
SPECIAL SECTION ON INNOVATION AND APPLICATION OF INTELLIGENT PROCESSING OF
DATA, INFORMATION AND KNOWLEDGE AS RESOURCES IN EDGE COMPUTING

Received January 30, 2020, accepted February 16, 2020, date of publication February 28, 2020, date of current version May 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2977089

QoS-Aware Task Placement With
Fault-Tolerance in the Edge-Cloud
HUAIYING SUN 1,2, HUIQUN YU1,3, GUISHENG FAN 1, AND LIQIONG CHEN4
1Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
2Shanghai Key Laboratory of Computer Software Evaluating and Testing, Shanghai 201112, China
3Shanghai Engineering Research Center of Smart Energy, Shanghai 200120, China
4Department of Computer Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China

Corresponding authors: Huaiying Sun (ecustshy@foxmail.com), Huiqun Yu (yhq@ecust.edu.cn), and Guisheng Fan (gsfan@ecust.edu.cn)

This work was supported in part by the NSF of China under Grant 61772200 and Grant 61702334, in part by the Shanghai Municipal
Natural Science Foundation under Grant 17ZR1406900 and Grant 17ZR1429700, in part by the Educational Research Fund of ECUST
under Grant ZH1726108, in part by the Collaborative Innovation Foundation of Shanghai Institute of Technology under
Grant XTCX2016-20, and in part by the Humanities and Social Science Research Planning Fund of the Education Ministry of China under
Grant 15YJCZH201.

ABSTRACT The geographically dispersed resources and ever-changing context incur unique heterogeneity,
potential fragility, and vulnerability of an edge-cloud system. Thus, the reliability guarantee of services in
the edge-cloud is critical. This paper firstly proposes a QoS-aware scheduling model with fault-tolerance
in the edge-cloud, which extends the traditional primary-backup (PB) fault-tolerant model to improve the
service reliability in the edge-cloud with the time constraints of tasks being satisfied. Then, a QoS-aware
fault-tolerant scheduling algorithm including primary copy placement, backup copy placement and an
adjustment mechanism is proposed to improve the QoS levels of tasks in the edge-cloud. The primary
copy placement is to guarantee the earlier execution of the primary copy of a task to better satisfy the time
requirements of tasks. The backup copy placement is to ensure the later execution of the backup copy of
a task, reducing the overlapping of the two copies of a task, realizing the improvement of the resource
utilization in the edge-cloud under the condition of redundancy and deadline requirements of tasks. The
adjustment mechanism is triggered to rearrange the task copies of a computing node of the edge-cloud after
the deallocation of a backup copy on the node, to better assist the goal-achievement of the primary and
backup copy scheduling. Finally, through extensive simulation experiments with the real world taxi traces,
the performance difference between the proposed method and the other four methods are evaluated. Results
show that the proposed method generally outperforms the other methods in terms of guarantee ratio, average
QoS level, and reliability cost.

INDEX TERMS Edge-cloud, QoS, fault-tolerance, time constraint, primary-backup.

I. INTRODUCTION
Edge-cloud has been widely deployed to host various appli-
cations and services because of its priority in providing
resources with close distance and low latency to cus-
tomers. It is promising in many important application areas,
e.g., the ladder networking, robotics, energy efficiency man-
agement, predictive maintenance of rail transit equipment,
energy network, intelligent transportation, smart city, mil-
itary field and the industrial field such as the industrial
manufacturing, etc [1]. Compared with the remote cloud
data center, servers of the edge-cloud with more uncertain
varying availability, credibility are more pone to failures [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Honghao Gao .

The servers on the edge side are geographical and dis-
persed deployed, which incurs more complicated manage-
ment and maintenance. Lacking of advanced supporting
systems, for example, the complete backup electrical lines
with transfer switches, diesel duplicated generators, clean
agent fire suppression gaseous systems, and direct liquid
cooling devices, will also increase the safety risks [3]. There
are also some other hidden hardware and software failures in
the edge-cloud [4]. Thus, the reliability guarantee of services
in the edge-cloud is of great significance.

In addition, precision and reliability are more demanded
in fields such as industrial manufacturing, predictive main-
tenance and the management of rail transit equipment,
etc [5], [6]. For instance, Ossmann and Joos [7] studied an
automated flight control system [8] which is utilized to fly a

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 77987

https://orcid.org/0000-0003-3693-6743
https://orcid.org/0000-0002-2702-0242
https://orcid.org/0000-0001-6861-9684

H. Sun et al.: QoS-Aware Task Placement With Fault-Tolerance in the Edge-Cloud

simulated model of a flight aircraft. All the flight controlling
tasks of this system need to be completed within deadlines.
For the purpose of improving the stability of the system,
each task chooses different the quality of requirement (QoS)
levels by varying its period or execution time, different QoS
levels assure different flight qualities. Also, in [9], a real-time
signal processing application needs different algorithms to
deal with the massive generated signal data. For instance,
extensive algorithms can be employed to decode block turbo
codes [10], [11]. High-complexity algorithms can ensure a
higher QoS level (higher data accuracy) of signal processing
at the cost of processing time, low-complexity algorithms just
operate the opposite [9].

Therefore, QoS-aware real-time system applications
deployed on the edge-cloud should incorporate inherent high-
reliability features [7], [9]. For example, the automated flight
control system is adopted by the military battlefield, it must
ensure that each task can be completed on time no matter
whether there is a hardware or software fault or not [7].
For the case of the signal processing system, though the
time requirement of it is not as rigid as the automated flight
control system, the outdated or half-baked processed data
may be useless for users, especially in the field of modern
information battle [9]. Thus, the system must guarantee its
functional and time correctness even in the presence of faults.
Consequently, providing a fault-tolerant mechanism for such
systems is of vital importance because of the inherent nature
of tasks in these types of systems [2].

One of the effective ways to improve the service reli-
ability is to design the fault tolerance based scheduling
method [12]. The core of the fault-tolerant scheduling algo-
rithm is to introduce redundancy to ensure that tasks can
be completed smoothly even when permanent or transient
system failures occur [13]. To the best of our knowl-
edge, fault-tolerant scheduling in the edge-cloud environ-
ment is relatively rare, few works have been done on the
fault-tolerant scheduling for real-time taskswithQoS require-
ments in the edge-cloud. To provide high system flexibility,
Luo et al. [14] proposed a dynamic and reliability-driven
real-time fault-tolerant scheduling method, DYFARS, in het-
erogeneous systems, considering both active and passive
backup copies of tasks. However, the DYFARS does not
consider the QoS requirements of real-time tasks when pro-
viding fault tolerance. Zhu et al. [15] proposed a QoS-aware
fault-tolerant scheduling algorithm called QAFT to improve
the QoS levels of real-time tasks, which is similar to the pur-
pose of this paper. Wang et al. [16] presented a fault-tolerant
elastic scheduling algorithm for real-time tasks in clouds
named FESTAL. FESTAL takes virtualization into account
and uses backup overlapping to realize high system utiliza-
tion. Both QAFT and FESTAL don’t have the adjustment
mechanism to take full advantage of the primary and backup
copy scheduling. Gao et al. [17] focused on improving perfor-
mance in accessing and processing resources and providing
resource security protection by using the cost difference

of both type conversions of resources and traversing on
resources in the IoT environment. Yin et al. [18] proposed
a new matrix factorization model with deep features learn-
ing which combined a convolutional neural network. This
model also contained a novel similarity computation method
in order to improve the accuracy of neighbors selection.
Yin et al. [19] focused on recommending the most suitable
candidate from a huge number of available services for the
recommendation task based on quality-of-service in a mobile
edge computing environment by combining the model-based
collaborative filtering and neighborhood-based collaborative
filtering. Gao et al. [20] proposed a cost-driven services
composition approach for enterprise workflows that adopts
formal verification to recommend appropriate services for
abstract workflows, ensuring that the configuration for the
workflow solution has the best performance, high reliability,
and low cost. Methods in [18]–[20] are proposed to recom-
mend suitable services without fault tolerance mechanisms.

It is a challenge to design and implement novel QoS-aware
fault-tolerant scheduling algorithms for real-time tasks whose
application services are running on the edge-cloud with
unique heterogeneity specifically. The effective utilization of
resources in the edge-cloud under the condition of redun-
dancy is also of great significance in enabling more tasks to
be served in the edge-cloud smoothly. These challenges are
the motivation to integrate fault tolerance with QoS-aware
scheduling by developing a dynamic fault-tolerant scheduling
algorithm based on the primary-backup strategy for real-time
tasks in the edge-cloud. Thus, the contributions of this work
are shown as follows.

(1) In view of the heterogeneous, distributed resources
and the ever-changing context in the edge-cloud, we propose
a novel QoS-aware scheduling model with fault-tolerance
in the edge-cloud, which extends the traditional primary-
backup (PB) fault-tolerant model [12] to improve the relia-
bility of services of the edge-cloud.

(2)With the fault-tolerant scheduling model, a fault-
tolerance based QoS-aware scheduling algorithm (FTBQA)
including the primary copy placement, backup copy place-
ment, and the adjustment mechanism is proposed to improve
the QoS levels of tasks. The primary copy placement is to
guarantee the earlier execution of the primary copy of a task
to better satisfy the time requirements of tasks. The backup
copy placement is to ensure the later execution of the backup
copy of a task, reducing the overlapping of the two copies of
a task, realizing the improvement of the resource utilization
in the edge-cloud under the condition of redundancy and
deadline requirements of tasks. The adjustment mechanism
is triggered to rearrange the task copies of a computing node
of the edge-cloud after the deallocation of a backup copy on
the node, to better assist the goal-achievement of the primary
and backup copy scheduling.

(3) Through extensive simulation experiments with the real
world taxi traces in San Francisco, the performance difference
between FTBQA and the other four benchmarks in terms

77988 VOLUME 8, 2020

H. Sun et al.: QoS-Aware Task Placement With Fault-Tolerance in the Edge-Cloud

of guarantee ratio, average QoS level, reliability cost are
evaluated.

The rest of the paper is organized as follows: Section II is
about the related work. Then is the QoS aware scheduling
model with fault-tolerance. Section IV shows the problem
formulation. Then is the scheduling principles. Section VI
shows the QoS-aware fault-tolerant scheduling algorithm,
the following is the performance evaluation, and the last is
the conclusion.

II. RELATED WORK
On one hand, fault-tolerant scheduling algorithms can
be classified into two categories: preemptive schedu-
ling [21]–[23] and non-preemptive scheduling [24]–[26].
In the preemptive scheduling method, the executing tasks
can be preempted by other tasks. As for the non-preemptive
scheduling approaches, the executing tasks cannot be inter-
rupted during their executions and a task can start its exe-
cution only if the executing task before it has finished its
execution [22]. Although preemptive scheduling is capable
of achieving high system utilization, it is impossible or pro-
hibitively expensive for hardware devices or software config-
uration tomake preemptions inmany practical scenarios [25].
In stark contrast, non-preemptive scheduling has the features
of accurate response time analysis, ease of implementation,
no synchronization overhead, and reduced stack memory
requirements [26]. Non-preemptive scheduling has proven
to be more beneficial than preemptive scheduling in many
applications, such as multimedia applications [24].

From the other point of view, fault-tolerant schedul-
ing algorithms can also be divided into two classes, one
is the static method (i.e., offline) [25]–[27] and another
is the dynamic method (i.e., online) [28]–[30]. The static
fault-tolerant scheduling methods are suitable for periodic
tasks [25], which will assign tasks to the computing nodes
in advance and the starting time of a task is also required
to be determined a priori [26], [27]. As for the aperiodic
tasks which always arrive randomly should be scheduled by
the dynamic fault-tolerant scheduling methods [28], [29].
With the increase of applications requiring high real-time
performance, more and more studies pay attention to the
dynamic fault-tolerant scheduling algorithms based on the
primary backup model (or PB in short). In the PB model, two
copies of a task, namely, the primary copy and the backup
copy, are allocated to the two different nodes. There is also
an acceptance test in the model, which is adopted to check
the correctness of allocations [12].

The backup copy of a task can have two alternative
schemes, one is the passive backup-copy scheme [12],
the other is the active backup-copy scheme [28]. For the
passive backup-copy scheme, the real-time tasks should have
enough laxity to restart their backup copies [29], and the
backup copy of a task is allowed to execute only when a
fault occurs in the primary task [30], [31]. Ghosh et al. [30]
proposed two approaches called deallocation and overloading
to improve schedulability and provide fault tolerance with

low overhead. The problem is that multiple backup copies
in the overloading scheme may overlap in the same time
slot on the same processor. The deallocation scheme was
used to reclaim the resources reserved for backup copies
once the corresponding primary copies have been completed
successfully [30]. Manimaran and Murthy [31] replenished
themethod of [30] by considering resource constraints among
tasks and partitioning processors into groups to tolerate more
than one failure at a time. Al-Omari et al. [32] focused on a
PB overloading technique that allowed the primary copy of a
task to overlap with the backup copy of another task to ensure
the high schedulability. There is an important assumption in
these studies that the laxity of a task must be at least twice as
large as its computation time so that the passive backup-copy
scheme can be adopted [12]. However, this assumption is not
realistic in practice, i.e., for the case of the heavily loaded
real-time systems. Different from the passive backup-copy
scheme, the active backup-copy scheme is sufficient for the
tasks with small laxities. For instance, Tsuchiya et al. [33]
proposed amethod inwhich two copies of each taskwere con-
currently executed with different start times. Yang et al. [34]
proposed a fault-tolerant scheduling method in which the
two copies of a task were executed simultaneously for the
purpose of improving the schedulability. Al-Omari et al. [35]
focused on the adaptive scheme which managed the overlap
interval between the primary copy and backup copy of a task
according to the primary-fault probability and task’s laxity.

There are some other new approaches are proposed to
improve the performance of services. Zhang et al. [36]
firstly used a strategy based on the density of Internet
of Things (IoT) devices together with the k-means algo-
rithm to divide network of edge servers, then proposed an
algorithm for making IoT devices’ computation offload-
ing decisions. This method showed great performance in
reducing global cost, but it didn’t take the fault-tolerance
into account. Ghahramani et al. [37] carried out a com-
prehensive survey on the models proposed in the literature
regarding the implementation principles to address the QoS
guarantee issue. Qi et al. [38] proposed a novel time-aware
and privacy-preserving service recommendation approach
based on the Locality-Sensitive Hashing technique by extend-
ing the traditional Locality-Sensitive Hashing technique to
incorporate the time factor. This approach achieves a good
tradeoff between recommendation accuracy and efficiency
with the guarantee of privacy-preservation. Li et al. [39] pro-
posed a secure random key distribution scheme to defense
against the node replication attacks. The approach has great
security and effectiveness while also has good storage and
communication efficiency. Gao et al. [40] studied a commu-
nication scheduling and remote estimation problem within
a worst-case scenario that involved a strategic adversary.
Zhang et al. [41] discussed and analyzed the architectures
of fog computing, indicated the related potential security
and trust issues. And Yuan et al. [42] proposed a time-aware
task scheduling algorithm which investigated the temporal
variation and scheduled all admitted tasks to execute in Green

VOLUME 8, 2020 77989

H. Sun et al.: QoS-Aware Task Placement With Fault-Tolerance in the Edge-Cloud

FIGURE 1. QoS-aware scheduling model with Fault-tolerance.

Data Center meeting their delay bounds. This work then
was extended to the scenario of Green Hybrid Cloud [43].
Reference Kang et al. [44] proposed a real-time distributed
load scheduling algorithm to solve an objective function that
was based on constraints of power supply. Where a baseload
forecasting model was established when aggregating renew-
able generation and non-deferrable load into a power system.
To minimize the deployment cost of the cloudlet placement,
Fan and Ansari [45] put forward a cost aware cloudlet place-
ment in mobile edge computing strategy considering the
cloudlet cost and average end-to-end delay and developed
a Lagrangian heuristic algorithm to achieve the subopti-
mal solution. Meanwhile, a workload allocation scheme was
designed to minimize the end-to-end delay between users and
their cloudlets regarding the user mobility. To predict QoS
values for service recommendation and service selection,
Gao et al. [46] developed a holistic framework to attack the
QoS prediction in IoT environment based on neural collab-
orative filtering and fuzzy clustering and designed a fuzzy
clustering algorithm to cluster contextual information. Then
a new combined similarity computation method and a new
neural collaborative filtering model to leverage local and
global features were proposed.

In this paper, we focus on the non-preemptive schedul-
ing for the aperiodic and independent real-time tasks in the
edge-cloud with respect to the QoS requirements of tasks.
Our approach can also be applied to dependent tasks because
tasks with precedence constraints could be considered as the
independent tasks as long as the ready times and deadlines of
dependent tasks are modified accordingly [47].

III. SYSTEM ARCHITECTURE AND COMPUTING MODELS
In this section, we will introduce the QoS aware scheduling
model with fault-tolerance in the edge-cloud. It has three
parts, as shown in Fig.1.

The first part I is the field layer which is close to the net-
work having field nodes like the sensors, actuators, devices,
control systems, and assets, etc [1]. These field nodes are
connected with edge gateways and other devices in the
edge-cloud through various types of field networks and

industrial buses, so as to realize the connection of data flow
and control flow between the field layer and the edge-cloud.
Assume that there are K types of applications in the system,
their tasks will be inserted into corresponding task queues
to be processed, for example, the queues in Fig.1. As for
the types of tasks for a specific application, there are two
cases: if a task needs real-time services, it will be processed
in the edge-cloud without the intervention of the remote
cloud. In contrast, if a task demands the intervention of the
remote cloud for analysis based on historical data-sets and
for semi-permanent or permanent storage, it will be sent to
the remote cloud after being processed in the edge-cloud [48].
Thus, both edge-cloud and cloud will maintain these K types
of task queues.

The second part II is the edge-cloud layer which is the core
of the whole architecture. It receives, processes and forwards
data streams from the field layer, and provides time-sensitive
services such as intelligent perception, security and privacy
protection, data analysis, intelligent computing, process opti-
mization, and real-time control. The edge-cloud includes
distributed devices with computing and storage capabilities
such as edge gateways, edge controllers, edge servers, edge
sensors and network devices such as time-sensitive network
switches or routers encapsulating computing, storage and
network resources on the edge side. The edge-cloud also
includes the edge manager software, which mainly provides
the ability of business choreography or direct invocation to
control various edge nodes to complete tasks.

The third part III is the remote cloud layer, which provides
a decision support system, application service programs in
specific fields such as intelligent production, network collab-
oration, service extension, and personalized customization,
and provides interfaces for end-users. The remote cloud layer
receives the data stream from the edge-cloud and sends con-
trol information to the edge layer and field layer through the
edge layer. It optimizes resource scheduling and industrial
production process in a global scope. The centralized sched-
uler in it is in charge of real-time controlling, QoS controlling,
reliability controlling, primary copy controlling, backup copy
controlling and the resourcemanagement deciding how nodes
should be added ormigrated if the current processing capacity
is unable to meet the time requirements.

When a new task arrives, with the requirement of the task
and the resource information gathered from all computing
nodes of the edge-cloud and the remote cloud data center,
the centralized scheduler makes decisions according to the
corresponding scheduling algorithm (we will discuss it in
Section VI) and the primary and backup copies of a task
will be sent to the different computing nodes based on the
decisions. Then the primary copy is executed if the node is
idle, or waits in the local queue if the node is busy. When
the primary copy is finished successfully, the backup copy
is deleted and the resource occupied by the backup copy is
reclaimed, and the adjustment mechanism will be triggered
to rearrange the task copies of a computing node of the
edge-cloud after the deallocation of a backup copy on the

77990 VOLUME 8, 2020

H. Sun et al.: QoS-Aware Task Placement With Fault-Tolerance in the Edge-Cloud

node, to better assist the goal-achievement of the primary and
backup copy scheduling. The local scheduler is in charge of
rearranging the order of the local queue if any backup copy
is removed from the node.

IV. PROBLEM FORMULATION
The application instances running on the terminal deviceswill
have their task requests sent to the edge-cloud to be served.
As for the type of tasks for corresponding applications, there
are two cases: if a task needs real-time services, it will
be processed in the edge-cloud without the intervention of
the remote cloud. In contrast, if a task demands the inter-
vention of the remote cloud for analysis based on histori-
cal datasets and for semi-permanent or permanent storage,
it will be sent to the remote cloud after being processed in
the edge-cloud [48]. To improve the service reliability of
the edge-cloud through the way of scheduling based on the
primary-backup strategy, each task sent to the edge-cloud
has two copies, namely the primary copy and the backup
copy. The two copies of the task are firstly considered to
be allocated to the edge-cloud, if the edge-cloud refuses the
primary/backup copy of a task, then the copy will be further
considered to be assigned to the remote cloud data center. The
detail of the task assignment process will be introduced in
section VI.

The service delay of a task request sent by the termi-
nal device is the corresponding response latency, which
is the sum of the data transmission delay, the queuing
and processing delay of the request on the computing
node. The bottleneck of the transmission is the bandwidth
between the terminal device and edge-cloud, the bandwidth
between the edge-cloud to the remote cloud data center.
As the number of active terminals increases, the amount of
data generated will increase and the corresponding service
delay maybe also increase. In the following, we are going to
introduce the models of transmission latency, queuing delay,
processing delay and the reliability cost which is used to
measure the reliability of the whole computing system in a
time slot [23], [49].

A. TRANSMISSION DELAY ON THE EDGE-CLOUD
AND THE REMOTE CLOUD
Let ωvee be the transmission delay of an unit byte data from
the terminal device which is in the source point v to the
edge-cloud, ωvec be the unit byte data transmission delay
from the edge-cloud to the remote cloud. Pvr (xi, t),P

v
s(xi, t)

are the total amount of data in bytes which are generated from
the source point v in the time slot t which demands to be
served and stored for the ith task xi [48]. Qvr (xi, t),Q

v
s(xi, t)

are the total number of bytes generated from v, which will be
transmitted to the remote cloud for computation and storage
purposes. For the partPvr (xi, t)+P

v
s(xi, t)−Q

v
r (xi, t)−Q

v
s(xi, t)

of the task request xi which is to be served and stored
on the edge-cloud, the corresponding transmission delay is
expressed as Equation (1). Where V represents the number
of source points which generate the data of xi. If task xi

just needs to be served and stored on the edge-cloud, then
both Qvr (xi, t),Q

v
s(xi, t) are 0. Similarly, if the leftover part

Qvr (xi, t) + Qvs(xi, t) of xi is to be served and stored on
the remote cloud, then the transmission time is given by
Equation (2).

δei,tr (xi, t) =
V∑
v=1

ωvee{P
v
r (xi, t)+ P

v
s(xi, t)

−Qvr (xi, t)− Q
v
s(xi, t)} (1)

δci,tr (xi, t) =
V∑
v=1

(ωvee + ω
v
ec){Q

v
r (xi, t)+ Q

v
s(xi, t)} (2)

Thus, nomatter whether the task xi would just be processed
in the edge-cloud or be processed in the edge-cloud with the
interference of the remote cloud, the average transmission
time at the time slot t can be concluded as Equation (3) and
Equation (4).

3e
tr (t)

=
δei,tr (xi, t)+ δ

c
i,tr (xi, t)

V∑
v=1
{Pvr (xi, t)+ Pvs(xi, t)}

(3)

δei,tr (xi, t)+ δ
c
i,tr (xi, t)

=

V∑
v=1

ωvee{P
v
r (xi, t)+ P

v
s(xi, t)} + ω

v
ec{Q

v
r (xi, t)+ Q

v
s(xi, t)}

(4)

For the case that all part of the task xi is processed on
the remote cloud data center, the total transmission time and
the average transmission time at the time slot t is given by
Equation (5) and Equation (6).

δctr (t) =
V∑
v=1

(ωvee + ω
v
ec){P

v
r (xi, t)+ P

v
s(xi, t)} (5)

3c
tr (t) =

V∑
v=1

(ωvee + ω
v
ec){P

v
r (xi, t)+ P

v
s(xi, t)}

V∑
v=1
{Pvr (xi, t)+ Pvs(xi, t)}

(6)

B. QUEUING DELAY AND PROCESSING DELAY ON THE
EDGE-CLOUD AND THE REMOTE CLOUD
Compared with the remote cloud, resources on the edge side
are limited. Inspired by [50], the queuing system is adopted
for the edge-cloud. Let Quj(t) be the number of task requests
queuing in the edge node j at the beginning of slot t . Then the
changing of queue length Quj is denoted by Equation (7).

Quj(t + 1) = max[Quj(t)+ Yuj(t)− ruj(t), 0] (7)

where Yuj(t) =
∑

m∈M Yuj(t)(m) is the number of task
requests arrived,M represents the set of tasks are determined
to compute in the edge node j. ruj(t) is the number of task
requests serviced at the edge node j during slot t . Let Qwj(t)
be the corresponding workload with respect to the number of

VOLUME 8, 2020 77991

H. Sun et al.: QoS-Aware Task Placement With Fault-Tolerance in the Edge-Cloud

task requests and task sizes queuing in the edge node j at the
beginning of slot t . So, it is denoted by Equation (8).

Qwj(t + 1) = max[Qwj(t)+ Ywj(t)− PFj /X , 0] (8)

where PFj /X is the amount of data that the edge server j
can process in a time slot, PFj is proportion to the server’s
CPU-cycle frequency, X is the number of CPU cycles needed
to process a bit of a task [50]. Ywj(t) =

∑Yuj(t)−1
x=0 Sxj means

the aggregated workload in the time slot t , and Sxj shows the
size of the x th task request on the edge node j that arrives in
time slot t . Then the queuing delay of the x th task request on

the edge side can be shown as Equation (9). Where
x−1∑
m=0

Smj

represents the workload that arrives ahead of the x th job in
time slot t [50].

Qd(j,x)(t) =

X (Qwj(t)+
x−1∑
m=0

Smj)

PFj
(9)

The total processing time δei,j,pr of the part of task xi which
is assigned to the node j in edge-cloud is equal to the sum of
queuing time and the time needed to analyze the accumulated
data in a specific time slot t . As shown in Equation (10), φey is
the weight-factor related with the set of data which is required
for analysis, and the magnitude of it (within(0,1]) decreases
with the increase of the staying time of the data [48], [51].
If y = t , then φey = 1. The expression Pvr (xi, t) − Qvr (xi, t)
denotes the total amount of data which is stored in the
edge-cloud at time t for analysis and computation purposes.

δei,j,pr (xi, t) = (Pvr (xi, t)− Q
v
r (xi, t))ζ

e
j

t∑
y=t−τ

φey

V∑
v=1

{Pvs(xi, y)− Q
v
s(xi, y)} + Qd(i,x)(t) (10)

Accordingly, the resources on the remote cloud are rel-
atively more sufficient than the edge side, so the queuing
delay is ignored. The processing time of the part of the task xi
which is served on the cloud can be given by Equation (11).
Where ζ ej , ζ

c
j are the unit byte data processing time of the

computing node j on the edge-cloud and the remote cloud
data center respectively. Different nodes have different pro-
cessing capabilities, which shows the heterogeneity of nodes
in the edge-cloud and the remote cloud data center. The
average processing latency of task xi on the edge-cloud with
or without the interference of the remote cloud can be seen as
Equation (12).

δci,j,pr (xi, t) = Qvr (xi, t)ζ
c
j

t∑
y=t−τ

φcy

V∑
v=1

Qvs(xi, y) (11)

3e
pr (t) =

δei,j,pr (xi, t)+ δ
c
i,j,pr (xi, t)

V∑
v=1
{Pvr (xi, t)+ Pvs(xi, t)}

(12)

If all part of the task xi is served on the remote cloud, then
the processing latency of task xi and the average processing

latency at the time slot t on the remote cloud can be seen as
Equations (13)-(14).

δcpr (t) = Pvr (xi, t)ζ
c
j

t∑
y=t−τ

φcy

V∑
v

Pvs(xi, y) (13)

3c
pr (t) =

Pvr (xi, t)ζ
c

t∑
y=t−τ

φcy

V∑
v
Pvs(xi, y)

V∑
v=1
{Pvr (xi, y)+ Pvs(xi, y)}

(14)

Thus, the average service time at the time slot t for task xi
in the edge-cloud with or without the inference of the remote
cloud can be given by Equation (15). The average service time
at the time slot t for task xi which is totally processed by the
remote cloud is shown as Equation (16).

3e
sr (t) = 3

e
tr (t)+3

e
pr (t) (15)

3c
sr (t) = 3

c
tr (t)+3

c
pr (t) (16)

C. RELIABILITY COST MODEL
The scheduling model in this paper is based on the primary
and backup fault-tolerant model [12]. For a new arriving
task xi, two copies are corresponding to it: the primary
copy xPi and the backup copy xBi , which need to be allo-
cated. According to the time-related models described above,
we will introduce the reliability cost model of tasks.

The reliability model is used to evaluate the fault tolerance
level of the system [12], [15]. Reliability is defined as the
probability that no task will fail even if there is a hardware
or software failure. Reliability cost is a very important index
for system reliability. In order to describe the task reliability
cost based on PB fault-tolerant mechanism in this paper,
we have improved the reliability model in [12], [14] which
does not reflect the task’s QoS requirements, nor does it
consider the reliability cost of the backup copy of a task in
different implementation scenarios under PB technology. The
status setup of the backup copy of a task can be referred
to the Property 1 in Section V. Equation (17) represents the
reliability cost model of the primary copies. λi is the failure
rate of node nj. zij = 1 denotes that task xPi is assigned to the
node nj of the edge-cloud, otherwise zij = 0. q(xPi) represents
the QoS level that a task can obtain when it assigned to the
node nj, and δij(q(xPi)) is the service time of task xPi . o

P
ij = 1

indicates that the task is successfully executed on the node nj,
otherwise oPij = 0. bT is a positive real number.

rc(XP) =
m∑
j=1

n∑
i=1

λjzPijo
P
ij1

P
ij (17)

1P
ij = 1

P
ij(q(x

P
i)) = q(xPi)× bT × δij(q(x

P
i)) (18)

The reliability cost model of backup copies is shown as
Equation (19) [15]. Where r1B

ij denotes the actual service
time of the backup task on the node nj, which is not only
related to the execution scheme of the task, but also the
execution result of its corresponding primary copy. As shown

77992 VOLUME 8, 2020

H. Sun et al.: QoS-Aware Task Placement With Fault-Tolerance in the Edge-Cloud

FIGURE 2. Illustration examples.

in Equations (19)-(21), if the primary copy xPi corresponding
to xi is successfully executed and xBi adopts the passive execu-
tion mechanism, that is, oPij = 1 ∧ s(tBij) = 0, then r1B

ij = 0.
If r1B

ij uses the active strategy, the real service time of it is
equal to the time period from its starting time to the finish
time of its corresponding primary copy. If xPi fails, e.g. the
corresponding node fails, then only the successful execution
of the corresponding backup copy can assure the completion
of xi, then r1B

ij = 1(q(xBi)).

rc(XB) =
m∑
j=1

n∑
i=1,oPij=1,s(X

B
ij)=1

λjzBijo
B
ijr1

B
ij

+

m∑
j=1

n∑
i=1,oPij=0

λjzBijo
B
ij1

B
ij (19)

r1B
ij =


0 if oPij = 1 ∧ s(xBij) = 0
(0,1ij(q(xBi))] if oPij = 1 ∧ s(xBij) = 1
1ij(q(xBi)) if oPij = 0

(20)

1B
ij = 1ij(q(xBi)) = q(xBi)× bT × δij(q(x

B
i)) (21)

Based on the above models, we define the reliability cost
of a set of tasks in a certain period of time as shown in
Equation (22) [15], and the reliability r of a cluster of nodes
corresponding to the set of tasks X is shown as Equation (23).

rc = rc(XP)+ rc(XB) (22)

r = e−rc (23)

The purpose of this paper is to maximize the QoS levels of
all accepted tasks under time constraints, as shown in Equa-

tion (24).Where
m∑
j=1

n∑
i=1

(zPijq(x
P
i)o

P
ij)+

m∑
j=1

n∑
i=1

(zBij q(x
B
i)o

B
ij) rep-

resents the sum of the QoS levels of all successfully executed

tasks and
m∑
j=1

n∑
i=1

(zPijo
P
ij + z

B
ijo

B
ij) is the number of successfully

executed tasks [49].

MQ(XP,XB)

= max
xPi ∈X

P,xBi ∈X
B

m∑
j=1

n∑
i=1

zPijq(x
P
i)o

P
ij +

m∑
j=1

n∑
i=1

zBijq(x
B
i)o

B
ij

m∑
j=1

n∑
i=1

(zPijo
P
ij + z

B
ijo

B
ij)

(24)

V. SCHEDULING PRINCIPLES FOR THE PRIMARY AND
BACKUP COPIES PLACEMENT IN THE EDGE-CLOUD
Considering the realistic requirements in the edge-cloud
environment, based on [12], [15], [49], [51], this section
is going to introduce some significant properties and theo-
rems before explaining the proposed primary-backup scheme
based QoS-aware task scheduling method.
Property 1: Each backup copy has two alternative states:

active and passive, denoted by 0 and 1 respectively. The state
of each backup copy is set based on the finish time of its
primary copy. Let s(xBij) denote the state of backup copy xBi
on the node nj, then the state of xBi when it is assigned to the
node nj can be seen as Equation (25).

s(xBij) =

{
1, if (f Pi > sBij)
0, otherwise

(25)

where f Pi is the finish time of the primary copy xPi , if it is
greater than the start time sBij of backup copy x

B
i on the node nj,

then the state of xBi will be set as active, otherwise passive. For
example, in Fig.2(a), the finish time f P1 of the primary copy xP1
is 3. It is smaller than the starting time of xB1 , which is larger
but smaller than 4. so the state of xB1 can be set as passive.
However, the finish time of xP2 is greater than the start time
of xB2 , the state of x

B
2 on the node n1 should be set as active.

(The areas in orange represent the primary copies, the blue
areas are the backup copies in the passive state, the areas with
gray and purple colors are the backup copies in the active
state. The gray areasmean that in the period, the primary copy

VOLUME 8, 2020 77993

H. Sun et al.: QoS-Aware Task Placement With Fault-Tolerance in the Edge-Cloud

and backup copy of a task are processed simultaneously on
two different nodes but at the different phases of processing.)
Property 2: The QoS level of a task copy is decided by the

start time, service time and finish time of it, which is shown as
Equations (26) and (27). Where di is the deadline of task xi.
estPij is the earliest start time of the primary copy xPi for task xi
on the node nj. lstBik is the latest start time of the backup copy
xBi for task xi on the node nk .

∀xi ∈ X , δij(q(xPi)) ≤ di − estPij (26)

∀xi ∈ X , δik (q(xBk)) ≤ di − lstBik (27)

Property 2 shows that the primary and backup copies of a
task can be accepted only if these two conditions are satisfied.
The expected QoS levels for the primary and backup copies of
a task can be different. This will to some degree improve the
system flexibility. This is also the feature of it compared with
the traditional fault-tolerance scheduling which will refuse
a task if the primary and backup copies of it can not get
the same QoS level guarantee. Thus the flexible QoS level
selection for the primary and backup copies of tasks can
improve the schedulable capability of tasks.
Property 3: The earliest start time estPij of the primary copy

xPi of task xi on the node nj should be subject to the following
constraints:

(1)The corresponding node nj has the idle slot to accom-
modate the primary copy xPi .

(2)The finish time of a primary copy should be smaller than
or equal to the deadline of the task, i.e, f Pi ≤ di.

Assume that there are totally N primary and backup copies
which have been assigned to node nj, the occupied time slot
is [ai, bi], namely, [si1, fi1], . . ., [si(N−1), fi(N−1)], [siN , fiN].
sin and fin are the start and finish time of the number n task,
(1 ≤ n ≤ N), and ai ≤ si1 ≤ si2 . . . ≤ siN ≤ fiN ≤ bi. The
primary copy of a task can not overlap with any other task
copies, so these time slots are not available to xPi . There-
fore, it is necessary to traverse these time slots from left
to right to find the minimum index value k which subjects
to si(k+1) − max{ai, fik} ≥ δij(q(xPij)), that is, the earliest start
time of primary copy xPi is estPij = max{ai, fik}.

As for the backup copy xBi , the unavailable time slots
for it on node nj is the occupied time slots by pri-
mary copies and the active backup copies. Thus, suppose
that the unavailable time slots for xBi is [sPi , di], namely,
[si1, fi1], . . . , [si(N−1), fi(N−1)], [siN , fiN], and sPi ≤ si1 ≤
si2 . . . ≤ siN ≤ fiN ≤ di. To find the latest start time of a
backup copy, we can traverse the time slots from right to left,
the largest index k which subjects to si(k+1) −max{sPi , fik} ≥
δij(q(xBij)) can be selected. Then, the latest start time of xBi is
given by lstBij = si(k+1) − δij(q(xBij)).
Theorem 1: For any given xi ∈ X and nk , if n(xPi) = nk ,

then, n(xBi) 6= nk .
Proof: Assume that n(xPi) = n(xBi) = nj, if node nj

encounters a fault, both the primary and backup copies of
task xi are on the node nj, then neither of the copies can

assure the successful execution of task xi, which will disobey
the purpose of fault tolerance. As the example 2 in Fig.2(b),
xP1 and xP2 are primary copies of task x1 and x2 respectively,
both of them are assigned to node n1, then the corresponding
backup copies of them only can be assigned to the nodes
except node n1. As we can see, the assignment of xB2 shown
in the Fig.2(b) is reasonable but that of xB1 is illegal.

Theorem 1 shows that the backup copy and primary copy
of a task can not be assigned to the same node for the sake of
fault tolerance.
Theorem 2: For any given nk , xPi and xBj with i 6= j are

assigned to nk , there are two cases.
Case 1: if sBik < sPjk , then, the two copies of two different

tasks subject to the constraint that f Bik < sPjk .
Case 2: if sBik > sPjk , then, the two copies of two different

tasks subject to the constraint that f Bik > sPjk .
Proof: Assume that n(xBi) = n(xPj) = nk , for case 1,

if sBik < sPjk , if we adopt the overlapping mechanism to deal
with these two copies, then we can change the constraint
sBik < sPjk to s

B
ik <= sPjk , and the finish time of xBi can subject

to f Bik > sPjk . If in the time period of f Bik − s
P
jk , the primary copy

xPi of xi encounters a fault when executing on the assigned
node, the backup copy of task xi must be at the common
processing state either keeping on the execution process (if it
is at the active state initially) or turning into active state
from the passive state (if it is at the passive state initially).
However, the overlapping of xBi = xPj will incur a conflict
between them leading to neither of them can successfully
execute on the corresponding node. For the illustration of
case 2, the inference is similar to case 1. As the example 3 in
Fig.2(c), s(xB3) = 0, it can not overlap with xP2 which is also
on the node n3. It is because that if sB33 < f P23, the x

B
3 will

compete with xP2 if there is a fault that occurs when xP3 is still
on its execution. Because s(xP1) = s(xP2) = 1, they can not be
processed simultaneously on a node, not even overlap with
the previous unfinished primary copy.

Theorem 2 shows that the backup copy on a node can not
overlap with any other primary copies on the node.
Theorem 3: For any given xPi and xPj with i 6= j, if nPi =

n(xPj) = nk , nBi = n(xBj) = nt , and sBit < sBjt , then, f
B
it < f Bjt .

Proof: n(xPi) = n(xPj) = nk , n(xBi) = n(xBj) = nt ,
xBi overlaps xBj on the node nt , when xPi is still on its execution
and suddenly the node nk fails, in order to ensure the comple-
tion of tasks xi and xj, whether xBi and xBj are in active states or
not, they should be finally adjusted to be in the active states.
Because the two copies overlap on the node nt , there will
be a conflict between them. As the example 4 of Fig.2(e),
xP1 and xP2 are allocated to node n2, xB1 and xB2 are allocated to
node n1. Although both xB1 and xB2 are in passive states, they
can not overlap on the node n1. This is because their primary
copies are on the same node. If the node fails during the
execution of xP1 , the execution of xi and xj will totally depend
on xB1 and xB2 . If x

B
1 and xB2 have a conflict, neither of them

can be completed on time. A contrary example is the xP3

77994 VOLUME 8, 2020

H. Sun et al.: QoS-Aware Task Placement With Fault-Tolerance in the Edge-Cloud

and xP4 , they are primary copies of tasks x3 and x4 respectively.
They are assigned to nodes n2 and n1 respectively. If their
backup copies are assigned to nodes n3, their backup copies
can overlap on the node n3. Because no matter what happens
x3 and x4 can always have a successful execution. That is,
f B33 > sB43 shown in the common gray part of xB3 and xB4 in the
Fig.2(e) is reasonable.

Theorem 3 illustrates that two primary tasks are assigned
to the same node in sequence, if their corresponding backup
tasks are also assigned to the same node sequentially, their
backup tasks can not overlap with each other on the allocated
node.
Theorem 4: For any given xi, xj ∈ X with i 6= j, if nPi =

n(xPj) = nk , s(xBi) = 1, there are two cases.
Case 1: if sBik < sBjk , then the two copies of two different

tasks subject to the constraint that f Bik < f Bjk .
Case 2: if sBik > sBjk , then the two copies of two different

tasks subject to the constraint that f Bik > f Bjk .
Proof: n(xBi) = n(xBj) = nk , s(xBi) = 1. Assume that

s(xBj) = 0, s(xBjk) < f (xBik), if there is a fault during the
execution of xPj , then the state of x

B
i should be turn into active,

the conflict between xBj and xBi will occur. As the example 5 in
Fig.2(f), xB1 can not overlap with xB4 on the node n1, xB2 can’t
overlap with xB4 on the node n1 as well. This is because if node
n2 has a fault when x

p
1 is on its execution, the completion of

x1 will turn to xB1 . x
B
1 overlaps with xB4 on the node n1, that is,

sB41 < f B11. Then, if during the period of f B11 − sB41, node n3
encounters a failure, the completion of x4 will depend on xB4 ,
but for now, xB1 and xB4 will have a conflict in occupying the
node. For the case of xB2 and xB4 is the same.
Theorem 4 states that backup copies in active states cannot

overlap with any backup copies on a node.

VI. FAULT-TOLERANCE BASED QOS-AWARE
SCHEDULING ALGORITHM IN THE EDGE-CLOUD
The purpose of this paper is to maximize the QoS level of all
the accepted tasks in the edge-cloud under the conditions of
fault-tolerance and the time constraints. The fault-tolerance
based QoS-aware scheduling algorithm (FTBQA) inspired
by [15], [49], [52] including primary copy placement, backup
copy placement, and the adjustment mechanism is proposed
to improve the QoS levels of tasks. Moreover, to reduce the
reliability cost of tasks and improve the reliability of the
whole edge-cloud system, it indicates that nodes offering
smaller reliability costs should be chosen in task allocations.
Generally, our scheduling method also obeys the following
allocation principles besides the scheduling principles in
Section V. (1) Given the same service time, the algorithm
should assign tasks to the nodes with lower failure rate.
(2) For a group of nodes with the same failure rate, the algo-
rithm will assign tasks in sequence to the nodes providing
shorter service time. That is, in this case, tasks should be
allocated to the computing nodes with powerful processing
capacity and lower failure rate to improve the system’s relia-
bility. (3) For primary copies, they should be executed as early

Algorithm 1 Primary Copy Placement for the Task in
the Edge-Cloud

Input: The set of tasks: X , the range of QoS level:
{q1, . . . , qm}, the set of nodes: {n1, n2.., ns}

Output: {n(xPi)}
1 for each new task xi ∈ X do
2 estPi = INF ;
3 flag = 0;
4 Temp = null ;
5 qt = qm;
6 while qt 6= q1 do
7 {(nia, estPia)} = Filter(xPi , {ns});
8 r = 0;
9 for each node nj ∈ {nia} do

10 if estPij ≤ di − δ
P
ij then

11 calculate system reliability rij
12 if estPij ≤ est

P
i and rij ≥ r then

13 Temp = nj;
14 estPij = estPi ;
15 r = rij;
16 flag = 1;
17 end
18 end
19 end
20 if flag == 0 then
21 qt = qm−1;
22 else
23 break;
24 end
25 end
26 end
27 if flag == 0 then
28 Give up to assign the primary copy xPi to the

edge-cloud;
29 Consider to assign the primary copy xPi to

the remote cloud center;
30 else
31 n(xPi) = Temp;
32 end
33 end
34 end

as possible. (4) For backup copies, they should be executed as
late as possible with the deadline constraint being satisfied.

A. PRIMARY COPY PLACEMENT FOR THE TASK
IN THE EDGE-CLOUD
The pseudo-code of primary copy placement for tasks in
the edge-cloud is shown as Algorithm 1. The purpose of
primary copy scheduling is to allocate primary copies to the
nodes which make the system reliability maximal and to
make the QoS levels of primary copies maximal with the
time constraints being satisfied. As shown in Algorithm 1,
from Line 1 to Line 5 is the parameter initialization.

VOLUME 8, 2020 77995

H. Sun et al.: QoS-Aware Task Placement With Fault-Tolerance in the Edge-Cloud

At the beginning, the primary copy xPi is set as the maximal
QoS level (Line 5). Based on the scheduling principles given
by Section 5, we can get a set of nodes {(nia, estPia)} which
has the appropriate idle time slot to process the corresponding
task copy (Line 7). For the nodes in the candidate set, the node
has the earliest start time for xPi and incurs the maximum sys-
tem reliability is finally selected (Line 9-Line 18). If a node is
successfully selected in the candidate set under the QoS level
of qm, the label flag is set to be 1, otherwise 0. For the latter
case, the QoS level qm will be decreased by 1 iteratively to
find another candidate set under this level of QoS value until it
turns to be the smallest value q1. If no nodes in the edge-cloud
can be satisfied with the requirement of xPi , the scheduler will
further consider whether this primary copy can be scheduled
to the remote cloud data center (Line 26-Line 32).

The time complexity of this algorithm is related with the
number of tasks |X |, the number of QoS levels is m, and
the number of nodes s. m is much smaller than |X | and s.
So, the time complexity of Algorithm 1 is O(s|X |).

B. BACKUP COPY PLACEMENT FOR THE
TASK IN THE EDGE-CLOUD
The pseudo-code of backup copy placement for tasks in
the edge-cloud is shown as Algorithm 2. The backup copy
allocation is also to assign the backup copies of tasks to
the nodes which make the system reliability maximal and
to make the QoS levels of backup copies maximal within
the time constraints. The main difference between primary
copy scheduling and backup copy scheduling is that the latter
has the step of determining the status of the backup copy
of a task. The value of the QoS level is also set from the
biggest one to the smallest in sequence to find the candidate
set of nodes (Line 3-Line 30). According to the scheduling
principles given by Section 5, we can get a set of nodes
(nib, lstBib) which has the appropriate idle time slot to process
the corresponding task copy (Line 5).

For each node in the candidate set, the status of the backup
copy is firstly set as active (Line 10), If the finish time f Pi
of corresponding primary copy of the backup copy is lower
than or equal to the latest start time of the backup copy
(Line 19), then the status of the backup copy will be changed
as passive. The node which has the latest start time for xBi
and can lead to the maximum system reliability is finally
selected for xBi (Lines 13-17). If no nodes in the edge-cloud
can be satisfied with the requirement of xBi , the scheduler will
consider whether this primary copy can be scheduled to the
remote cloud data center (Lines 31-37).

The number of tasks whose primary copies have been
allocated is |Tp|, which is lower than or equal to |X |. The
number of QoS levels is m, the number of nodes is s. Thus,
the time complexity of Algorithm 2 is O(s|Tp|).

C. REARRANGEMENT MECHANISM FOR THE
PERFORMANCE IMPROVEMENT IN THE EDGE-CLOUD
The pseudo-code of adjustment mechanism is shown in
Algorithm 3.When the primary copy of a task on a computing

Algorithm 2 Backup Copy Placement for the Task in
the Edge-Cloud

Input: The set of tasks whose primary copy have
been allocated: Tp, {n(xPi)}, the range of Qos
level: {q1, . . . , qm}, the set of nodes:
{n1, n2, . . . , ns}

Output: {n(xBi)}
1 for each backup task xBi ∈ Tp do
2 flag = 0;
3 qt = qm;
4 while qt 6= q1 do
5 {(nib, lstBib)} = Filter(xBi , {ns});
6 r = 0;
7 lstB = 0;
8 temp = null;
9 for each node nj ∈ {nib} do

10 S(tBij) = 1;
11 if lstBij ≤ di − δij(qm) then
12 calculate system reliability rij

according to Equation (13);
13 if lstB < lstBij and rij ≥ r then
14 temp = nj;
15 lstB = lstBij ;
16 r = rjk ;
17 flag = 1;
18 if f Pi ≤ lst

B
ij then

19 S(tBij) = 0;
20 end
21 end
22 end
23 end
24 if flag==0 then
25 qt = qm−1;
26 else
27 break;
28 end
29 end
30 end
31 if flag==0 then
32 Give up to assign the backup copy xBi to the

edge-cloud;
33 Consider to assign the backup copy xBi to the

remote cloud center;
34 else
35 n(xBi) = temp;
36 end
37 end
38 end

node is completed, the corresponding backup copy of the task
will be removed from the initially allocated node. If the idle
time slot left by the backup copy can be fully utilized by
the primary copies located on the same node, the resource

77996 VOLUME 8, 2020

H. Sun et al.: QoS-Aware Task Placement With Fault-Tolerance in the Edge-Cloud

Algorithm 3 Adjustment Mechanism for the Perfor-
mance Improvement in the Edge-Cloud

Input: The finished primary copy xPt of node np,
the node nj which has the backup copy xBt
corresponding to xPt , the unexecuted copies
sequence CSj of nj;

Output: The adjusted execution orders of copies on the
node nj;

1 If xPt is completed, then the backup copy xBt
corresponding to it will be removed from node nj and the
adjustment of the leftover task copies on the node nj is
invoked;

2 for each xPi ∈ CSj do
3 I_st = sPi ;
4 I_ft = f Pi ;
5 Remove xPi from nj;
6 Get the new finish time N_ft of xPi on the nj;
7 if N_ft < I_ft then
8 Reassign xPi to node nj with the new available

time slice;
9 sPi = N_ft − δij(xPi);
10 f Pi = N_ft;
11 Inform the centralized scheduler to update the

status of xBi according to Property 1;
12 else
13 Reassign xPi to node nj with the initial

available time slice;
14 end
15 end
16 end
17 for each xBi ∈ CSj do
18 I_st = sBi ;
19 I_ft = f Bi ;
20 Remove xBi from nk ;
21 Get the new start time N_st of xBi on the nk ;
22 if N_st > I_st then
23 Reallocate xBi to nk ;
24 sBi = N_st;
25 f Bi = N_st + δij(xBi);
26 Update the status of xBi according to the Property

1;
27 else
28 Reassign xBi to node nk with the initial

available time slice;
29 end
30 end
31 end

utilization can be greatly promoted and the time performance
of the following primary copies can also be further improved.
Inspired by [49], [52], we also adjust the execution sequence
of copies on a node if the backup copy corresponding to a
task is removed from the node. The adjustment mechanism

can advance the start time of primary copies, reduce the
redundant parts of active backup copies. When a primary
copy completes its execution and the corresponding backup
copy is deleted, the adjustment process will be invoked on the
node where the backup copy is removed. Firstly, all primary
copies waiting on the node are checked if they can be brought
forward (Lines 2-16). Then all backup copies on the node
are checked if they can be brought backward (Lines 17-31).
It should be noted that such adjustment still follows the
scheduling principles in Section 5. The number of unexecuted
tasks on node nj is |CSj|, which is lower than or equal to |X |.
Thus, the time complexity of Algorithm 3 is O(|CSj|).

As Example 1 shown in Fig. 2(a), when xP1 is executed on
node n2, xB1 is assigned to node n1 with the passive scheme.
When the execution of xP1 is finished, it is necessary to judge
whether the time length of sB21 − f

P
12 is enough to support the

operation of xP3 . If possible, as the result of adjustment shown
in Fig. 2(f), xP3 can be moved forward, so that task x3 can be
executed earlier, and the state of xB3 can be set to passive at
the same time to save the resource of the corresponding node.

VII. PERFORMANCE EVALUATION
The experimental results obtained from extensive simula-
tions to evaluate the performance of the proposed method
FTBQA in this paper are presented in this section. All the
simulations are conducted using Python 3.6 on a machine
with 3.60GHz Intel(R) Core(TM) i7-7700 CPU and 8GB
RAM. In the simulation experiments, the following metrics
are concerned [15], [16].

(1) Guarantee Ratio (GR). It is equal to the number of tasks
that can be completed within their deadlines divides the total
number of accepted tasks ×100%.

(2) Average QoS Level is used to record the average QoS
levels of all accepted tasks.

(3) Reliability Cost (RC) is a metric measuring the relia-
bility of the edge-cloud in a time unit.

To evaluate the performance of FTBQA, the following
questions are involved.

RQ1: Does the PB strategy based fault-tolerance mech-
anism can improve the guarantee ratio of tasks in the
edge-cloud environment? For this, we have the compared
method SIMPLE which is a variant of FTBQA. It has no
fault-tolerance mechanism and the adjustment mechanism.
For ease of comparison, SIMPLE uses the same scheduling
strategy as Algorithm 1.

RQ2: Does the adjustment mechanism included in the
scheduling model can have a great impact on the performance
of task processing? To answer this question, we have the
comparing between FTBQA and NOADJUST. NOADJUST
is also a variant of FTBQA. The main difference between
these two methods is that the former has the adjustment
mechanism which can be adopted to rearrange the task copies
of a node.

RQ3: How about the performance difference of FTBQA
between the state-of-the-art methods which have a simi-
lar goal with our work? For this, we have two methods,

VOLUME 8, 2020 77997

H. Sun et al.: QoS-Aware Task Placement With Fault-Tolerance in the Edge-Cloud

namely, QAFT [15] and FESTAL [16] as the benchmarks.
QAFT can adaptively adjust the QoS levels of tasks and the
execution schemes of backup copies to attain high system
flexibility, which is similar to our method. The difference
is that our method FTBQA firstly consider assigning copies
of tasks to the edge-cloud, if a task is refused by the edge-
cloud, it can also be allocated to the remote cloud data center
within the time constraint. The FTBQA has the adjustment
mechanism which can be invoked when the backup copy
of a task on a computing node has been removed due to
the completion of corresponding primary copy, in order to
improve the resource utilization of corresponding node and
service time of the leftover primary task copies. FESTAL
also considers backup overlapping. Different from FTBQA,
FESTAL each time selects the nodes with the minimum pro-
cessing capacities which can satisfy the requirements of tasks.
It neither has the adjustmentmechanism nor the consideration
of the QoS requirement of tasks.

A. SIMULATION SETUP
The experimental parameters in the simulations are similar to
those used in the literature [15], [48], [51], [52].

To study the performance under the more realistic sce-
nario, our simulations are based on the real-world trace of
San Francisco taxis which contains the GPS coordinates
of approximately 500 taxis collected over 24 days in the
San Francisco Bay Area [53]. This trace of taxis naturally
shows the characteristics of requests like the number and
requirement of requests from end devices during a time slot at
different regions which are covered by edge-clouds. Similar
to [51], we adopt a part of the data which is equivalent to a
period of 5 consecutive days in the simulations. The distance
between base stations (center of the cell) is set to be 1000 m,
and the hexagon structure is adopted to depict the range of the
geographical location. User locations then can be mapped to
the cell location in the way of considering which cell a user
is included in. In this dataset, there are totally 536 individual
users, and only part of them are at the active state within a
specific period of time. The number of active users at any
time is a random value in [0, 409], the average number of
active users is 278 [2]. Assume that only active users can
generate task requests, so the average task arrival rate λr
in the whole period of time is 0.95 for each application.
Specifically, the arrival rate λr is given by λr = λr−1+ iT . iT
is the interval time which is a random positive real number in
{1, 2, 3, 4, 5, 6, 7}, and λ0 = 0 [49], [52]. The instantaneous
task arrival rate is related to the number of active users,
the larger (smaller) the number of active users, the higher
(lower) the task arrival rate will be.

The data traffic generated from each source point is pro-
portional to the number of active users [48], [52]. Data from
all the source points are transmitted to the edge-cloud in
the form of packets. The packet size is a random value in
[34, 6550]B [48]. The instruction size is taken as 64 bits.
The packet arrival rate follows a Poisson distribution with the
mean packet arrival rate being 1 packet per node per second.

The bandwidth capacity between source points and the
edge-cloud is 1Gbps, the bandwidth capacity between
the edge-cloud and the remote cloud data center is as
10Gbps [48].

To describe the node heterogeneity, the parameter pj, a pos-
itive real number, is used to denote the node power of node
nj [15]. The parameter Ap represents the average processing
power of all nodes, Ps is the power span which takes the
average power Ap as the center. pj is uniformly distributed
between Ap − Ps and Ap + Ps. Ap is set to be 700. Ps
is in {160, 200, 240, 280, 320, 360, 400}. The fault-tolerance
based scheduling model proposed in this paper is a general
one, without losing generality, we can give a general defi-
nition of QoS level. The QoS level of xPi and xBi , namely,
q(xPi) and q(x

B
i), are subject to 0 ≤ q(xPi) ≤ 1, 0 ≤ q(xBi) ≤

1 [21], [46]. Specificly, they are in [0, 0.1, 0.2, . . . , 0.9, 1].
The deadline di of task xi is set as di = ai+max{δij}+bD [7].
bD is the base deadline which is a random positive real num-
ber in {170, 200, 230, 260, 290, 320, 350, 380}. It determines
whether the tasks have loose deadlines or not. The failure rate
of node nj is uniformly distributed with the average value λu
in (1.2, 2.0) and the time unit is 10−7/h [12], [15].

B. IMPACT OF TASK ARRIVAL RATE
This section assesses the impact of task arrival rates on ser-
vice performance. iT is the task arrival interval, the smaller
the value of iT is, the greater the task arrival rate will be,
the larger the workload per unit of time will be. The value
of iT is set to be 1,2,3,4,5,6,7 respectively, other parameters
keep the same.

Fig. 3(a) shows the change in the guarantee ratio (GR) of
tasks with the five methods as the value of the iT increases,
that is, the arrival rate of the task decreases. With the decrease
of the task arrival rate, the GR values corresponding to the
five methods show different degrees of the upward trend.
Moreover, the corresponding GRs of the other four methods
are higher than those of SIMPLE method. This is because
SIMPLE simply uses a scheduling strategy similar to the
method FTBQA. There is no other special optimization mea-
sure in it, so the overall GR value is lowest. As the task
arrival rate decreases, i.e. iT is from 5 to 8, the GR values of
FESTAL, QAFT, NOJUST, FTBQA all increase slowly. This
is because the task arrival rate is reduced, the load is decreas-
ing, the resources are more sufficient, and the performance
optimization of these methods may reach their upper limits.
The GR values corresponding to FTBQA are generally in a
more advantageous state, having a 2% to 9% advantage over
those of QAFT, FESTAL, NOJUST.

Fig. 3(b) shows the change in reliability cost (RC) of tasks
corresponding to the five methods as the task arrival rate
decreases. It can be seen from the figure that as the arrival
rate of the task decreases, that is, the load decreases, the reli-
ability costs corresponding to FESTAL and SIMPLE show
a downward trend, while the RC values of QAFT, NOJUST
and FTBQA are relatively stable. It is because they have
taken the impact of reliability cost into account when they

77998 VOLUME 8, 2020

H. Sun et al.: QoS-Aware Task Placement With Fault-Tolerance in the Edge-Cloud

FIGURE 3. Impact of Task Arrival Rate.

FIGURE 4. Impact of Task Deadline.

are doing the scheduling. Although SIMPLE uses a strategy
similar to FTBQA, it has no other optimization mechanism,
so its ability of improving the task time is limited, that is,
the reliability cost corresponding to it will be high.

Fig. 3(c) shows the results of the average QoS levels of
tasks under the five methods with the decrease of the task
arrival rate.With the decrease of the task arrival rate, the aver-
age QoS level that the task can obtain is guaranteed to rise.
This is because the load is reduced and the competition for the
resource is small. At the same time, because FTBQA, QAFT,
and NOJUST have the QoS adaptation mechanism when
scheduling tasks, their corresponding average QoS will be
higher. The average QoS levels corresponding to the FTBQA
is slightly better those of the NOJUST because the former
has an adjustment mechanism, which can further optimize the
completion time of tasks. Interestingly, when iT is set to be
from 1 to 4, the average QoS levels corresponding to FESTAL
are lower than those of the SIMPLE, but later when iT is
greater than 4, FESTAL shows better results than SIMPLE
in the QoS levels.

C. IMPACT OF TASK DEADLINE
To show the impact of task deadline, the base deadline is
set to be 170,200,230,260,290,320,350,380 respectively. The
higher the base deadline, the more loose deadline constraint
of a task, other parameters are not changed.

Fig. 4(a) shows the change in GR values of the five meth-
ods as the deadline constraint is relaxed. The changes in the
GR values corresponding to FTBQA, QAFT, NOJUST, and
FESTAL are generally stable, this is because they all have the
fault tolerance and overlapping strategies. SIMPLE simply

uses a scheduling strategy similar to FTBQA. In task assign-
ment, FTBQA considers the two factors of QoS and reliability
cost with the fault-tolerantmechanism. Therefore, it is normal
for FTBQA to show the advantage in the GR values compared
with the other methods.

Fig. 4(b) depicts the results of the reliability costs corre-
sponding to the fivemethods when the deadline constraints of
tasks become more and more relaxed. It can be seen from the
figure that the RC values of FTBQA, QAFT, and NOJUST
are not very large as a whole because they have considered
the reliability cost when performing task scheduling. The
changing in reliability costs of FESTAL is not very large,
but its corresponding RC value is larger than the previous
three. Because FESTAL uses the fault tolerance and overlay
mechanism but does not consider the reliability cost, so the
RC value is relatively high. SIMPLE adopts a scheduling
strategy similar to FTBQA, the reliability cost factor is also
considered when performing task scheduling, so its corre-
sponding RC value is smaller than FESTAL.

Fig. 4(c) shows the results of the five methods in the
average QoS levels when the tasks’ deadline constraints are
getting looser. The more relaxed the task deadline, the QoS
level values of these five methods are expected to rise. This
is because, when the deadline of the task is loose, the schedu-
lability of the resource node is enhanced, and the tasks can
obtain a higher QoS level guarantee. As seen from the figure,
when the bT value is between 170 and 290, the average
QoS levels corresponding to QAFT and NOJUST exhibit a
cross-change. When bT exceeds 290, NOJUST exhibits a
state closer to FTBQA. FESTAL and SIMPLE have large
fluctuations, but they are generally weaker than the former

VOLUME 8, 2020 77999

H. Sun et al.: QoS-Aware Task Placement With Fault-Tolerance in the Edge-Cloud

FIGURE 5. Impact of Node Number.

three methods. This is because they do not pay attention to
the optimization of QoS levels, but with the loose change
of deadlines, their corresponding QoS levels are overall in a
growing trend.

D. IMPACT OF NODE NUMBER
This section shows the performance impact of node num-
bers. The node number in edge-cloud is set to be 8,16,32,
64,128,256,512 respectively and other parameters are the
same as the former experiments.

Fig. 5(a) represents the change in the GR values of the
five methods as the number of compute nodes increases in
the edge-cloud. As the number of computing nodes increases,
the GR values corresponding to the five methods are increas-
ing. This is because the number of compute nodes is increased
and the resources are relatively more abundant, so more task
requests can be served. TheGRvalues of FTBQA,QAFT, and
NOJUST are relatively higher because they can adaptively
adjust the QoS level so that more tasks can be accepted.
Because FTBQA and NOJUST not only use the computing
resources of the edge cloud but also assign tasks to the remote
cloud data center, overall, their guarantee rates will be higher.
Meanwhile, the guaranteed rate difference between FTBQA
and QAFT and FESTAL is between 3%-15% and 1%-8%,
respectively. Compared to FTBQA, the task guarantee rate
of NOJUST is slightly lower, which is reasonable because
there is no adjustment mechanism in NOJUST. Compared to
SIMPLE, FESTAL has the fault-tolerant strategy in it, so its
guarantee rate could be higher.

Fig. 5(b) depicts the change in reliability costs of the five
methods as the number of compute nodes increases in the
edge-cloud. As the number of nodes increases, since the
failure rate of nodes is uniformly distributed, the number
of nodes with high reliability also increases. Because the
number of tasks is relatively fixed at this period, more tasks
can be assigned to the nodes with higher reliability. There-
fore, for example, it is reasonable that the reliability costs
of FESTAL will decrease. The reliability values of the other
four methods are relatively small because they all take into
account the impact of reliability costs when performing task
scheduling. As can be seen from the figure, the reliability val-
ues of FTBQA, NOJUST, and QAFT are not much different,
while FTBQA has a performance improvement of 2.5%-5%

compared to FESTAL, and about 2.5% performance improve-
ment compared to SIMPLE.

Fig. 5(c) shows the change in the average QoS levels of
tasks with respect to the five methods as the number of
computing nodes increases. With the increase of the num-
ber of computing nodes in the edge-cloud, the average QoS
levels of tasks corresponding to the five methods are in
the tendency of increase. This is because, as the number
of computing nodes increases, that is, the computing power
increases, there is a relatively more sufficient resource to
handle relatively fixed tasks, so the corresponding average
QoS levels can be improved. When the number of nodes is
from 8 to 16, the overall improvement of the QoS levels of
these five methods are relatively small, and when the number
of nodes is from 16 to 128, the corresponding increment
is relatively large. Moreover, when the number of nodes is
from 128 to 512, the QoS levels of FTBQA, NOJUST, and
QAFT increase relatively flatly, because they all consider
QoS requirements when performing task scheduling, so when
the resource nodes grow to a certain value, they maintain a
relatively stable average QoS levels. FESTAL and SIMPLE
are growing at a smaller rate.

E. IMPACT OF NODE HETEROGENEITY
To investigate the impact of node heterogeneity, the parame-
ter pj, a positive real number, is used to denote the node power
of node nj [32]. The parameter Ap represents the average
processing power of all nodes, Ps is the power span which
takes the average power Ap as the center. pj is uniformly
distributed between Ap−Ps and Ap+Ps. Ap is set to be 700.
Ps is set to be 160,200,240,280,320,360,400 respectively.

Fig. 6(a) represents the changing in GR values of the
five methods when the task amount is fixed and the per-
formance difference of nodes in the edge-cloud is varying.
When the power span value increases from 160 to 240, the
larger the value, the greater the difference in processing power
of the computing nodes in the edge-cloud. In Fig. 6(a), the GR
values of FTBQA, NOJUST, QAFT, and FESTAL are higher
than those of SIMPLE as a whole because they all adopt
a fault-tolerant strategy and show a relatively stable change
when the difference in processing power of nodes varies.
Moreover, FTBQA not only adopts the adjustment mecha-
nism but also considers assigning tasks to the remote cloud

78000 VOLUME 8, 2020

H. Sun et al.: QoS-Aware Task Placement With Fault-Tolerance in the Edge-Cloud

FIGURE 6. Impact of Node Heterogeneity.

FIGURE 7. Impact of Bandwidth.

for execution, which can improve the guarantee ratio of tasks,
so its GR values will be higher than other methods. As seen
from the figure, when the power span value is 160-240,
the GR values corresponding to SIMPLE fluctuate greatly.
When the power span value is greater than 240, the GR values
corresponding to SIMPLE change slightly. Because with the
relatively fixed task load, although the difference in the pro-
cessing power of the computing node is increased, SIMPLE
can allocate more tasks to the nodes with high processing
power and high reliability, which can also guarantee a certain
task guarantee rate.

Fig. 6(b) shows the impact of the variation of the node
computing power on the reliability cost of tasks. It can be seen
from the figure that the RC values corresponding to the five
methods are less affected by the change of the node power.
Because FTBQA, QAFT, NOJUST, and FESTAL all adopt
fault-tolerant strategies, they can make full use of the cur-
rently available resources. FTBQA, NOJUST, and SIMPLE
all consider reliability cost factors when performing task
scheduling. Overall, the RC values of FTBQA, QAFT and
NOJUST are similar and they all show better performance
than FESTAL and SIMPLE.

Fig. 6(c) represents the average QoS levels of tasks cor-
responding to the five methods affected by the varying node
heterogeneity in the edge-cloud. The average task QoS levels
corresponding to FTBQA, QAFT, and NOJUST are hardly
affected by the change in the processing power of the nodes.
This is because they consider the QoS level factor when
performing task scheduling, so their corresponding QoS
level values of tasks, in general, are higher than the other
two methods. The average QoS level values corresponding to

the FESTAL and SIMPLEmethods are relatively stable when
the power span is 160-280. When the power span is greater
than 280, their corresponding average QoS level values show
an upward trend. This is because, when the difference in
computing power of the edge nodes is larger, in the case of
the same load, more tasks may be allocated to the computing
nodes with higher processing power, so the overall QoS level
value will be relatively in a slightly increasing trend.

F. IMPACT OF BANDWIDTH
To show the impact of bandwidth, the bandwidth capac-
ity between source points and the edge-cloud is set to
be 0.6Gbps, 1Gbps, 1.4Gbps,. . . ,3.2Gbps respectively. The
bandwidth capacity between the edge-cloud and remote cloud
data center is set as 10Gbps [48]. Fig 7 shows the GR values,
RC values and average QoS levels related to the five methods
with the change of bandwidth.

Fig. 7(a) represents the trends in GR values of these five
methods with the change of bandwidth between source points
and the edge-cloud. From the figure, we can see that the
guarantee ratios of these five methods are lowwhen the band-
width capacity between source points and the edge-cloud is
lower than 1.8Gbps. FTBQA, NOJUST, QAFT, and FESTAL
all have a fault-tolerant strategy, so their performance is
limited by the relatively lower bandwidth. As for the method
SIMPLE, it has no fault-tolerance mechanism and the adjust-
ment mechanism, the limitation of bandwidth has no sig-
nificant negative influence on the guarantee ratio of tasks
compared with other methods. When the bandwidth resource
is relatively enough, all these methods have higher GR val-
ues than before, because more tasks can be transmitted to

VOLUME 8, 2020 78001

H. Sun et al.: QoS-Aware Task Placement With Fault-Tolerance in the Edge-Cloud

edge-cloud or the remote cloud to be processed. FTBQA,
NOJUST, QAFT, and FESTAL present more advantages than
SIMPLE. Especially, FTBQA and QAFT explicitly outper-
form the other three methods.While we can see the RC values
of these methods in Fig.7(b), With the increase of bandwidth,
the RC values of FESTAL and SIMPLE are still higher than
those of FTBQA, NOJUST, QAFT. Because they don’t take
the reliability cost into consideration when assigning tasks.
Also the same as the case of average QoS level, as shown
in Fig.7(c), the average task QoS levels corresponding to
FTBQA, QAFT are greater than those of the other three
methods. Although the bandwidth between source points
and the edge-cloud can affect the performance of FTBQA,
we can generally draw the conclusion that FTBQA indeed
outperforms other methods according to all the experiments
we conducted.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we propose a novel QoS-aware scheduling
model based on fault-tolerance in the edge-cloud by extend-
ing the traditional primary-backup fault-tolerant model,
which enables the improvement of the reliability of applica-
tion services in the edge-cloud under the time constraints of
tasks. This fault model can be easily extended to the case with
multiple failing nodes at a time in the edge-cloud environment
which has a large number of computing nodes. Because
the large set of nodes can be divided into several small
groups, then the fault model outlined in Section I can also
be applied to each group. With the fault-tolerant scheduling
model, a fault-tolerance based QoS-aware scheduling algo-
rithm (FTBQA) having three parts is proposed to improve the
performance of services. It schedules independent real-time
tasks tolerating hardware failures in the edge-cloud with
heterogeneous resources. We present the scheduling prin-
ciples and algorithms for primary and backup copies in
Section V and Section VI. With the adjustment mechanism
in FTBQA, when the backup copy of a task is removed from
its assigned computing node, the start time of the leftover
primary copies on the node could be advanced, the time
performance of tasks can be better satisfied. Finally, we con-
duct extensive simulation experiments to verify the perfor-
mance difference between FTBQA and the four benchmarks,
namely QAFT, NOJUST, FESTAL and SIMPLE in terms of
guarantee ratio, average QoS level, and the reliability cost.
Although the bandwidth between source points and the edge-
cloud, compared with other factors such as task arrival rate,
task deadline, fog node number and node heterogeneity, has
greater impact on the performance of FTBQA and QAFT,
we can make the conclusion that FTBQA generally outper-
forms other methods according to all the experiments we
have done.

In the future, we will refine our fault-tolerance based
scheduling model to multidimensional computing resources
i.e memory, network bandwidth, etc. in the edge-cloud
environment. We also plan to implement FTBQA in the real
edge-cloud scenario.

REFERENCES
[1] M. Mukherjee, L. Shu, and D. Wang, ‘‘Survey of fog computing: Funda-

mental, network applications, and research challenges,’’ IEEE Commun.
Surveys Tuts., vol. 20, no. 3, pp. 1826–1857, 3rd Quart., 2018.

[2] Y. Harchol, A. Mushtaq, J. McCauley, A. Panda, and S. Shenker, ‘‘Cessna:
Resilient edge-computing,’’ in Proc. Workshop Mobile Edge Commun.,
2018, pp. 1–6.

[3] A. Aral and I. Brandic, ‘‘Dependency mining for service resilience at
the edge,’’ in Proc. IEEE/ACM Symp. Edge Comput. (SEC), Oct. 2018,
pp. 228–242.

[4] N. Ivaki, S. Boychenko, and F. Araujo, ‘‘A fault-tolerant session layer with
reliable one-way messaging and server migration facility,’’ in Proc. IEEE
3rd Symp. Netw. Cloud Comput. Appl. (NCCA), Feb. 2014, pp. 75–82.

[5] M. A. Haque, H. Aydin, and D. Zhu, ‘‘On reliability management of
energy-aware real-time systems through task replication,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 28, no. 3, pp. 813–825, Mar. 2017.

[6] X. Liu, Y. Ma, Y. Liu, T. Xie, and G. Huang, ‘‘Demystifying the imperfect
client-side cache performance of mobile Web browsing,’’ IEEE Trans.
Mobile Comput., vol. 15, no. 9, pp. 2206–2220, Sep. 2016.

[7] D. Ossmann and H.-D. Joos, ‘‘Multiobjective optimization-based fault-
tolerant flight control system design,’’ Int. J. Robust Nonlinear Control,
vol. 29, no. 16, pp. 5341–5355, Sep. 2017.

[8] Q. Wei, J. Jiao, and T. Zhao, ‘‘Flight control system failure modeling and
verification based on SPIN,’’ Eng. Failure Anal., vol. 82, pp. 501–513,
Dec. 2017.

[9] D. He, H. Cao, S. Wang, and X. Chen, ‘‘Time-reassigned synchrosqueez-
ing transform: The algorithm and its applications in mechanical signal pro-
cessing,’’ Mech. Syst. Signal Process., vol. 117, pp. 255–279, Feb. 2019.

[10] Q. Zhai and Y. Wang, ‘‘Stochastic resonance in parallel concatenated turbo
code decoding,’’ Digit. Signal Process., vol. 56, pp. 93–99, Sep. 2016.

[11] Z. Yan, G. He, W. He, S. Wang, and Z. Mao, ‘‘High performance parallel
turbo decoder with configurable interleaving network for LTE applica-
tion,’’ Integration, vol. 52, pp. 77–90, Jan. 2016.

[12] J. Liu, M. Wei, W. Hu, X. Xu, and A. Ouyang, ‘‘Task scheduling with
fault-tolerance in real-time heterogeneous systems,’’ J. Syst. Archit.,
vol. 90, pp. 23–33, Oct. 2018.

[13] K. Cao, G. Xu, J. Zhou, M. Chen, T. Wei, and K. Li, ‘‘Lifetime-aware
real-time task scheduling on fault-tolerant mixed-criticality embedded
systems,’’ Future Gener. Comput. Syst., vol. 100, pp. 165–175, Nov. 2019.

[14] W. Luo, J. Li, F. Yang, G. Tu, L. Pang, and L. Shu, ‘‘DYFARS: Boost-
ing reliability in fault-tolerant heterogeneous distributed systems through
dynamic scheduling,’’ inProc. 8th ACIS Int. Conf. Softw. Eng., Artif. Intell.,
Netw., Parallel/ Distrib. Comput. (SNPD), Jul./Aug. 2007, pp. 640–645.

[15] X. Zhu, X. Qin, and M. Qiu, ‘‘QoS-aware fault-tolerant scheduling for
real-time tasks on heterogeneous clusters,’’ IEEE Trans. Comput., vol. 60,
no. 6, pp. 800–812, Jun. 2011.

[16] J. Wang, W. Bao, X. Zhu, L. T. Yang, and Y. Xiang, ‘‘FESTAL: Fault-
tolerant elastic scheduling algorithm for real-time tasks in virtualized
clouds,’’ IEEE Trans. Comput., vol. 64, no. 9, pp. 2545–2558, Sep. 2015.

[17] H. Gao, Y. Duan, L. Shao, and X. Sun, ‘‘Transformation-based process-
ing of typed resources for multimedia sources in the IoT environment,’’
Wireless Netw., pp. 1–17, 2019.

[18] Y. Yin, L. Chen, Y. Xu, J. Wan, H. Zhang, and Z. Mai, ‘‘QoS prediction
for service recommendation with deep feature learning in edge computing
environment,’’ Mobile Netw. Appl., pp. 1–11, 2019.

[19] Y. Yin,W. Zhang, Y. Xu, H. Zhang, Z. Mai, and L. Yu, ‘‘QoS prediction for
mobile edge service recommendation with auto-encoder,’’ IEEE Access,
vol. 7, pp. 62312–62324, 2019.

[20] H. Gao, W. Huang, Y. Duan, X. Yang, and Q. Zou, ‘‘Research on cost-
driven services composition in an uncertain environment,’’ J. Internet
Technol., vol. 20, no. 3, pp. 755–769, 2019.

[21] S. Creemers, ‘‘The preemptive stochastic resource-constrained project
scheduling problem,’’ Eur. J. Oper. Res., vol. 277, no. 1, pp. 238–247,
Aug. 2019.

[22] H. Yao, M. Xiong, H. Li, L. Gu, and D. Zeng, ‘‘Joint optimization of
function mapping and preemptive scheduling for service chains in network
function virtualization,’’ Future Gener. Comput. Syst., to be published.

[23] F. Jaramillo and M. Erkoc, ‘‘Minimizing total weighted tardiness and
overtime costs for single machine preemptive scheduling,’’ J. Comput. Ind.
Eng., vol. 107, pp. 109–119, May 2017.

[24] O. Kermia, ‘‘An efficient approach for the multiprocessor non-preemptive
strictly periodic task scheduling problem,’’ J. Syst. Archit., vol. 79,
pp. 31–44, Sep. 2017.

78002 VOLUME 8, 2020

H. Sun et al.: QoS-Aware Task Placement With Fault-Tolerance in the Edge-Cloud

[25] J. Chen, C. Du, F. Xie, and B. Lin, ‘‘Scheduling non-preemptive tasks with
strict periods in multi-core real-time systems,’’ J. Syst. Archit., vol. 90,
pp. 72–84, Oct. 2018.

[26] P. M. Castro, I. Harjunkoski, and I. E. Grossmann, ‘‘Discrete and
continuous-time formulations for dealing with break periods: Preemptive
and non-preemptive scheduling,’’ Eur. J. Oper. Res., vol. 278, no. 2,
pp. 563–577, Oct. 2019.

[27] T. Wei, P. Mishra, K. Wu, and J. Zhou, ‘‘Quasi-static fault-tolerant
scheduling schemes for energy-efficient hard real-time systems,’’ J. Syst.
Softw., vol. 85, no. 6, pp. 1386–1399, Jun. 2012.

[28] Y. Guo, D. Zhu, H. Aydin, J.-J. Han, and L. T. Yang, ‘‘Exploiting pri-
mary/backup mechanism for energy efficiency in dependable real-time
systems,’’ J. Syst. Archit., vol. 78, pp. 68–80, Aug. 2017.

[29] Q. Zheng, B. Veeravalli, and C.-K. Tham, ‘‘On the design of fault-tolerant
scheduling strategies using primary-backup approach for computational
grids with low replication costs,’’ IEEE Trans. Comput., vol. 58, no. 3,
pp. 380–393, Mar. 2009.

[30] S. Ghosh, R. Melhem, and D. Mosse, ‘‘Fault-tolerance through scheduling
of aperiodic tasks in hard real-time multiprocessor systems,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 8, no. 3, pp. 272–284, Mar. 1997.

[31] G. Manimaran and C. S. R. Murthy, ‘‘A fault-tolerant dynamic scheduling
algorithm for multiprocessor real-time systems and its analysis,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 9, no. 11, pp. 1137–1152, 1998.

[32] R. Al-Omari, A. K. Somani, and G. Manimaran, ‘‘Efficient overloading
techniques for primary-backup scheduling in real-time systems,’’ J. Par-
allel Distrib. Comput., vol. 64, no. 5, pp. 629–648, May 2004.

[33] T. Tsuchiya, Y. Kakuda, and T. Kikuno, ‘‘A new fault-tolerant scheduling
technique for real-time multiprocessor systems,’’ in Proc. 2nd Int. Work-
shop Real-Time Comput. Syst. Appl. (RTCSA), Oct. 1995, pp. 197–202.

[34] C.-H. Yang, G. Deconinck, and W.-H. Gui, ‘‘Fault-tolerant scheduling for
real-time embedded control systems,’’ J. Comput. Sci. Technol., vol. 19,
no. 2, pp. 191–202, Mar. 2004.

[35] R. Al-Omari, A. K. Somani, and G. Manimaran, ‘‘An adaptive scheme for
fault-tolerant scheduling of soft real-time tasks inmultiprocessor systems,’’
J. Parallel Distrib. Comput., vol. 65, no. 5, pp. 595–608, May 2005.

[36] C. Zhang, H. Zhao, and S. Deng, ‘‘A density-based offloading strat-
egy for IoT devices in edge computing systems,’’ IEEE Access, vol. 6,
pp. 73520–73530, 2018.

[37] M. H. Ghahramani, M. Zhou, and C. T. Hon, ‘‘Toward cloud comput-
ing QoS architecture: Analysis of cloud systems and cloud services,’’
IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 6–18, Jan. 2017.

[38] L. Qi, R. Wang, C. Hu, S. Li, Q. He, and X. Xu, ‘‘Time-aware distributed
service recommendation with privacy-preservation,’’ Inf. Sci., vol. 480,
pp. 354–364, Apr. 2019.

[39] L. Li, G. Xu, L. Jiao, X. Li, H. Wang, J. Hu, H. Xian,W. Lian, and H. Gao,
‘‘A secure random key distribution scheme against node replication attacks
in industrial wireless sensor systems,’’ IEEE Trans Ind. Informat., vol. 16,
no. 3, pp. 2091–2101, Mar. 2020.

[40] X. Gao, E. Akyol, and T. Basar, ‘‘Communication scheduling and remote
estimation with adversarial intervention,’’ IEEE/CAA J. Autom. Sinica,
vol. 6, no. 1, pp. 32–44, Jan. 2019.

[41] P. Zhang, M. Zhou, and G. Fortino, ‘‘Security and trust issues in fog
computing: A survey,’’ Future Gener. Comput. Syst., vol. 88, pp. 16–27,
Nov. 2018.

[42] H. Yuan, J. Bi, M. Zhou, and A. C. Ammari, ‘‘Time-aware multi-
application task scheduling with guaranteed delay constraints in green data
center,’’ IEEE Trans. Autom. Sci. Eng., vol. 15, no. 3, pp. 1138–1151,
Jul. 2018.

[43] H. Yuan, J. Bi, andM. Zhou, ‘‘Temporal task scheduling of multiple delay-
constrained applications in green hybrid cloud,’’ IEEE Trans. Services
Comput., to be published.

[44] M. Kang, C. Wen, and C. Wu, ‘‘A model predictive scheduling algorithm
in real-time control systems,’’ IEEE/CAA J. Autom. Sinica, vol. 5, no. 2,
pp. 471–478, Mar. 2018.

[45] Q. Fan and N. Ansari, ‘‘On cost aware cloudlet placement for mobile
edge computing,’’ IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 926–937,
Jul. 2019.

[46] H. Gao, Y. Xu, Y. Yin, W. Zhang, R. Li, and X. Wang, ‘‘Context-
aware QoS prediction with neural collaborative filtering for Internet-
of-Things services,’’ IEEE Internet Things J., to be published, doi:
10.1109/JIOT.2019.2956827.

[47] L. Niu and D. Zhu, ‘‘Reliability-aware scheduling for reducing system-
wide energy consumption for weakly hard real-time systems,’’ J. Syst.
Archit., vol. 78, pp. 30–54, Aug. 2017.

[48] S. Sarkar, S. Chatterjee, and S. Misra, ‘‘Assessment of the suitability of
fog computing in the context of Internet of Things,’’ IEEE Trans. Cloud
Comput., vol. 6, no. 1, pp. 46–59, Jan. 2018.

[49] P. Guo, M. Liu, J. Wu, Z. Xue, and X. He, ‘‘Energy-efficient fault-tolerant
scheduling algorithm for real-time tasks in cloud-based 5G networks,’’
IEEE Access, vol. 6, pp. 53671–53683, 2018.

[50] M. Guo, L. Li, and Q. Guan, ‘‘Energy-efficient and delay-guaranteed
workload allocation in IoT-edge-cloud computing systems,’’ IEEE Access,
vol. 7, pp. 78685–78697, 2019.

[51] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung,
‘‘Dynamic service migration and workload scheduling in edge-clouds,’’
Perform. Eval., vol. 91, pp. 205–228, Sep. 2015.

[52] P. Guo and Z. Xue, ‘‘Real-time fault-tolerant scheduling algorithm with
rearrangement in cloud systems,’’ in Proc. IEEE 2nd Inf. Technol. Netw.,
Electron. Autom. Control Conf., Dec. 2017, pp. 399–402.

[53] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser, ‘‘A parsi-
monious model of mobile partitioned networks with clustering,’’ in Proc.
1st Int. Commun. Syst. Netw. Workshops, Jan. 2009, pp. 1–10.

HUAIYING SUN received the B.S. degree from
the Jiangxi University of Science and Technol-
ogy, in 2015. She is currently pursuing the Ph.D.
degree in computer science with the East China
University of Science and Technology (ECUST).
Her research interests include software engineer-
ing, cloud computing, service oriented computing,
fog/edge computing, and formal methods.

HUIQUN YU received the B.S. degree from Nan-
jing University, in 1989, the M.S. degree from
the East China University of Science and Tech-
nology (ECUST), in 1992, and Ph.D. degree
from Shanghai Jiaotong University, in 1995,
all in computer science. He is currently a Pro-
fessor of computer science with the Department
of Computer Science and Engineering, ECUST.
His research interests include software engineer-
ing, high-confidence computing systems, cloud
computing, and formal methods.

GUISHENG FAN received the B.S. degree from
the Anhui University of Technology, in 2003, and
the M.S. and Ph.D. degrees from the East China
University of Science and Technology (ECUST),
in 2006 and 2009, respectively, all in computer sci-
ence. He is currently a Research Assistant with the
Department of Computer Science and Engineer-
ing, ECUST. His research interests include formal
methods for complex software systems, service
oriented computing, and techniques for analysis of
software architecture.

LIQIONG CHEN received the B.S. degree from
the Anhui University of Technology, in 2004, and
the Ph.D. degree from the East China University of
Science and Technology (ECUST), in 2009, all in
computer science. She is currently an Associate
Professor with the Department of Computer Sci-
ence and Information Engineering, Shanghai Insti-
tute of Technology. Her research interests include
formal methods for complex software systems,
service oriented computing, and techniques for
analysis of software architecture.

VOLUME 8, 2020 78003

http://dx.doi.org/10.1109/JIOT.2019.2956827

	INTRODUCTION
	RELATED WORK
	SYSTEM ARCHITECTURE AND COMPUTING MODELS
	PROBLEM FORMULATION
	TRANSMISSION DELAY ON THE EDGE-CLOUD AND THE REMOTE CLOUD
	QUEUING DELAY AND PROCESSING DELAY ON THE EDGE-CLOUD AND THE REMOTE CLOUD
	RELIABILITY COST MODEL

	SCHEDULING PRINCIPLES FOR THE PRIMARY AND BACKUP COPIES PLACEMENT IN THE EDGE-CLOUD
	FAULT-TOLERANCE BASED QOS-AWARE SCHEDULING ALGORITHM IN THE EDGE-CLOUD
	PRIMARY COPY PLACEMENT FOR THE TASK IN THE EDGE-CLOUD
	BACKUP COPY PLACEMENT FOR THE TASK IN THE EDGE-CLOUD
	REARRANGEMENT MECHANISM FOR THE PERFORMANCE IMPROVEMENT IN THE EDGE-CLOUD

	PERFORMANCE EVALUATION
	SIMULATION SETUP
	IMPACT OF TASK ARRIVAL RATE
	IMPACT OF TASK DEADLINE
	IMPACT OF NODE NUMBER
	IMPACT OF NODE HETEROGENEITY
	IMPACT OF BANDWIDTH

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	HUAIYING SUN
	HUIQUN YU
	GUISHENG FAN
	LIQIONG CHEN

