. (DAC), San Francisco, CA, USA, Jun. 2018, pp. 1-6.
H. Wang, W. Liu, T. Xu, J. Lin, and Z. Wang, “A low-latency sparse-
winograd accelerator for convolutional neural networks,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP), Brighton, U.K.,
May 2019, pp. 1448-1452.

S. Pei, T. Shen, X. Wang, C. Gu, Z. Ning, X. Ye, and N. Xiong, “3DACN:
3D augmented convolutional network for time series data,” Inf. Sci.,
vol. 513, pp. 17-29, Mar. 2020.

X. Hu, Y. Zeng, Z. Li, X. Zheng, S. Cai, and X. Xiong, “A resources-
efficient configurable accelerator for deep convolutional neural networks,”
IEEE Access, vol. 7, pp. 72113-72124, 2019.

T.-H. Tsai, Y.-C. Ho, and M.-H. Sheu, “Implementation of FPGA-based
accelerator for deep neural networks,” in Proc. IEEE 22nd Int. Symp.
Des. Diag. Electron. Circuits Syst. (DDECS), Cluj-Napoca, Romania,
Apr. 2019, pp. 1-4.

I. Rish, “An empirical study of the naive Bayes classifier,” in Proc.
Workshop Empirical Methods Artif. Intell. (IJCAI), 2001, pp. 41-46.

Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and
K. Mizutani, ““State-of-the-Art deep learning: Evolving machine intelli-
gence toward Tomorrow’s intelligent network traffic control systems,”
IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2432-2455, May 2017.
D. B. Sam, S. Surya, and R. V. Babu, “Switching convolutional neural
network for crowd counting,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017, pp. 4031-4039.

S. Mukherjee and N. Sharma, “Intrusion detection using naive Bayes
classifier with feature reduction,” Procedia Technol., vol. 4, pp. 119-128,
Jan. 2012.

40766

(42]

(43]

(44]

(45]

F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Honolulu, HI, USA, Jul. 2017, pp. 1251-1258.

G. Ke, “Lightgbm: A highly efficient gradient boosting decision tree,” in
Proc. NIPS, 2017, pp. 3146-3154.

R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer, “A com-
parison of decision tree ensemble creation techniques,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 29, no. 1, pp. 173-180, Jan. 2007.

J. Chen and X. Liu, “A fast and accurate logarithm accelerator for scientific
applications,” in Proc. IEEE 28th Int. Conf. Appl.-Specific Syst., Archit.
Processors (ASAP), Seattle, WA, USA, Jul. 2017, p. 208.

ZHEN XUE received the B.S. degree from Tianjin
University, China, in 2018, where she is cur-
rently pursuing the M.S. degree with the Col-
lege of Intelligence and Computing. Her main
research interests include computer architecture
and Al accelerator.

JIZENG WEI received the B.S. degree from the
Harbin Institute of Technology, in 2004, and the
M.S. and Ph.D. degrees in computer science from
Tianjin University, Tianjin, China, in 2007 and
2010, respectively. He is currently an Associate
Professor with the College of Intelligence and
Computing, Tianjin University. His research inter-
ests include computer architecture, heterogeneous
processor design, Al accelerator, and embedded
systems.

WEI GUO received the M.S. degree from
Louisiana State University, in 1991. Since 1991,
she has been as Senior Engineer, a Senior Staff
Engineer, and a Principal Staff Engineer with
Motorola Ltd., for 12 years, where she had become
an IC Design Expert. She is currently a Profes-
sor and the Director of the VLSI Research Lab-
oratory, College of Intelligence and Computing,
Tianjin University. Her research interests include
SoC design technology, computer architecture,

and multimedia processing.

VOLUME 8, 2020

	INTRODUCTION
	RELATED WORKS
	THE THEORY OF NAIVE BAYES CLASSIFIER
	HARDWARE DESIGN ORIENTED NBC ALGORITHM
	LOGARITHM TRANSFORMATION
	LOGARITHM LUT

	NBC SPECIFIC HARDWARE ACCELERATOR
	OVERVIEW
	COUNTING ADDER- LUT AND PROBABILITY LUT
	COUNTING PE
	PROBABILITY COMPUTATION PE
	INFERENCE PART

	EXPERIMENTS
	PERFORMANCE
	PREDICTION ACCURACY

	CONCLUSION
	REFERENCES
	Biographies
	ZHEN XUE
	JIZENG WEI
	WEI GUO

