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ABSTRACT The identification of interactions between single-nucleotide polymorphisms (SNP-SNP
interactions) is crucial for determining human genetic disease susceptibility. With rapid technological
advancements, multiobjective multifactor dimensionality reduction (MOMDR) measurements have achieved
high detection success rates. However, the classification of high- or low-risk groups is central to MOMDR
and has yet to be extensively studied. To address limitations in binary classification, we propose an improved
fuzzy sigmoid (FS) approach that uses membership degrees in MOMDR, thus denoting it as FSMOMDR.
For determining the interval of membership, our improved FS approach assesses the distance between the
i multifactor class and outcome (cases and controls). Thus, the improved FS approach enables MOMDR
algorithms to determine the membership degrees of high- and low-risk groups in each multifactor class
because the two-element set is extended to a specified membership interval. Moreover, the improved FS
approach can handle uncertain information, which thus enables the effective detection of the m-locus
combinations with similar distributions. FSMOMDR measurements can also distinguish similar frequencies
among genotype combinations, thus enabling the detection of more significant SNP-SNP interactions.
On the basis of the classification accuracy rate of MOMDR and results obtained from the analysis of several
test data sets, we determined FSMOMDR to be superior to other MDR-based methods with respect to
detection success rate. The results indicate that binary and fuzzy classifications involving MOMDR can
provide insight into uncertainty in risk classification. Thus, FSMOMDR could successfully detect SNP-SNP
interactions in coronary artery disease in a large data set obtained from the Wellcome Trust Case Control
Consortium. We could successfully reduce uncertain information in MDR and thus suggest that membership
based on the improved sigmoid function can be used to identify SNP-SNP interactions as well as obtain
content knowledge.

INDEX TERMS Fuzzy set, SNP-SNP interaction, classification, case-control study.

I. INTRODUCTION

The genome-wide association study (GWAS) has been
extensively used to detect associations between complex
genes [1]; the approach aims to reveal factors associ-
ated with a particular disease. These factors include single
nucleotide polymorphisms (SNPs) and other DNA-related
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factors. However, if researchers only use a single factor for
disease identification in a GWAS, then they do not iden-
tify other factors that are significantly associated with a
particular disease [2]. With respect to variability associa-
tions between complex genes, SNP-SNP interactions may
explain the absence of inheritance [3]. SNP-SNP interac-
tion is a major factor for identifying many genetic dis-
eases [4], [5]. Consequently, SNP—SNP interaction detection
has become important in multifactorial disease analysis [6].
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Effective calculation is a powerful tool for improving the
recognition of SNP-SNP interactions in genetic association
research [7]- [9].

Many methods have been proposed for the detection of
SNP-SNP interactions. One such method is the Bayesian
epistasis correlation map (BEAM) [10]. A BEAM introduces
a Bayesian mark partitioning model and a Markov chain
Monte Carlo sampling approach to maximize model pos-
terior probability. Another method is AntEpiSeeker, which
introduces a two-stage ant colony optimization to detect
SNP-SNP interactions [11]. Similarly, Wan et al. intro-
duced a Boolean Operation—based Screening and Testing
(BOOST) approach for examining all pairwise interactions
in genome-wide case—control studies [12]. Another method
is SNPRuler, which introduces a branch and bound algo-
rithm to determine the chi-square—based maximum rule util-
ity metric for detecting SNP—SNP interaction [13]. Similarly,
Ritchie et al., introduced a multifactor dimensionality reduc-
tion (MDR) method, based on statistical evaluation, for
detecting SNP-SNP interaction. MDR can characterize non-
additive interactions between discrete factors in case—control
studies [14].

Unlike traditional statistical approaches, such as logis-
tic regression, MDR uses nonparametric and genetic model
data in case—control studies. MDR reduces the dimension-
ality of multifactor information by distinguishing genotype
combinations into high- and low-risk groups. This process
detects nonlinear or nonadditive interactions between the
original variables. MDR uses the k-fold cross-validation
(CV) approach to avoid overfitting in MDR-based predictions
of disease status. Several MDR-based extension methods
have been proposed [15], including MDR-ER [16], particle
swarm optimization-based MDR (PBMDR) [17], class-based
MDR (CMDR) [18], MOMDR [19], IMDR [20], and the
empirical fuzzy MDR (EFMDR) [21]. Recently, MDR has
had demonstrably superior implementation in the SNP-SNP-
interaction detection of cardiovascular diseases [22], breast
cancer [23], and facial emotion perceptions [24].

Let A be a classic binary set; its membership function
yields outputs of only 1 or 0, depending on whether x
belongs to A. Zadeh [25] proposed fuzzy set theory, repre-
senting a class of objects with continuous rank membership.
A fuzzy set A in a universal space X is a set of ordered
pairs {(x, pa(x))|x € X}, where pa(x) in [0, 1] represents
the membership degree of x in the fuzzy set A. Accordingly,
1a(x) is reduced to 1, the indicator function I4(x) of set A.
A classical set is thus considered a special fuzzy set where
the indicator function is a membership function. This fuzzy
logic extension of classical set theory has been used in vari-
ous fields, including bioinformatics and medicine [21], [26].
In the detection of SNP-SNP interactions, classification
into high- and low-risk groups is a problem of uncertainty.
Accordingly, fuzzy logic is an approximation approach based
on the representation of linguistic knowledge. It entails the
use of fuzzy rules to address uncertainties [27]-[29]. When
fuzzy logic is used, MDR can better distinguish high- and
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low-risk groups and thus increase detection success rates
in SNP-SNP interaction detection processes. Both fuzzy
set-based generalized MDR [30] and EFMDR [21] are
fuzzy—based MDR approaches. Moreover, FGMDR detects
SNP-SNP interaction using fuzzy set-based generalized lin-
ear models for improved covariate adjustment. When using
FGMDR, selecting suitable parameters is difficult. Thus,
EFMDR uses the MDR-based empirical fuzzy set that does
not require the selection of suitable parameters. EFMDR is
effective for identifying intergene SNP—SNP interactions in
particular diseases. Moreover, a quicker version of EFMDR
has been proposed [31]. Despite the recently increasing focus
and investment of resources in MDR classification, studies on
this topic have been limited.

This paper proposes an improved fuzzy logic system that
is based on MOMDR to estimate the membership degree
for the epistasis detection data set. The fuzzy sigmoid (FS)
is favorable for SNP-SNP interaction detection because it
allows local features to belong to multiple groups. Many stud-
ies have successfully applied the FS to improve algorithm per-
formance [21], [32]-[34]. In particular, FSMOMDR has been
used on coronary artery disease data sets. The results were
obtained through simulation using a real big data set from the
Wellcome Trust Case Control Consortium (WTCCC). The
results demonstrated the superiority of FSMOMDR relative
to other algorithms with respect to success detection rate.

The remainder of this paper is organized as follows. The
relevant approach is summarized in Section II, where we
define an MO function based on fuzzy membership degrees
and present FSMOMDR. Experimental evaluations and result
analyses are provided in Section III. In Section IV, we dis-
cuss the advantages of the FSMOMDR algorithm. Finally,
Section V concludes this paper.

Il. METHODS

A. MDR PROCESS

MDR detects SNP-SNP interactions by evaluating each
m-locus combination using the distribution of cases and con-
trols [14]. Specifically, the m-locus combination is such that
an SNP-SNP interaction is represented by a set {s, ..., Sp|
s € SNPs, s; # s;}. Because each SNP contains the three
genotypes, an m-locus combination has 3" genotype combi-
nations. In MDR, each genotype combination is called a mul-
tifactor class. A dimension reduction approach is introduced
in MDR for converting a high dimension into a 2 x 2 con-
fusion matrix in which the actual class contains cases and
controls and the predicted class contains high- and low-risk
groups. Subsequently, a k-fold CV operation generates k CV
subsets. In each CV operation, a CV subset is used as a testing
data set and other k — 1 CV subsets are combined to form a
training data set. The purpose of the testing data set is to eval-
uate the trained model, which is trained using the correspond-
ing training data set. An optimal trained model (denoted as an
i-fold CV model where i = 1, 2, ..., k) is selected according
the highest correct classification rate in each CV operation.
Thus, the k-fold CV models can be obtained, and the CV
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consistency (CVC) operation is used to count the occurrence
frequency of a fold CV model among k-fold CV models. The
model with the highest CVC is regarded as the best model in
an MDR implementation. MDR comprises the follow steps:
1) perform the k-fold CV operation, 2.1) generate the training
and testing data sets according to the k-fold CV operation,
2.2) generate all m-locus combinations, 3.1) assign cases
and controls into multifactor classes, 3.2) calculate the ratio
between cases and controls within each multifactor class of
the m-locus combination, 3.3) classify all multifactor classes
into a high-risk group and a low-risk group, 3.4) evaluate
the m-locus combination using the correct classification rate
(CCR), 3.5) select the best model with the highest CCR in
each CV operation, and 4) perform CVC operation.

B. EFMDR PROCESS

MDR entails the application of binary classification to deter-
mine membership to high- or low-risk groups using the
frequencies of multiple genotypes in cases and controls.
Binary classification methods cannot address uncertainty,
which results in the loss of key information [26]. Empirical
fuzzy MDR (EFMDR) is an extension of MDR using the
empirical fuzzy (EF) approach to address the limitations
of binary classification [21]. MDR differs from EFMDR in
Steps 3.2, 3.3, and 3.4 in the aforementioned MDR process.
In EFMDR, the EF approach is used to evaluate the mem-
bership degrees of high- and low-risk groups within each
multifactor class [denoted as H(wg ) and L(wp ), respectively]
through Step 3.2; however, Step 3.3 of the MDR process is
omitted from EFMDR. In Step 3.4, the CCR is evaluated
on the basis of H(wg) and L(wy). EFMDR comprises the
following steps: 1) perform a k-fold CV operation, 2.1) gen-
erate training and testing data sets according to the k-fold
CV operation, 2.2) generate all m-locus combinations, 3.1)
assign cases and controls to multifactor classes, 3.2) calculate
the membership degrees of high-risk H(wgy) and low-risk
L(wr) groups within each multifactor class of the m-locus
combination, 3.3) evaluate the m-locus combination using the
CCR based on H(wg ) and L(wy ) (denoted as CCRyyzzy), 3.4)
select the best model with the highest CCRyy,y in each CV
operation, and 4) perform a CVC operation.

C. MOMDR PROCESS

Using the Pareto set operation, MOMDR was introduced by
Yang et al. in 2018 [19]. MDR-based methods use a single
classification measure (usually the CCR) as an objective
function to detect SNP-SNP interactions, whereas MOMDR
uses multiple objective functions. MOMDR introduces the
maximized multiobjective (MO) function as follows:

.. Jfi=LR
maximize @))
f» = CCR,

where functions f; and f> are the likelihood rate (LR) [35]
and CCR [14] measures, respectively. In the Pareto set oper-
ation, if fj(x;) > fi(xp) for all objective functions, then xi
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dominates another solution x,. In the Pareto set X*, oth-
ers do not dominate each x* € X*. The Pareto set and
Pareto set filter operators record and determine nondominated
SNP-SNP interactions. For a k-fold CV, the number k of
Pareto sets (X ™) is generated in the evaluations of all m-locus
combinations. Finally, optimal SNP-SNP interactions can
be determined through the CVC operation. The MOMDR
comprises the follow steps: 1) perform k-fold CV operation,
2.1) generate training and testing data sets according to the
k-fold CV operation, 2.2) generate all m-locus combinations,
3.1) assign cases and controls to multifactor classes, 3.2)
calculate the ratio between cases and controls within each
multifactor class of the m-locus combination, 3.3) classify
all multifactor classes into a high-risk group and a low-risk
group, 3.4) evaluate the m-locus combination using the MO
function, 3.5) perform the Pareto set operation in each CV
operation, and 4) perform the CVC operation.

Algorithm 1 FSMOMDR Pseudo-Code
01: Divide data into K subsets
02: For k = 1 to K subsets
03: assign k™ CV subset as the testing data and the other
CV subsets as the training data
04: training data:
05: While (stop when all m-locus combinations are

evaluated)
06: For i = 1to the number of multifactor class
07: the membership (H(w; ) group and L(w; 1)

group) of i multifactor class of m-locus
combination is measured by improved FS
approach
08: Endi
09:  compute the TPy, FPy, FNy, and TNy
10: compute the LRy
11: compute the CCRyyzy
12: End while
13: Pareto set operation collects the optimal models
according to the LRf;;y and CCRyyz,y
14: End training data
15: testing data:
16: compute the LR,y andCCRyyy of the best m-locus
combination using testing data
17: End testing data
18: End k
19: perform the CVC operation

D. FSMOMDR PROCESS

FSMOMDR extends the MOMDR by using an improved
FS approach to extend binary classification into a fuzzy
classification; it is based on membership degree in the MO
measure. FSMOMDR is similar to EFMDR in that both are
used to calculate the membership degree in the high-risk and
low-risk groups within each multifactor class, H(wg) and
L(wrg). Thus, an MO function, based on the H(wg ) and L(wy)
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FIGURE 1. Diagram of FSMOMDR. All steps are detailed in the section on the FSMOMDR process.

membership degrees, can be formulated as follows.

f 1= LRFuzzy

(2)
f2 = CCRFuzzy,

maximize {

where the functions f; and f> are fuzzy CCR and LR mea-
sures, respectively, that are both based on the membership
degree. FSMOMDR is illustrated in Fig. 1; it comprises four
steps (Algorithm 1) as follows.

Step 1: Perform the k-fold CV operation

1-1: Randomly sort the data set. All cases (samples for a
given disease) and controls (samples for the normal popula-
tion) are randomly shuffled.

1-2: Stratified random k-fold. The ratio between cases and
controls is calculated, and k CV subsets comprising cases and
controls are generated according to the ratio between cases
and controls.

Step 2: Generate the training and testing data and all
m-locus combinations

2-1: In each CV operation, a CV subset is used as testing
data to evaluate the best model, and other CV subsets are com-
bined to form the training data to determine the best model
(defined by the m-locus combination having the highest value
of measure).

2-2: Generate all m-locus combinations. Among all SNPs,
all m-locus combinations are generated and assigned to a set.

Step 3: Evaluation of m-locus combination

3-1: The m-locus combination can generate 3™ multifactor
classes according to all combinations of genotypes. Each
multifactor class contains case and control groups. Each
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sample in the training data is assigned to a particular multifac-
tor class. When a sample matches a given multifactor class,
then it is assigned to the case group if it belongs to a case and
to the control group otherwise.

3-2: The membership degree of the multifactor class is
measured using the improved FS approach. In FSMOMDR,
each sample can have a partial membership degree for both
H(wy) and L(wg) groups. The case group to control group
ratio within the i multifactor class is transformed into the
interval [—1, 1] by using (3).

2nj)
Xp=————1, 3)
ni1 + njo

where n;1 and n;p are the sample frequencies matching the
i multifactor class in the case group and the control group,
respectively. An improved FS approach is introduced to eval-
uate the H(wpy) group and L(wy) group within the i multi-
factor class and is formulated as follows:

0, lf X = —1
1
—_—s ther
H(w; ) = BTV A @
1+ (ji +1)
1, l'fx,' =1
Lwir)=1—H(Wwin) (5

3-3: A 2 x 2 contingency table is generated. Four fuzzy
units of true positive (TPy), false positive (FPy), false neg-
ative (FNy), and true negative (TNy) are composed of both
the membership degrees [H (wy) and L (wy )] and the sample
frequencies of the " multifactor class (i.e., nj; and njp).
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In all multifactor classes, the TPy value is the sum of H(wg)
with frequency nj, and the FNy value is the sum of L(w.)
with frequency nj. Similarly, both the sum of H(wg) with
frequency ng and the sum of L(wy ) with frequency ng are the
values of FPy and TNy, respectively. The formulae for TPy,
FPr, FNy, and TNy are as follows:

TPy = Z”i] x H(w; g)
i

FPf = Zl’lio X H(Wi,H)
i

FNy = Znil x L(w; )
i

TNy =Y mio x L(w; 1) (6)

i
Observed
LRpyzzy =2 Z Observedlog [m}

— 2| 7P x log (X +FP; x 1 FFy
= X X
! o8 A* o8 B*
FNf TNf
+ FNy x log ol + TNy x log D

A (TP + FNy) (TPs + FPy)

TPy + FPr + FNy + TNy
(FPf + TNy )(TPr + FPf)

TP + FPr + FNy + TNy )
(TPf + FNf)(F F+ TNf)

TPy + FPr + FNy + TNy
(FPr + INy)(FENy + TNy)

TPy + FPr + FNy + TNy

*

s.t.

C*

*_

Consequently, the dimensions of 3" multifactor classes are
reduced into 2 x 2 dimensions by considering the member-
ship degrees for the high-risk and low-risk groups.

3-4: The m-SNP combination is evaluated using the MO
function, which is based on the H(wgy) and L(w;) member-
ship degrees. LRp;;y and CCRyy;y are calculated on the basis
of the two-way contingency table from step 3-3.

1) Objective function I: LRFy consists of observed fre-
quencies in the 2 x 2 contingency table, including expected
frequencies under the null hypothesis of no association [35].
LR,y is formulated according to (7).

2) Objective function 2: CCRy,;y assesses the proportion of
correctly classified individuals with an m-locus combination.
CCRyiizzy 1s formulated as per (8).

TPy TNy
+ (®)
TPy + FNy FPy + TNy

CCRyizy = 0.5 X (

3-5: Pareto set operation. The Pareto set operation deter-
mines candidates (Xj* = (x}, ..., x]")) and adds each candi-
date into Pareto set j, where j € {1, ..., k} and k is the number
of CVs. No candidate in the Pareto set dominates any another.
Suppose an m-locus combination x, is currently evaluated in
the j CV and X4 is compared with all x* in Xj*; if x, is not
dominated by any x*, then it is added to Xj* When x, in X]* is

VOLUME 8, 2020

dominated by x, such that fi(x,) > f1(xp) and f2(x) > f2(xp),
then x;, is omitted from X*.

3-6: Steps 3-1 to 3-5 are repeated until all m-locus combi-
nations are evaluated. Steps 3-1 to 3-5 explain FSMOMDR
data training when selecting candidates.

Step 4: All candidates in the Pareto set j, where j € {1, ...,
k}, are evaluated using the j testing data in the CV. In each
CV operation, all m-SNP combinations are evaluated using
step 3 to generate the Pareto set. Ultimately, £ Pareto sets
are obtained, in which each candidate is counted according to
its number of occurrences (denoted as CVC) in the k Pareto
sets. The highest CVC of all candidates represents the optimal
SNP-SNP interactions, in which the medians of the objective
values of the testing data are SNP-SNP interaction measures
(i.e., Step 4).

Ill. RESULTS

A. EPISTATIC MODELS WITHOUT MARGINAL EFFECTS

The data sets were simulated using 40 epistatic models
without marginal effects, according to the multilocus pene-
trance [13]. In the 40 epistatic models, heritability (4?) was set
between 0.025 and 0.2 to control the phenotypic variation of
the epistatic model. In the data set, the specific target (optimal
SNP-SNP interaction) was generated through a minor allele
frequency (MAF) of either 0.2 or 0.4 [36], and other SNPs
were generated through an MAF uniformly selected from
[0.05, 0.5]. GAMETES software was used to generate data
sets according to the aforementioned settings [37]. In each
data set, only one specific target exists. We randomly sim-
ulated 100 data sets in each epistatic model. The detection
success rate of an epistatic model was calculated by counting
the number of specific targets detected by the algorithm in
100 data sets.

We compared FSMOMDR with AntEpiSeeker [11],
BOOST [12], BEAM [10], SNPRuler [13], MDR [16],
PBMDR [17], CMDR [18], MOMDR [19], IMDR [20],
and EFMDR [21] across epistatic models without marginal
effects (Fig. 2). For epistatic models 1 to 10 (k> > 0.2),
all methods had a strong ability to accurately detect the
specific targets in each data set. For epistatic models 11 to
40 (h2 < 0.1), FSMOMDR exhibited a superior detection
success rate compared with those of MDR and EFMDR.
However, the performance of FSMOMDR was inferior to that
of SNPRuler (for model 34), BOOST (for models 25, 33,
34, and 40), and CMDR (for model 25). The performance
of FSMOMDR in 40 epistatic models was evaluated using
the Wilcoxon signed-rank test. A p value of <0.05 indi-
cated significantly superior performance of FSMOMDR
compared with its ten counterparts. Thus, as indicated in
Table 1, FSMOMDR offers superior performance to that
of its counterparts. Although p > 0.05 for FSMOMDR
compared with BOOST, a trend of superiority was evident
when comparing both methods. As for computation time,
FSMOMDR took an average of 32.7 s to run a complete
process in 40 epistatic models, including 1000 SNPs with
400 samples.
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FIGURE 2. Comparison of detection success rates of AntEpiSeeker (Ant), BEAM, SNPRuler, BOOST, MDR, PBMDR, CMDR, MOMDR, IMDR, EFMDR, and
FSMOMDR in disease models without marginal effects. Each dataset included 1000 SNPs, and sample sizes were 400 (200 cases and 200 controls).
Detection success rate was in the proportion of 100 data sets in which specific disease-associated SNP-SNP interaction was detected.

TABLE 1. Comparison of Antepiseeker, BEAM, SNPRuler, BOOST, MDR,
PBMDR, CMDR, MOMDR, IMDR, EFMDR, and FSMOMDR on 40 SNP-SNP
interaction models using the Wilcoxon Signed-Rank test.

FSMOMDR vs. R”* R R P value
Antepisecker 39 0 1 <0.001
BEAM 39 0 1 <0.001
SNPRuler 36 1 3 <0.001
BOOST 19 4 17 0.063
MDR 28 0 12 <0.001
PBMDR 39 0 1 <0.001
CMDR 21 1 18 <0.001
MOMDR 37 0 3 <0.001
IMDR 26 0 14 <0.001
EFMDR 28 0 12 <0.001

R the degree to which FSMOMDR is inferior to the algorithm, R™: the
degree to which FSMOMDR is superior to the algorithm, R™: the degree to
which FSMOMDR is equal to the algorithm.

B. EPISTATIC MODELS WITH MARGINAL EFFECTS

The six multilocus penetrances were used to simulate
epistatic models with marginal effect (models 1-6) [38].
We used GAMETES software [37] to simulate 100 data sets
in each epistatic model, with the MAF evenly set at [0.05,
0.5]. In 100 data sets, the detection success rate was calcu-
lated by counting the number of specific targets detected by
the algorithm.

Fig. 3 illustrates the detection success rates of
AntEpiSeeker, BEAM, SNPRuler, BOOST, MDR, PBMDR,
CMDR, MOMDR, IMDR, EFMDR, and FSMOMDR in six
epistatic models. FSMOMDR was superior to other algo-
rithms in six epistatic models with marginal effects. For
the six epistatic models with marginal effects, a Wilcoxon
signed-rank test indicated significant superiority in the

49956

TABLE 2. Comparison of Antepiseeker, BEAM, SNPRuler, BOOST, MDR,
PBMDR, CMDR, MOMDR, IMDR, EFMDR, and FSMOMDR on six SNP-SNP
interaction models using the Wilcoxon Signed-Rank test.

FSMOMDR vs. R* R R™ P value
Antepiseeker 6 0 0 0.028
BEAM 6 0 0 0.027
SNPRuler 6 0 0 0.027
BOOST 5 0 1 0.042
MDR 6 0 0 0.027
PBMDR 6 0 0 0.028
CMDR 5 1 0 0.249
MOMDR 6 0 0 0.027
IMDR 6 0 0 0.027
EFMDR 6 0 0 0.028

R: the degree to which FSMOMDR is inferior to the algorithm, R™: the
degree to which FSMOMDR is superior to the algorithm, R™: the degree to
which FSMOMDR is equal to the algorithm.

detection success rate of FSMOMDR relative to that of
the other nine algorithms (Table 2). A trend of superiority
was evident in comparisons of FSMOMDR with CMDR.
Our results suggest that the improved FS approach effec-
tively enhanced MOMDR with respect to considering the
uncertainty in the H/L classification of disease sites. As for
computation time, FSMOMDR spent an average of 41.1 s
running a complete process for each of the six epistatic
models, including 1000 SNPs with 400 samples.

C. EXPERIMENT WITH REAL DATA

A real coronary artery disease (CAD) data set from the
WTCCC database was used to evaluate the ability of
FSMOMDR to detect SNP-SNP interactions. The WTCCC
database was constructed in 2005 by 50 British research
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FIGURE 3. Comparison of detection success rates of AntEpiSeeker (Ant), BEAM, SNPRuler, BOOST, MDR, PBMDR, CMDR, MOMDR, IMDR, EFMDR and

FSMOMDR in disease models with marginal effects. Each data set included 1000 SNPs, and sample sizes were 400 (200 cases and 200 controls).

Detection success rate was calculated as the proportion for 100 data sets in which specific disease-associated epistasis was detected.

TABLE 3. FSMOMDR results for coronary artery disease on WTCCC data.

Location SNP Groups Related Genes LRny*' CCRi, "2 CcvC
Chrl rs41399650, rs17163057 UNKNOWN, UNKNOWN 272.135 0.784 5
Chr2 1541509345, rs41453947 UNKNOWN, UNKNOWN 242958 0.783 5
Chr3 rs41367044, rs10866051 GTF2E1, LOC105376942 391.105 0.837 5
Chr4 1541426946, rs41529544 PPA2, UNKNOWN 270.066 0.797 5
Chr5 1541493746, rs41421845 UNKNOWN, LINC02107 91.429 0.674 5
Chr6 1s3006172, rs41489047 WDR27, ADGRB3 240.729 0.779 5
Chr7 1541437948, rs41468749 POU6F2, GALNT17 55.271 0.639 5
Chr8 rs35120859, rs17480050 UNKNOWN, CSGALNACTI1 139.631 0.722 4
Chr9 1541354745, 1s2891142 KANKI1, SLC24A2 161.29 0.736 5
Chr10 1s41370151, rs2944490 FAM107B, TCERGIL 267.022 0.779 5
Chrl1 1541535846, rs41518446 UNKOWN, MAML2 47.620 0.627 2
Chrl2 rs16926425, rs7299571 SOX5, UNKNOWN 712.602 0.957 5
Chrl3 rs7328649, 1s9540728 FAM155A, PCDH9 275.813 0.805 5
Chrl4 141324950, rs41453247 LOC105370603, UNKNOWN 234.386 0.783 5
Chrl5 rs41418744, rs41418548 UNKNOWN, SHC4 80.943 0.664 3
Chrl6 rs235633, rs41483646 UNKNOWN, UNKNOWN 186.539 0.752 5
Chrl7 13785579, rs1870998 CACNGI1, UNKNOWN 494,358 0.871 2

154969207, rs3785579 DNAH17, CACNG1 483.102 0.868 2
Chrl8 154799934, rs3794931 CELF4, ZNF516 191.401 0.732 5
Chrl9 rs375299, rs41370444 UNKNOWN, UNKNOWN 31.169 0.601 5
Chr20 152748666, rs41405046 UNKNOWN, UNKNOWN 440.051 0.872 5
Chr21 rs41378546, rs41451052 POU6F2, UNKNOWN 23.811 0.585 5
Chr22 1541437948, rs41468749 POUG6F2, GALNT17 52.509 0.634 4
ChrX 11419930, rs41500547 UNKNOWN, DMD 56.305 0.637 5

Chr: Chromosome; ! LRy, value is based on membership degree of fuzzy sigmoid approach. "> CCRyy,y value is based on membership degree of fuzzy

sigmoid approach.

teams [39]. The CAD data set comprises 23 sub-datasets
(chromosomes 1 to 22 and X), with 500569 SNPs in total.
Each sample comprised 1988 patients with coronary heart
disease and 1500 healthy people in the United Kingdom. All
SNPs were genotyped using the Affymetrix gene chip 500 K
mapping array.

Table 3 displays the FSMOMDR-detected SNP-SNP
interactions. SNP information was determined by dbSNP
at the National Center for Biotechnology Information
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(https://www.ncbi.nlm.nih.gov/snp/). Any SNP not on a gene
was labeled “UNKNOWN.” The chromosome had more
than one SNP-SNP interaction, according to its multiobjec-
tive characteristic. We used raw data sets to evaluate the
significance level of an SNP-SNP interaction, with the p
values obtained from a chi-square test (x2). Among the
23 chromosomes, all SNP-SNP interactions detected by
FSMOMDR yielded a p value of <0.0001, indicating a
significant SNP-SNP interaction. The CVC indicated the
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degree to which optimal SNP-SNP interaction was detected
across a 5-fold CV, with CVC = 5 reflecting the highest
degree [40]. In MDR, a high CCR value (>0.5) potentially
reduces the frequency of chance [41]. A high LR value can
reduce uncertainty in the disease model. High CCR and LR
values indicated a strong contrast between cases and controls.
As presented in Table 3, CCRfy,,y values were in the range of
0.585-0.957, with an average value of 0.747 and a standard
deviation (SD) of 0.096. LR,y values were in the range
of 23.811-712.602, with an average value of 226.760 (SD
= 171.880). The four SNP-SNP interactions exhibited high
CCRfuzzy (>0.8), LRfyzzy (>250), and CVC (=5) values in
addition to high significance (p < 0.0001), indicating that
these interactions were potentially related to CAD. Further
analysis of the implicated gene polymorphisms and their
functional relevance is necessary. Table 3 lists the duration of
operation of FSMOMDR for the WTCCC data set. We noted
that the duration of operation increased proportionally with
the number of SNPs.

IV. DISCUSSION

MDR was demonstrated to be a nonparametric approach for
detecting nonlinear interaction between SNPs. MDR trans-
forms the multifactor nonlinear combination from a high
dimension to a low dimension. This may be an explanation
for why 3™ multifactor genotypes could be transformed by
binary classification into 2 x 2 contingency tables to improve
the evaluation of SNP-SNP interaction [14]. Binary classi-
fication determines membership to high- or low-risk groups
using the frequencies of multiple genotypes in cases and
controls. However, binary classification may result in the loss
of key information due to uncertainty [26]. Assuming that
the balanced data set (i.e., where the classification threshold
is 1) in the 2-SNP combination consists of nine multifactor
genotypes, it is divided into a high-risk group (dominance
> 5.5) and low-risk group (dominance < 5.5). For a low
multifactorial genotype, the membership degree is 2.5. MDR
cannot distinguish between the two multifactorial genotypes.
Although other studies have explored the shortcomings of
MDR [21], [26], research in this field remains limited.

We determined the effectiveness of FSMOMDR by evalu-
ating its performance in several epistatic models compared
with the performance of other algorithms. For 40 epistatic
models without marginal effects, FSMOMDR outperformed
AntEpiSeeker in 39 models, BEAM in 39 models, SNPRuler
in 36 models, BOOST in 19 models, MDR in 28 models,
PBMDR in 39 models, CMDR in 21 models, MOMDR
in 37 models, IMDR in 26 models, and EFMDR in 28 mod-
els. Furthermore, for six epistatic models with marginal
effects, FSMOMDR outperformed AntEpiSeeker, BEAM,
SNPRuler, MDR, PBMDR, MOMDR, IMDR, and EFMDR
in all six models and outperformed BOOST and CMDR in
five models. The results indicate that FSMOMDR has supe-
rior detection ability to AntEpiSeeker, BEAM, SNPRuler,
BOOST, MDR, PBMDR, CMDR, MOMDR, IMDR, and
EFMDR. Regarding the core principles and theoretical
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advantages of FSMOMDR, our algorithm handles uncer-
tainty information through the FS approach, and fuzzy logic
enables MOMDR to assign two membership degrees in
each multifactor class because the two-element set {0, 1}
is extended to the membership interval [0, 1]. For the inter-
val [0, 1], our improved FS approach assesses the distance
between the i multifactor class and outcome (cases and
controls). This effectively improves the membership degrees
of high- and low-risk groups in each multifactor class. This
enables the effective detection of the m-locus combinations
with similar distributions, thus enabling the detection of more
significant SNP—SNP interactions. Jung et al. [26] introduced
the original fuzzy-based MDR. The limitation of fuzzy-
based MDR lies in its selection of the sigmoid function’s
parameters. Leem et al. introduced an EF function with-
out such parameter selection to overcome the limitations of
fuzzy-based MDR [21]. FSMOMDR used a ratio of cases
to controls to map any region to the interval [—1, 1]. This
strategy can reduce imbalance between the cases and con-
trols [16], [42]. Thus, FSMOMDR does not select the param-
eter value of the fuzzy set. Moreover, in the 2 x 2 contingency
table, our improved FS approach was superior to EFMDR
with respect to the difference in the four cells (i.e., TPy,
FPy, FNy, and TNy). Simulation experiments demonstrated
that FSMOMDR has a higher detection success rate than
EFMDR does. Moreover, the FSMOMDR can be extended
by the neutrosophic set [43].

In addition to its retention of MDR’s advantages,
FSMOMDR has three other characteristics. First, it applies
multiobjective measurement, which is based on the improved
FS approach, to increase the distinction between multifactor
classes for improved detection of potential SNP-SNP inter-
actions. Second, to understand the distribution of multifac-
tor classes associated with a particular disease, FSMOMDR
can use the membership degree to graphically represent
SNP-SNP interactions. Third, FSMOMDR has no need for
selecting the parameters of the fuzzy sets.

The computation time of FSMOMDR is & x

for the evaluation of the m-locus combinations between k-
fold CV subsets in n SNPs with s samples. Specifically,
for 100 data sets containing 1000 SNPs and 400 samples,
the average computation times for MDR, EFMDR, and
FSMOMDR are approximately 26, 28, and 31 s, respectively.
For large data sets used in a GWAS, FSMOMDR has an
approximate computation time of 29.14 h for 23 chromo-
somes. We recommend choosing from a large existing suite
of computational methods, including parallel operation [44],
graphics processing units-based MDR [45], the greedy search
strategy [46], and differential evolution-based MDR [18],
to improve FSMOMDR runtime.

X §x3M

V. CONCLUSION

We designed a powerful FS approach, FSMOMDR, for
detecting SNP—SNP interactions. FSMOMDR is based on the
improved sigmoid function, which allows it to yield better
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information on MOMDR uncertainty. Each multifactor class
can be evaluated with respect to its membership degree in
the high-risk and low-risk groups, thus enabling FSMOMDR
to detect more potential SNP-SNP interactions. FSMOMDR
was demonstrated to have satisfactory power on real GWAS
data sets; it can be used for SNP-SNP interaction detection.
The findings of the present study suggest that the member-
ship, based on the improved sigmoid function, can be used
to identify SNP-SNP interactions in addition to obtaining
content knowledge, thus reducing the information uncertainty
in MDR.
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