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ABSTRACT To explore the advantages of adversarial learning and deep learning, we propose a novel
network intrusion detection model called SAVAER-DNN, which can not only detect known and unknown
attacks but also improve the detection rate of low-frequent attacks. SAVAER is a supervised variational
auto-encoder with regularization, which uses WGAN-GP instead of the vanilla GAN to learn the latent dis-
tribution of the original data. SAVAER’s decoder is used to synthesize samples of low-frequent and unknown
attacks, thereby increasing the diversity of training samples and balancing the training data set. SAVAER’s
encoder is used to initialize the weights of the hidden layers of the DNN and explore high-level feature
representations of the original samples. The benchmark NSL-KDD (KDDTest+), NSL-KDD (KDDTest-21)
and UNSW-NB15 datasets are used to evaluate the performance of the proposed model. The experimental
results show that the proposed SAVAER-DNN is more suitable for data augmentation than the other
three well-known data oversampling methods. Moreover, the proposed SAVAER-DNN outperforms eight
well-known classification models in detection performance and is more effective in detecting low-frequent
and unknown attacks. Furthermore, compared with other state-of-the-art intrusion detection models reported
in the IDS literature, the proposed SAVAER-DNN offers better performance in terms of overall accuracy,
detection rate, F1 score, and false positive rate.

INDEX TERMS Intrusion detection, supervised adversarial variational auto-encoder, regularization,
WGAN-GP, deep learning.

I. INTRODUCTION
With the continuous development andwidespread application
of the Internet, big data, cloud computing, Internet of Things,
and industrial control network technologies, the number of
user devices connected to the network has increased dra-
matically, and the network has spread to all walks of life.
However, with the rapid development of the network, net-
work security events frequently occur in recent years, and
network information security is facing huge challenges. For
example, on January 29, 2018, the top three banks in the
Netherlands have been targeted in multiple cyber attacks
over the past week, blocking access to websites and internet
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banking services [1]. Early on the morning of March 18,
2019, Norsk Hydro, one of the world’s largest aluminum
companies, was attacked by a new variant of ransomware
called LockerGoga, which forced some of its automated
production lines in Europe and the United States to shut
down [2]. On November 11, 2019, the Labor Party suffered
a DDoS (Distributed Denial of Service) attack that affected
the party website, online campaigning tools and platforms
after they were flooded with millions of requests [3]. There-
fore, timely detection of intruders is an important step to
ensure network security. As an effective means to ensure
network security, intrusion detection technology can quickly
detect network attacks and issue immediate warnings. Intru-
sion detection system (IDS) can be divided into two cat-
egories: host-based intrusion detection system (HIDS) and
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network-based intrusion detection system (NIDS). This paper
focuses on a network-based intrusion detection system.

In recent years, machine learning has been widely used to
identify various types of network attacks in NIDS, thereby
helping administrators take appropriate measures to pre-
vent network intrusions. However, most traditional machine
learning methods are shallow learning techniques, such
as KNN (k-Nearest Neighbor) [4], SVM (Support Vector
Machine) [5], SOM (Self-Organizing Map) [6] and so on.
There are many problems in shallow learning methods,
including a heavy dependence on feature engineering and
feature selection, poor ability to detect unknown network
attacks and high false alarm rates. In addition, they can not
effectively solve the classification of large-scale intrusion
data in the actual complex network application environment.
In contrast, deep learning methods can automatically extract
better high-level abstract features from the data to create
better detection models [7].

Deep learning technologies such as DBN (Deep Belief
Network), DNN (Deep Neural Network), CNN (Convo-
lutional Neural Network), LSTM (Long-Term Short-Term
Memory), and GAN (Generate Adversarial Network), etc.
have been widely used in computer vision, natural language
processing, speech recognition, drug design, intrusion detec-
tion and other fields, which can produce results that are
comparable to or even better than human experts [8]–[11].
However, these technologies still have many problems. First,
with the rapid development of network technology and the
rapid growth of network traffic data, different types of attack
traffic are imbalanced. It is difficult for traditional classifiers
to achieve high detection rates on imbalanced data sets. Sec-
ond, due to the widespread application of new technologies
such as artificial intelligence (AI), more and more unknown
attacks threaten the security of the Internet and Intranet.
Traditional classifiers perform well on known attacks but
detect poorly on unknown attacks. Third, with the popularity
of the Internet of Things and the widespread application of
cloud-based services, the scale and complexity of network
traffic data continue to increase, and it is difficult for tradi-
tional classifiers to distinguish between normal and abnormal
behaviors.

To address the above problems, we propose a novel net-
work intrusion detection model called SAVAER-DNN. The
proposed model is a combination of supervised adversar-
ial variational auto-encoder with regularization (SAVAER)
and deep neural network (DNN), which can correctly detect
various network attacks and is more suitable for running in
modern networks. SAVAER uses WGAN-GP (Wasserstein
GANwith gradient penalty) instead of the vanilla GAN (Gen-
erative Adversarial Network) to train the adversarial learning
model. More specifically, we combine the power of VAE
data generation with the ability of the GAN’s adversarial
learning to better learn the latent representation of the original
data. The trained SAVAER encoder is used to construct a
DNN classifier to detect network attacks. We have evaluated
the proposed model on the benchmark NSL-KDD [12], [13]

and UNSW-NB15 [14]–[18] datasets and obtained promising
results.

This article provides the following novel contributions:

• By integrating the power of supervisedVAE data genera-
tion and the advantages ofWGAN-GP adversarial learn-
ing, a new feature learning and data synthesis technique
is proposed, called SAVAER. SAVAER regularizes the
latent representation of the original data by providing a
one-hot class vector to the discriminator network.

• Unlike SAAE, SAVAER uses VAE instead of AE to
characterize the latent distribution of attack samples.
At the same time, class tags are fed to the decoder and
discriminator to regulate independence between latent
variables and classes.

• SAVAER uses WGAN-GP instead of vanilla GAN to
train the adversarial learning model, which overcomes
the shortcomings of GAN’s difficulty in convergence
and model collapse.

• SAVAER’s decoder is used to synthesize low-frequent
and unknown attack samples of a specified label, thereby
increasing the diversity of training samples and balanc-
ing the training data set. As a result, the detection rate of
low-frequent and unknown attacks is improved.

• By combining the advantages of SAVAER encoder fea-
ture extraction and DNN complex decision making,
we propose a SAVAER-DNN model for network intru-
sion detection. The trained encoder is used to initialize
the parameters of the hidden layer of the DNN and
explore the high-level abstract features of the original
data. DNN adjusts network parameters through back-
propagation and fine-tuning techniques to better handle
the detection of a large number of complex network
attacks.

• SAVAER-DNN can not only accurately detect known
and unknown attacks, but also effectively detect
low-frequent attacks.

• Compared with the state-of-the-art intrusion detection
models reported in the IDS literature, SAVAER-DNN
has achieved the highest overall performance on the
benchmark datasets.

The rest of this article is structured as follows. Section II
reviews related research in the field of intrusion detection.
Section III presents relevant background information and
proposes a modified model. Section IV details the pro-
posed intrusion detection framework. Compared with the
well-known methods and the state-of-the-art classification
models, the experimental details and results of the proposed
model are shown in Section V. Finally, this article provides
some conclusions and further work in Section VI.

II. RELATED WORKS
In recent years, the popularity of deep learning has made
it widely used to identify various types of network attacks.
As deep learning overcomes the shortcomings of shallow
learning, and can automatically extract high-level features
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and perform complex classification tasks, the research of
deep learning application in network intrusion detection has
attracted widespread attention from scholars at home and
abroad.

Ma et al. [19] proposed a new hybrid method called
SCDNN for network intrusion detection. SCDNN consists
of spectral clustering (SC) and deep neural network (DNN).
First, the SC divides the original training data set into k
training subsets, and then the training subset is used to train
the k sub-DNN classifiers. Next, the test data set is divided
into subsets with SC, and the test data subsets are used to
test the corresponding sub-DNNs. SCDNN is evaluated on
six KDD-Cup99 and NSL-KDD datasets. The experimental
results show that SCDNN has better detection accuracy than
SVM, BPNN (backpropagation neural network), RF (random
forest) and Bayesian methods. The accuracy of SCDNN on
the NSL-KDD (KDDTest +) and NSL-KDD (KDDTest-21)
datasets is 72.64% and 44.55%, respectively.

In [20], the authors proposed an unsupervised network
intrusion detection method based on a conditional varia-
tional auto-encoder, called ID-CVAE. This method has a
specific architecture that integrates intrusion tags only inside
the decoder layer. Experimental results show that the pro-
posed ID-CVAE provides better classification results than
other well-known classifiers. The accuracy of ID-CVAE on
the NSL-KDD dataset reaches 80.10%. More importantly,
the method can recover missing features from incomplete
training data sets.

Yin et al. [21] proposed a deep learning method for net-
work intrusion detection using recurrent neural networks,
called RNN-IDS. They study the accuracy and training time
of RNN-IDS with different learning rates and hidden nodes
in both binary and multi-class classification. Experimental
results show that RNN-IDS is very suitable for network
intrusion detection, and achieves the accuracy of 83.28%
and 68.55% on KDDTest + and KDDTest-21 test sets,
respectively.

Li et al. [22] proposed a deep learning approach to auto-
matically learn the features of graphic NSL-KDD trans-
formation via the proposed graphic conversion technique.
They use convolutional neural networks (CNN) ResNet and
GoogLeNet for network intrusion detection. The perfor-
mance of the image conversion method is evaluated by binary
classification experiments on the NSL-KDD dataset. Differ-
ent structures of CNN are testified for comparison. Exper-
imental results show that the CNN model is very sensitive
to image transformation of attack data, and the method is
suitable for intrusion detection.

Shone et al. [7] proposed a novel deep learning clas-
sification model, called S-NDAE. The proposed S-NDAE
uses stacked nonsymmetric deep auto-encoders (NDAEs)
and random forest (RF) to build a classification model for
intrusion detection. NDAE is used to learn features, and
the stacked NDAEs and RF are used to perform classifi-
cation. Experimental results show that the proposed model
has obtained promising results on the KDD Cup’99 and

NSL-KDD datasets, and has achieved the highest accuracy
of 85.42% on the NSL-KDD dataset.

Khan et al. [23] proposed a new two-stage deep learn-
ing (TSDL) model based on stacked auto-encoders with
a soft-max classifier for network intrusion detection. The
model includes two decision-making phases: First, the net-
work traffic is classified as normal or abnormal using a
probability value. Next, the probability value is added to the
original features as an additional feature to detect normal and
other types of attacks. To evaluate the performance of the
proposed model, extensive experiments are performed on the
KDD99 and UNSW-NB15 datasets. Comparative simulation
results show that the proposed model significantly outper-
forms the existing methods, and has achieved 99.996% and
89.134% accuracy on the KDD99 andUNSW-NB15 datasets,
respectively.

In [24], the authors used LSTM (Long Short-Term Mem-
ory) and GRU (Gated Recurrent Unit) with a variable num-
ber of hidden layers and BLS (Extended Learning System)
and its extensions to build network anomaly detection mod-
els. The BGP and NSL-KDD datasets are used to evaluate
the performance of the proposed models in terms of train-
ing time, accuracy, and F1 score. On the BPG data set,
the experimental results show that RNN and BLS models
can provide the best accuracy and F1-score in the range
of 90%-95%. On the NSL-KDD dataset, the experimental
results show that the best performance can be obtained using
LSTM4 and GRU3 RNNs, and the CFBLS (BLS with cas-
cades of mapped features) architecture can provide the best
results.

Vinayakumar et al. [25] employed distributed DNNs
model to develop a scalable and hybrid intrusion detec-
tion model, called scale-hybrid-IDS-AlertNet (SHIA). The
proposed SHIA can effectively monitor a large number of
network-level and host-level events to automatically identify
malicious attacks in order to provide network administrators
with appropriate alerts. Strict experimental tests on vari-
ous benchmark IDS datasets show that the proposed model
performs well compared with traditional machine learning
classifiers.

In summary, although the aforementioned deep learning
methods have achieved satisfactory results in network intru-
sion detection systems, they still face the problem of low
detection rates of unknown and low-frequent attacks. To solve
these problems, we propose a new hybrid intrusion detection
framework. The proposed framework uses SAVAER to learn
the latent distribution of the intrusion data, then concate-
nates the encoded latent vectors with the specified attack
labels, and feeds them together into the decoder to generate
unknown attacks. Thus, the diversity of training samples is
improved and the training sample set is balanced. Further-
more, the SAVAER encoder adds a softmax layer to build
a DNN classifier. Finally, the DNN classifier automatically
explores high-level abstract feature representation of network
attack data and effectively detects unknown and low-frequent
cyber attacks.
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FIGURE 1. AE architecture.

FIGURE 2. VAE architecture.

III. METHODOLOGY
A. AUTO-ENCODER
Auto-Encoder (AE) is an artificial neural network that learns
how to efficiently compress and encode data and then learns
how to reconstruct data as close as possible to the original
input data [26]. AE consists of an encoder and a decoder,
as shown in Figure 1, and is usually trained in an unsupervised
manner. The encoder is often used to reduce dimensionality,
while the decoder is a decompression process that can be
used to denoise raw data or generate new data. There are
several variations of the auto-encoders, including regular-
ized, sparse, contractive, and denoising auto-encoders, and
then Variational Auto-Encoder (VAE), beta-VAE [27] and
TD-VAE (Temporal Difference VAE) [28].

AE tries to minimize the reconstruction error between the
input data x and the reconstructed data x̂. The reconstruction
loss can be defined as the Lp distance (like L2 norm):

LAE(θ, φ) = minE
(
x, x̂

) e.g.
= min

∥∥x− x̂∥∥p (1)

The reconstruction loss can also be defined as cross entropy
function:

LAE(θ, φ) = −
D∑
i=1

x̂i log (xi) (2)

where D is the dimensionality of the input data x.
Just as a standard Auto-Encoder, Variational Auto-Encoder

(VAE) [29], [30] is a deep generation model with latent
variables, especially suitable for generating new samples that
look like real data. VAE is an architecture composed of both
an encoder and a decoder, which is trained to minimize the
reconstruction error between the encoded-decoded data and
the input data, as shown in Figure 2. VAE uses Bayesian infer-
ence and probabilistic graphical model methods to encode
input data into a low-dimensional latent encoding space and
then decodes it back.

FIGURE 3. GAN architecture.

The probabilistic encoder qφ(z|x) is a posterior probability
function, which is used to approximate the intractable pos-
terior pθ (z|x). We assume that the prior distribution pθ (z) is
a multivariate Gaussian with a diagonal covariance matrix.
We randomly sample the point z from a prior distribu-
tion pθ (z). To make it trainable, the reparameterization trick
is introduced [30]. The decoder pθ (x|z) maps this point in
the latent space back to the original input sample. The loss
function of VAE is defined as:

LVAE(θ, φ) = −Ez∼qφ (z|x)[log pθ (x|z)]
+DKL[qφ(z|x)‖pθ (z)] (3)

where DKL is the Kullback–Leibler divergence, which intu-
itively measures the degree of similarity between the prior
distribution pθ (z) and the posterior distribution qφ(z|x).

B. GENERATIVE ADVERSARIAL NETWORKS
Generative Adversarial Networks (GANs) are one of themost
popular deep learning algorithms in recent years. They have
been used in real-life applications for text, image and video
generation, drug discovery and data synthesis. GANs can
learn to mimic any data distribution, originally introduced
in 2014 by Ian Goodfellow and co-authors including Good-
fellow et al. [31]. GANs consist of two neural networks
in a two-player game, a generation network (a generator)
and a discriminating network (a discriminator), as shown
in Figure 3. The discriminator D is a binary classifier that
learns to distinguish between real and synthetic samples, and
the generatorG captures the latent distribution of real samples
and generates real-looking synthetic samples that can fool the
discriminator D.

The vanilla GAN uses the following objective function,
which can be interpreted as ‘‘minimizing Jensen–Shannon
divergence between fake and real distributions’’:

min
G

max
D

V (D,G) = Ex∼Pr [logD(x)]

+Ex̃∼Pg [log(1− D(x̃))] (4)

where x̃ = G(z) is fake data generated. z represents a random
noise point sampled from the distribution p(z). Pr and Pg
represent the distribution of real and fake data, respectively.

GAN is a minimax game that is difficult to train and suf-
fers from the following major problems: (1) no convergence,
model parameter oscillation; (2) mode collapse, the generator
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FIGURE 4. AAE architecture.

produces limited varieties of data samples; (3) vanishing
gradient, the discriminator is so successful that the gradient of
the generator vanishes and the generator learns nothing [32].
To solve these problems, Arjovsky et al. [33] proposed an
improved algorithm, called WGAN. WGAN uses Wasser-
stein distance instead of JS (Jensen–Shannon) divergence to
characterize the difference between fake and real distribu-
tions. When the discrepancy between fake and real distri-
butions is too large, JS divergence can not provide enough
information. In contrast, even if the two distributions do not
overlap, the Wasserstein distance can accurately calculate the
difference. WGAN tries to optimize its dual form:

min
G

max
D∈D

V (D,G) = E
x∼Pr

[D(x)]− E
x̃∼Pg

[D(x̃))] (5)

where x̃ = G(z), D is the set of Lipschitz-1 continuous
functions. To ensure D ∈ D after all gradients are updated,
WGAN clips the weights of discriminator into a small fixed
range, such as W ∈ [−0.01, 0.01], resulting in a compact
parameter spaceW .

However, WGAN is not perfect. Weight clipping may
cause most of the discriminator’s weight values to focus on
two limit values, such as −0.01 or 0.01, which can eas-
ily cause slow convergence and vanishing gradients [34].
In order to solve these problems, Gulrajani et al. [34] made
some improvements to replace weight clipping with gradient
penalty, called WGAN-GP (Wasserstein Generative Adver-
sarial Network with Gradient Penalty). The WGAN-GP
objective is defined as:

LWGAN-GP = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)]

+ λ E
x̂∼Px̂

[(∥∥∇x̂D(x̂)∥∥2 − 1
)2] (6)

where x̃ = G(z), x̂ = εx + (1 − ε)x̃, ε is a random variable
ε ∼ U[0, 1]. λ is a penalty factor and is usually set to 10.
Px̂ represents the uniform sampling distribution along the line
between the real distribution Pr and the fake distribution Pg.

C. ADVERSARIAL AUTO-ENCODER
Adversarial Auto-Encoder (AAE) was proposed by
Makhzani et al. in 2015 [35], as shown in Figure 4.

FIGURE 5. AAER architecture.

FIGURE 6. SAAE architecture.

AAE behaves similarly to VAE, which forces the latent
variable z of AE to follow a predefined prior distribution p(z).
In the case of the AAE, z can be arbitrarily defined and
easily sampled and fed into the discriminator. However,
instead of maximizing the evidence lower bound (ELBO)
like VAE, AAE utilizes the GAN to guides the distribution
of the encoder q(z|x) to match the prior distribution p(z). The
discriminator network is trained to discriminate whether the
input code vector z is fake data from the AE or true data from
the prior distribution p(z).
In the scenario where the training data is labeled,

Makhzani et al. [35] proposed an improved version of AAE,
which incorporates label information during the adversarial
training phase, called adversarial auto-encoder with regular-
ization (AAER), as shown in Figure 5. The one-hot label
is fed to the discriminator network to provide a better fit
distribution for the latent variables.

Supervised Adversarial Auto-Encoder (SAAE) is simi-
lar to AAE, but the only difference from AAE is that the
one-hot label is used as input of the decoder, thereby chang-
ing unsupervised training to a supervised manner, as shown
in Figure 6. SAAE concatenates the latent variable z and the
one-hot label y together as the input of the decoder. Then
the decoder forces the network to learn the label-independent
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FIGURE 7. SAVAER architecture.

latent distribution. In SAAE, we can generate new attack
samples with the specified labels, but in AAE, this is not
possible.

D. PROPOSED METHODOLOGY
In order to combine the advantages of VAE and SAAE,
we propose a Supervised Adversarial Variational Auto-
Encoder with regularization (SAVAER), as shown in Figure 7.
The main difference from the previous SAAE model is that
SAVAER uses VAE instead of AE to characterize the latent
distribution of attack samples, and the one-hot class vectors
are fed to the decoder and discriminator to regulate inde-
pendence between latent variables and classes. The decoder
can generate attack samples of the specified label y from the
distribution pθ (x|z, y).

IV. PROPOSED NETWORK INTRUSION
DETECTION FRAMEWORK
In this section, we introduce the details about the proposed
network intrusion detection model. The proposed model con-
sists of four phases (in order): data preprocessing, training
SAVAER, data augmentation and detecting attacks, as shown
in Figure 8.

A. DATA PREPROCESSING
SAVAER-DNN only accepts numerical values for train-
ing and testing, so we use one-hot encoding to trans-
fer all the symbolic feature values on the NSL-KDD and
UNSW-NB15 datasets into numerical feature values. For
example, the NSL-KDD dataset contains three symbolic fea-
tures, including protocol_type (i.e., tcp, udp, and icmp), ser-
vice (such as ftp_data, ssh, http, etc.) and flag (such as SF,
S0, SH, etc.). After data transferring, all symbolic attributes
are converted to numerical values. Data scaling (also known
as data normalization) is used to normalize the range of data
features, which can speed up the gradient descent of machine
learning algorithms to find the optimal solution. We use the
maximum-minimum normalization method to scale feature
values. All feature values are normalized within a specific

FIGURE 8. The proposed network intrusion detection framework.

range of [0, 1] according to Equation 7.

x ′ =
x − xmin

xmax − xmin
(7)

where x is an original value, x ′ is the normalized value.

B. TRAINING SAVAER
In the training phase, we use the label shuffling [36] method
to train the proposed SAVAER on the original training data
set. SAVAER is trained in the following steps for each mini-
batch: (1) VAE is trained to minimize the difference between
the reconstructed data x̂ and the original input data x, that
is, to minimize the binary cross-entropy loss. (2) The dis-
criminator is trained to distinguish the differences between
fake and real samples z from the real data distribution q(z)
and the multivariate Gaussian prior p(z), that is, to minimize
the WGAN-GP loss. (3) The generator (encoder) is trained to
fool the parameter-fixed discriminator by generating the most
similar samples z. The training process is an iterative training
of VAE, discriminator, and generator.

After SAVAER is trained, the original training data (x, y)
is fed into the trained VAE to calculate the cross-entropy
reconstruction loss. The binary cross-entropy reconstruction
loss of the sample (xi, yi) is defined as:

L(xi, yi) = −
d∑
k=1

[xi,k log x̂i,k + (1− xi,k )log(1− x̂i,k )] (8)

where x̂i = Decoder(Encoder(xi), yi); xi,k represents the k-th
feature value of the sample xi; d represents the number of
features.
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The maximum class reconstruction loss maxLj of class j is
defined as:

maxL j = k ∗max{L(xi, yi), for each yi ∈ class j} (9)

where k is the scale factor, and usually k is set to 1.0.

C. DATA AUGMENTATION
In the data augmentation phase, a trained decoder can be used
to generate new attack samples to improve the classifier’s
detection rate of unknown and minority attacks. Now you can
sample the latent variable znew from themultivariate Gaussian
distribution p(z), concatenate it with the specified minority
class label ynew, and feed them into the decoder to generate
new attacks xnew. The newly generated sample (xnew, ynew)
is fed into the trained SAVAER, and the reconstruction error
L(xnew, ynew) of the newly generated sample is calculated
according to Equation 8. In order to ensure that the newly
generated samples have the same spatial distribution as the
original samples, we filter the newly generated attack samples
(xnew, ynew) according to Equation 10 to eliminate the samples
that differ significantly from the original sample distribution.
Finally, the newly generated attack samples which are con-
sistent with the original data distribution are merged into the
original training data set to balance the training data set.

S =


S
⋃
{xnew, ynew} , if ynew ∈ class j

and L (xnew, ynew) ≤ maxLj
S, otherwise

(10)

D. DETECTING ATTACKS
In the detection attack phase, we use the trained SAVAER
encoder to construct a DNN classifier, that is to say, we add
a softmax output layer to the last layer of the encoder. The
weights of the trained SAVAER encoder are used to initialize
the weights of the hidden layers of the DNN. We use the
synthetic training dataset to train the DNN classifier. First,
the hidden layer weights of the DNN classifier are frozen,
the weight of the output layer is updated by backpropagation,
then all hidden layers are unfrozen, and the DNN classifier is
fine-tuned by using the synthetic training data set.

The proposed intrusion detection model is detailed in
algorithm 1:

V. EXPERIMENTAL RESULTS AND ANALYSES
A. DESCRIPTION OF THE BENCHMARK DATASETS
At present, only a few benchmark data sets can be used
to evaluate a network intrusion detection system. These
data sets reported in the literature include KDD’99 [37],
NSL-KDD [12], [13], ISCXIDS2012 [38], CICIDS2017 [39],
CICDoS2017 [40], CICDDoS2019 [41], and UNSW-
NB15 [14]–[18] data sets. The NSL-KDD dataset is an
improved version of the KDD’99 dataset, which overcomes
many problems of the original KDD’99 dataset. The ISCX-
IDS2012 dataset contains seven days of normal and mali-
cious network records, and the CICIDS2017 data set con-
tains five days of network attack traffic, including DoS,

Algorithm 1 Proposed Network Intrusion Detection Frame-
work
Input: Training dataset S = (x, y), latent variable z, learning

rate lr , the scale factor k .
Output: The final attack recognition results.
1: Data preprocessing: each feature is scaled to a

given range [0,1] by a one-hot encoding and a
maximum-minimum normalization method.

2: Train SAVAER on S using a label shuffling method, with
multivariate Gaussian distribution as prior p(z):

3: D(E(·))← VAE in SAVAER;
4: Dis(·)← discriminator in SAVAER;
5: E(·)← generator (encoder) in SAVAER.
6: Calculate the maximum class reconstruction loss maxL

according to Equation 9.
7: Generate new attack samples:
8: znew← multivariate Gaussian distribution p(z);
9: ynew← minority class labels;
10: xnew← D(znew, ynew).
11: Merge the newly generated samples (xnew, ynew) into the

original training data set according to Equation 10.
12: Train DNN classifier on the synthetic training data set:
13: DNN (·) ← E(·), use the SAVAER encoder’s weights

to initialize the weights of the hidden layers of the DNN;
14: Freeze hidden layers of DNN, and update the weights

of the DNN output layer using the backpropagation algo-
rithm;

15: Unfreeze hidden layers of DNN, and fine-tune the
DNN classifier using the synthetic training data set.

16: return the classification results.

DDoS, Brute Force SSH, Brute Force FTP, Web Attack,
Botnet, Heartbleed and Infiltration. The CICDoS2017 and
CICDDoS2019 datasets are primarily used to evaluate DoS
andDDoS attacks. The UNSW-NB15 dataset contains benign
and nine latest common attacks.

The NSL-KDD and UNSW-NB15 data sets are more suit-
able for evaluating several attacks, so we chose them to
evaluate the detection performance of the proposed model.

1) NSL-KDD DATASET
The NSL-KDD dataset is a new compressed version of the
KDD’99 dataset, which eliminates the duplicate and redun-
dant records in the KDD’99 data set. In addition, the num-
ber of records in the NSL-KDD training and test data sets
is more reasonable. The NSD-KDD dataset contains nor-
mal and four attack records, named Probe, DoS (Denial
of Service), U2R (User to Root), and R2L (Remote to
Local). We use KDDTrain+_20Percent.txt as the training
set and KDDTest+.txt, and KDDTest-21.txt (remove records
that are easily classified by 21 common classifiers in the
KDDTest+.txt data set) [13], [42] as the test sets. The number
of records for each category on the NSL-KDD dataset is
shown in Table 1. As can be seen fromTable 1, the NSL-KDD
training data set is imbalanced, and more than half of the
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TABLE 1. Class distribution of the NSL-KDD dataset.

U2R and R2L attacks in the test data set do not appear in
the training data set.

2) UNSW-NB15 DATASET
The UNSW-NB15 dataset [14]–[18] consists of a hybrid
of real modern normal activities and synthetic attack
behaviours, created by ACCS (the Australian Centre for
Cyber Security). The full UNSW-NB15 dataset contains
49 features with class labels, with a total of 25,400,443
records. The full UNSW-NB15 dataset is divided into a

TABLE 2. Class distribution of the UNSW-NB15 dataset.

TABLE 3. Confusion matrix for network intrusion detection.

training set and a test set by stratified sampling, namely,
UNSW_NB15_training-set.csv and UNSW_NB15_testing-
set.csv. The number of records in the training set and test set
is 175,341 and 82,332 records, respectively. The divided data
set removes six features (such as srcip, sport, dstip, dsport,
Stime, and Ltime) from the full data set, with only 43 features
with class labels [15]. The UNSW-NB15 dataset contains
one normal and nine attacks, named such as DoS, Shellcode,
Backdoor, Generic, Exploits, Fuzzers, Reconnaissance, Anal-
ysis, and Worms. Table 2 shows the number of records in the
training and test data sets. Obviously, the attack records in
the training data set are imbalanced, and the attack records
are less than the normal records, especially the Analysis,
Backdoor, Shellcode and Worms records.

B. PERFORMANCE METRICS
In order to effectively evaluate the performance of the net-
work intrusion detection methods, nine performance mea-
sures are widely used, including accuracy, precision, recall,
DR (detection rate), FPR (false positive rate), F1 score,
G-mean, ROC (receiver operating characteristic curve), and
AUC (area under the ROC curve). These performance mea-
sures are computed from the confusion matrix for network
attack classification [43], as shown in Table 3. TP (True
Positive) is the number of records in which the attack traffic
is correctly classified; TN (True Negative) is the number of
records in which the normal traffic is correctly classified; FP
(False Positive) is the number of records in which normal
traffic is misclassified as attack traffic; FN (False Negative) is
the number of records in which attack traffic is misclassified
as normal traffic.

The Accuracy is the proportion of the number of correctly
predicted attacks and normal records to the total number of
all records. If the Accuracy is higher, the performance of the
classification model is better (Accuracy ∈ [0, 1]). Accuracy
is defined as follows:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(11)
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TheDR (detection rate) orRecall is the proportion of actual
attack records that are correctly classified. DR is also known
as TPR (true positive rate) or Sensitivity. If the DR is higher,
the performance of the classification model is better (DR ∈
[0, 1]). DR is defined as follows:

DR = Recall = TPR =
TP

TP+ FN
(12)

The TNR (true negative rate) or Specificity measures the
proportion of normal records that are correctly classified.
If the TNR is higher, the performance of the classification
model is better (TNR ∈ [0, 1]). TNR is defined as follows:

TNR = Specificity =
TN

TN + FP
(13)

The Precision is the proportion of all predicted attack
records that are actually attack records. If the Precision is
higher, the performance of the classification model is better
(Precision ∈ [0, 1]). Precision is defined as follows:

Precision =
TP

TP+ FP
(14)

The FPR (false positive rate) is the proportion of normal
records that are incorrectly classified as attack records. If the
FPR is lower, the performance of the classification model is
better (FPR ∈ [0, 1]). FPR is defined as follows:

FPR =
FP

FP+ TN
(15)

The F1 score is the harmonic mean of recall and preci-
sion. In imbalanced data sets, the F1 score is much more
effective than accuracy at determining the performance of the
classification model. If the F1 is higher, the performance of
the classification model is better (F1 ∈ [0, 1]). F1 score is
defined as follows:

F1 = 2×
Precision× Recall
Precision+ Recall

=
2× TP

2× TP+ FP+ FN
(16)

The G − mean is the geometric mean of specificity and
sensitivity, which is used to measure the balance between
majority and minority classification performance. If the G−
mean is higher, the performance of the classification model is
better (G− mean ∈ [0, 1]). G− mean is defined as follows:

G-mean =
√
TPR× TNR

=

√
TP

TP+ FN
×

TN
TN + FP

(17)

The ROC (receiver operating characteristic curve) is a
commonly used graph that illustrates the performance of a
classifier over all possible thresholds. The main analysis tool
is a curve drawn on a two-dimensional plane with the abscissa
of the FPR and the ordinate of the TPR when you change the
threshold for assigning observations to a given class.

The AUC (area under the ROC curve) is defined as the area
under the ROC curve. If the AUC is higher, the performance
of the classification model is better (AUC ∈ [0, 1]). The AUC

TABLE 4. Hyper-parameters configured for grid search.

of the real classifier is usually between 0.5 and 1. AUC is
defined as follows:

AUC =
∫ 1

0

TP
TP+ FN

d
FP

TN + FP
(18)

C. EXPERIMENTAL SETUP
All the experiments are conducted in a TensorFlow environ-
ment with a 64-bit Windows 10 operating system (ThinkSta-
tion workstation with 64 GB RAM and Intel E5-2620 CPU).
We use three different data sets, NSL-KDD (KDDTest+),
NSL-KDD (KDDTest-21) and UNSW-NB15, to evaluate the
performance of the proposed model and several well-known
classifiers. Grid search and 5-fold cross-validation are used
to find the optimal network structure and hyperparameters of
the proposed model which results in the highest prediction
accuracy. The activation function of all hidden layers of the
proposed model is ReLU6 [44], except that the activation
function of the decoder output layer is Sigmoid, the activation
function of the output layer of the discriminator and encoder
is linear, and the activation function of the DNN output layer
is Softmax. The optimizer is Adam [45] with a learning rate
of 0.001 for all networks. The grid search hyper-parameters
are configured in Table 4.

Through the grid search experiment, we obtained the
optimal network structure. The optimal number of latent
variable units on the NSL-KDD and UNSW-NB15 data
sets are 9 and 23, respectively. The training graphs of
SAVAER-DNNwith the optimal network structure are shown
in Figures 9 and 10. Figures 9(b) and 10(b) show that the
generator loss of WGAN-GP tends to be minimal during
network training, Figures 9(a) and 10(a) show that the dis-
criminator loss of WGAN-GP tends to be minimal dur-
ing network training, and Figures 9(d) and 10(d) show that
the discrimination accuracy is close to 50%, indicating that
WGAN-GP has reached Nash equilibrium. It can be seen
from Figures 9(e) and 10(e) that DNN’s convergence speed
is very fast. The reason is that the trained encoder is used
to initialize the weight of the DNN hidden layers, and the
network initialization weight is close to the global optimum
so that the network is easier to converge.

In order to demonstrate the superiority of the proposed
SAVAER-DNN in detecting unknown attacks and imbalanced
samples, we design several experiments. Tables 5 and 6 show
the number of newly generated samples for each category on
the NSL-KDD and UNSW-NB15 training datasets, respec-
tively. Figures 11 and 12 show the sample spatial distribution
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FIGURE 9. Training graphs of SAVAER-DNN with the optimal parameters
on the NSL-KDD dataset.

FIGURE 10. Training graphs of SAVAER-DNN with the optimal parameters
on the UNSW-NB15 dataset.

of the augmented and original training data projected onto
a two-dimensional space by UMAP (Uniform Manifold
Approximation and Projection). Figures 13 to 15 show the

TABLE 5. Number of training samples generated on the NSL-KDD dataset.

TABLE 6. Number of training samples generated on the
UNSW-NB15 dataset.

FIGURE 11. UMAP visualization of the original and synthetic training data
on the NSL-KDD dataset.

FIGURE 12. UMAP visualization of the original and synthetic training data
on the UNSW-NB15 dataset.

ROC curves and AUC values of SAVAER-DNN. The com-
parison results of SAVAER-DNN and eight well-known
classification models are shown in Figures 21 to 25.
Besides, the detection performance of SAVAER-DNN is
compared with other state-of-the-art models reported in
the IDS literature, and the comparison results are shown
in Tables 7 to 9.
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FIGURE 13. ROC curve and AUC on the NSL-KDD (KDDTest+) dataset.

FIGURE 14. ROC curve and AUC on the NSL-KDD (KDDTest-21) dataset.

FIGURE 15. ROC curve and AUC on the UNSW-NB15 dataset.

D. RESULTS AND DISCUSSION
1) DETECTION PERFORMANCE
Tables 1 and 2 show that training data is severely imbalanced,
and many unknown attacks in the test data set do not appear

FIGURE 16. Comparison of detection rates of different data augmentation
methods on the NSL-KDD (KDDTest+) dataset (%).

FIGURE 17. Comparison of the overall performance of different data
augmentation methods on the NSL-KDD (KDDTest+) dataset (%).

in the training data set. For example, the training data of the
NSL-KDD dataset contains 21 attacks, while the test data
has 21 known attacks and 14 unknown attacks. Imbalanced
data will make the classifier be biased toward the majority
class, resulting in a high false positive rate for the minority
attacks. In fact, minority attacks are more harmful, such as
U2R and R2L attacks. The data generation algorithm is an
important method to solve the problem of sample imbal-
ance. The trained SAVAER decoder is used as a sample
synthesizer for data augmentation. By specifying the value
of the one-hot label y, we can generate corresponding attack
samples from the conditional distribution pθ (x|z, y), thereby
increasing the training sample diversity and balancing the
training data set. The number of newly generated samples is
shown in Tables 5 and 6.

UMAP (Uniform Manifold Approximation and Projec-
tion) was proposed by McInnes et al. in 2018 [46]. It is
a new manifold learning technology for dimensionality
reduction and can also be used for visualization simi-
lar to t-SNE (t-Distributed Stochastic Neighbor Embed-
ding) [47]. Compared with t-SNE, it can save as many
local and global data structures as possible in shorter
running time. UMAP is very suitable for embedding
high-dimensional data in a low-dimensional space for visu-
alization. In order to visually show that the generated
data conforms to the spatial distribution of the original
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FIGURE 18. Comparison of detection rates of different data augmentation
methods on the NSL-KDD (KDDTest-21) dataset (%).

FIGURE 19. Comparison of the overall performance of different data
augmentation methods on the NSL-KDD (KDDTest-21) dataset (%).

FIGURE 20. Comparison of the overall performance of different data
augmentation methods on the UNSW-NB15 dataset (%).

training data, we use the UMAP method to project the orig-
inal and synthetic training data into a 2D space, as shown
in Figures 11 and 12. Figures 11(a) and 12(a) show that both
training data sets are non-linearly separable. It can be seen
from Figures 11(a) and 11(b) that the generated data on the
NSL-KDD dataset is similar to the spatial distribution of the
original training data, and Figures 12(a) and 12(b) also have
similar results on the UNSW-NB15 dataset. It can be seen
from the experimental results that the method of generating
new training attack samples is reasonable.

In addition, in order to evaluate the detection performance
of the proposed model, Figures 13 to 15 show ROC curves
and AUC values. The ROC curve is plotted with TPR on

the y-axis against the FPR on the x-axis. ROC curve is
a performance measurement for classification problems at
various threshold settings. ROC is a probability curve and
AUC represents the degree or measure of separability. The
higher the AUC, the better the model is in terms of detection
performance. In a multi-class classification model, we use
the one-vs.-rest (or one-vs.-all, OvA or OvR) method to plot
the ROC curve and AUC value of each class. We note that
all AUC values are greater than 0.8, which confirms that the
proposed model produces better classification results.

2) COMPARATIVE STUDY OF DATA AUGMENTATION
Currently, the most popular data augmentation meth-
ods include ROS (Random Over Sampler) [48], SMOTE
(Synthetic Minority Oversampling Technique) [49], and
ADASYN (Adaptive Synthetic) [50]. To generate unknown
attack samples and balance the training data set, we propose
the SAVAER-DNN model to improve the detection rate of
unknown attacks. SAVAER-DNN uses a decoder to synthe-
size minority types of training attack samples. To compare
the detection performance of the proposed SAVAER-DNN in
data augmentation technology, we built three classification
models based on three well-known data augmentation meth-
ods, namedROS-DNN, SMOTE-DNN, andADASYN-DNN.
The comparison results are shown in Figures 16 to 20.

Figures 16 and 18 show that compared with three
well-known data augmentation methods, SAVAER-DNN has
achieved the highest detection rate in five types of attacks,
especially in U2R and R2L attacks. It can be seen from
Table 1 that more than half of the U2R and R2L attacks
in the test data set do not appear in the training data set.
These comparative experiments fully prove that the proposed
SAVAER-DNN is more effective in synthesizing unknown
attacks. Besides, Figures 17 and 19 show that SAVAER-DNN
also achieves the highest detection performance in terms of
overall accuracy, recall, precision, F1 score, G-mean, and
FPR.

Figure 20 shows that the proposed SAVAER-DNN
achieves the highest detection performance on the UNSW-
NB15 dataset in terms of overall accuracy, precision, recall,
F1 score, G-mean, and FPR. This further proves the superi-
ority of SAVAER-DNN.

In summary, it can be seen from Figures 16 to 20
that the proposed SAVAER-DNN has better detection per-
formance than ROS-DNN, SMOTE-DNN, and ADASYN-
DNN. SAVAER-DNN learns the latent distribution of the
original training samples, that is, explores the high-level
feature representation of the original data. We randomly
sample data points from the latent distribution, then con-
catenate the sampled data points with the class labels, and
feed them into the decoder to generate new training sam-
ples. ROS-DNN repeatedly samples the original samples,
while SMOTE-DNN and ADASYN-DNN randomly synthe-
size samples on the original samples based on the KNN
(k-Nearest Neighbor) principle. The most significant differ-
ence between ROS-DNN, SMOTE-DNN, ADASYN-DNN
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FIGURE 21. Comparison of detection rates of different classification
models on the NSL-KDD (KDDTest+) dataset (%).

FIGURE 22. Comparison of the overall performance of different
classification models on the NSL-KDD (KDDTest+) dataset (%).

and SAVAER-DNN is the ability to infer attack attributes
from specific class labels. SAVAER-DNN can generate corre-
sponding attack samples with specific class attributes. These
experimental results show that samples synthesized based on
latent space are better than samples synthesized based on
original samples.

3) COMPARATIVE STUDY OF THE WELL-KNOWN
CLASSIFIERS
In order to evaluate the performance of the proposed
SAVAER-DNN, we have built eight well-known classifi-
cation models, named KNN (K-Nearest Neighbor), Gaus-
sianNB (Gaussian Naive Bayes), DT (Decision Tree),
LR (Logistic Regression), SVM (Support Vector Machine),
RF (Random Forest), DBN (Deep Belief Network), and
DNN (Deep Neural Network), to detect intrusions and
compare their results with our proposed model. These
methods have been frequently used in the literature for
intrusion detection. Comparative experimental results are
shown in Figures 21 to 25.

As can be seen from Figure 21, SAVAER-DNN has
a higher detection rate on the NSL-KDD (KDDTest+)
dataset than all well-known classifiers. Figure 22 shows that
SAVAER-DNN has the highest overall accuracy, recall, preci-
sion, F1 score, G-mean and FPR on NSL-KDD (KDDTest+)
data set than all well-known classifiers. SAVAER-DNN has

FIGURE 23. Comparison of detection rates of different classification
models on the NSL-KDD (KDDTest-21) dataset (%).

FIGURE 24. Comparison of the overall performance of different
classification models on the NSL-KDD (KDDTest-21) dataset (%).

FIGURE 25. Comparison of the overall performance of different
classification models on the UNSW-NB15 dataset (%).

achieved a maximum accuracy of 89.36% with a minimum
FPR of 4.70%.

Figure 23 shows that SAVAER-DNN achieves the
highest detection rate for each class on the NSL-KDD
(KDDTest-21) dataset. Figure 24 shows that compared with
other classification models, SAVAER-DNN has achieved
the highest performance in terms of overall accuracy,
recall, precision, F1 score, and G-mean on the NSL-KDD
(KDDTest-21) dataset. Moreover, Figures 21 and 23 show
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that SAVAER-DNN achieves the highest detection rate on
two small and important attack classes, such as U2R and R2L.
Since more than half of the U2R and R2L attacks in the test
data set do not appear in the training data set, most of the
well-known classification models are unable to detect U2R
and R2L attacks, except for GaussianNB, which is slightly
better. These well-known classification models are effective
at detecting known attacks, but they have many limitations
in detecting unknown attacks. The proposed SAVAER-DNN
improves the detection performance of known and unknown
attacks by generating training samples of unknown attacks.

Figure 25 shows that SAVAER-DNN has the highest over-
all accuracy, precision, F1 score, G-mean, and FPR on the
UNSW-NB15 dataset, but the overall recall is slightly lower.
KNN, DT, LR, SVM, RF, DBN, and DNN have higher over-
all recalls than the proposed SAVAER-DNN (with 2.81%,
4.27%, 5.29%, 5.12%, 4.91%, 4.69% and 6.22% difference,
respectively), but their other performances are even worse.

4) COMPARATIVE STUDY OF THE
STATE-OF-THE-ART MODELS
In addition, in order to demonstrate the superiority of the pro-
posed SAVAER-DNN, the performance of SAVAER-DNN
is compared with other state-of-the-art intrusion detection
models reported in the intrusion detection literature, includ-
ing S-NDAE (stacked nonsymmetric deep auto-encoders) [7],
SCDNN (spectral clustering and deep neural network) [19],
ID-CVAE (a unsupervised network intrusion detection
method based on a conditional variational auto-encoder) [20],
RNN-IDS (recurrent neural network) [21], ResNet50 [22],
GoogLeNe [22], LSTM4 [24], GRU3 [24], CFBLS (BLS
with cascades of mapped features) [24], SHIA (scale-hybrid-
IDS-AlertNet) [25], Gaussian-Bernoulli RBM [51], Ran-
dom tree+NBTree [52], TSE-IDS (Two-Stage Classifier
Ensemble for IDS) [53], EM Clustering [16], DT (deci-
sion tree) [16], TSDL (two-stage deep learning model) [23],
CASCADE-ANN (a multiclass cascade of artificial neural
network) [54] and AODE (average one dependence estima-
tor algorithm) [55]. To be fair, only detection models using
the same test dataset are selected. Tables 7 to 9 shows the
experimental comparison results in terms of overall accuracy,
DR (detection rate), F1 score, and FPR (false positive rate) on
the NSL-KDD (KDDTest+), NSL-KDD (KDDTest-21), and
UNSW-NB15 datasets.

It can be seen from Table 7 that the proposed SAVAER-
DNN on the NSL-KDD (KDDTest +) data set reaches
better classification performance in terms of overall accu-
racy, DR and F1 score than some of the existing state-of-
the-art detection models, but the FPR is slightly worse. The
RNN-IDS approach proposed in [21] obtains a better FPR
than SAVAER-DNN (only with 1.26% difference), but it has
worse overall performance in terms of accuracy, DR and
F1 score than SAVAER-DNN.

Table 8 shows that SAVAER-DNN outperforms all other
state-of-the-art models on the NSL-KDD (KDDTest-21) data
set in terms of overall accuracy, DR, and F1 score, but its

TABLE 7. Comparison results (%) of SAVAER-DNN with the
state-of-the-art methods on the NSL-KDD (KDDTest+) dataset (N/A
means no available results, * Ranked first, ** Ranked second).

TABLE 8. Comparison results (%) of SAVAER-DNN with the
state-of-the-art methods on the NSL-KDD (KDDTest-21) dataset (N/A
means no available results, * Ranked first, ** Ranked second).

TABLE 9. Comparison results (%) of SAVAER-DNN with the
state-of-the-art methods on the UNSW-NB15 dataset (N/A means no
available results, * Ranked first, ** Ranked second).

FPR is slightly higher than TSE-IDS proposed in [53] (with
0.22% difference). SAVAER-DNN has achieved the highest
accuracy of 80.30%.

As can be seen from Table 9, compared with the other
seven classification models, the proposed SAVAER-DNN
has achieved the highest overall accuracy of 93.01%,
DR of 91.94%, and F1 score of 93.54% on the UNSW-
NB15 dataset, but its FPR is slightly higher than TSDL
proposed in [23] by 4.92%. In summary, the above com-
parative experimental results fully prove that the pro-
posed SAVAER-DNN is more effective in detecting network
intrusions.

VI. CONCLUSION
By integrating the power of supervised VAE data genera-
tion and the advantages of WGAN-GP adversarial learning,
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we propose a novel method for generating various unknown
and low-frequent attack samples, called SAVAER. SAVAER’s
decoder is used to generate new attack samples of a specified
label, thereby increasing the diversity of training samples and
balancing the training data set. SAVAER’s encoder is used
to initialize the weights of the hidden layers of the DNN
and automatically extract high-level feature representations
of the original samples. We combine SAVAER with DNN
to propose a hybrid framework for network intrusion detec-
tion, named SAVAER-DNN.We have evaluated the proposed
SAVAER-DNN on the benchmark NSL-KDD (KDDTest+),
NSL-KDD (KDDTest-21), and UNSW-NB15 datasets, and
have obtained promising results. Comprehensive experimen-
tal results demonstrate that SAVAER-DNN can not only
detect known and unknown attacks but also has a better detec-
tion rate on low frequent attacks. Besides, the comparative
experimental results on the UNSW-NB15 dataset indicates
that SAVAER-DNN is suitable for detecting complex net-
work attacks. It has achieved the highest overall accuracy
of 93.01%, the highest overall DR of 91.94% and the highest
overall F1 score of 93.54% on the UNSW-NB15 dataset.
Since the proposed SAVAER has highly competitive results
compared with the state-of-the-art models, it may be a com-
petitive candidate for network intrusion detection.

In future research, we plan to introduce other intelligent
generation algorithms, such as TD-VAE (Temporal Differ-
ence VAE) [28] and VQ-VAE-2 (a two-level hierarchical
Vector Quantised Variational Auto-Encoder) [56], to improve
the proposed model to generate and detect attacks more
efficiently.
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