
SPECIAL SECTION ON HUMAN-DRIVEN EDGE COMPUTING (HEC)

Received February 2, 2020, accepted February 18, 2020, date of publication February 28, 2020, date of current version March 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2977130

A Location and Optimal Coverage Based Filtering
Scheme in Wireless Sensor Networks
ZHIXIONG LIU, HUI YE , AND FANGMIN LI
School of Computer Engineering and Applied Mathematics, Changsha University, Changsha 410022, China
Hunan Province Key Laboratory of Industrial Internet Technology and Security, Changsha University, Changsha 410022, China

Corresponding author: Hui Ye (csuleo@foxmail.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61772088, in part by the Natural
Science Foundation of Hunan Province of China under Grant 2019JJ40326, in part by the Excellent Youth Project of the Educational
Department of Hunan Province of China under Grant 18B410, in part by the Project of the Educational Department of Hunan Province of
China under Grant 19C0171, in part by the Hunan Province Key Laboratory of Industrial Internet Technology and Security under Grant
2019TP1011, and in part by the Changsha Science and Technology Plan under Grant kc18099013.

ABSTRACT Injected false reports by attackers bring fateful consequences in wireless sensor networks,
i.e., wasting the limited batteries of nodes and misleading the decision making of users. Existing security
designs mainly attach some extra fields by a group of sensing nodes after the pure data, and check the
correctness of attached MACs (Message Authentication Codes) in the process of report forwarding, each of
which represents the agreement of sensors on the report, thus to drop the ones which failed onMAC checking.
They cannot recognize the reports forged by t arbitrary compromised sensors collaboratively; the variable t is
a security parameter. Furthermore, failures of reporting usually occur in sparse regions for lacking of enough
detecting sensors, which is incurred by the complicated deploying region and the adopted random deploying
strategy. This paper proposes a Location and Optimal Coverage based Filtering scheme (LOCF). It first
derived the optimal coverage degree 1 by considering both the network size and covering efficiency, and
then employed covering algorithm to deploy sensors accordingly. Each deployed sensor has to dispense its
location to downstream sensors, through which sensors are bounded with locations. A report for the observed
event must attach t endorsements along with locations of detecting sensors. In the forwarding process,
intermediate sensors evaluate the correctness and rationality of both MACs and locations. Simulation results
demonstrate that LOCF outperforms existing works in terms of covering effectiveness, filtering efficiency
and compromise robustness.

INDEX TERMS Wireless sensor network, injected false reports, optimal coverage, location, compromise
robustness.

I. INTRODUCTION
Wireless sensor network (WSN) is usually composed of a
large quantity of sensor nodes which deployed in unattended
environments, and plays core roles in a huge amount of
scenarios, such as intrusion detection, target tracing, farm
automation, etc. [1], [2]. For the fact that only being equipped
with limited batteries and weak protecting abilities, sensor
nodes are easily compromised by attackers, resulting in leak-
age of all stored secret information. The attacker can manip-
ulate these secrets to forge reports, thus to deceive the user
and also waste the limited resources of the sensors [3]. Even
worse, sensors located not adjacent can forge reports together,
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and this behavior is considered illegal in actually deployed
networks [4].

To resist the injection of faked reports, several security
designs [7]–[18] have been proposed in the last years. The
common idea of them is to share symmetric keys among sen-
sors, or establish associated relationship between sink and the
other nodes, and rely on forwarding sensors to authenticate
the attached MACs in the reports, thus to filter out the faked
ones with invalid MACs in a probabilistic manner en-route.

However, two defects reduce the efficiency of these
schemes severely. First, MAC checking cannot recognize the
reports faked by t compromised sensors, thus sensors located
not adjacent are able to launch conspiratorial attacks. Sec-
ond, sparse areas are normal in actually deployed networks
due to complex environment and other factors, and events
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FIGURE 1. Conspiratorial attacks and sparse covering.

occurred in such places are easily failed of reporting for the
reason of lacking t detecting sensors. As depicted in Fig. 1,
assuming that t = 5 and sensors S1, . . . , S5 are controlled by
the attacker. Obviously, these sensors can be abused to fake
reports together escaping the checks of existing schemes. And
we also observe that only three sensors coveringB; as a result,
events occurred near B cannot be reported successfully.
To solve the above mentioned problems, we propose a

LOCF schemewhich guarantees the covering requirements of
the monitoring region through an optimal covering algorithm,
and resist the conspiratorial attacking behavior of sensors in
arbitrary areas by checking the logic of locations. Theoretical
analysis and simulations verified the performance shifting
than existing mechanisms. The main contributions of this
paper are summarized as follows:

First, through the exchange of locations among sensors
after deployment, the relationship between sensors and loca-
tions are established, and sensors located nonadjacent are not
able to forge reports together which sneaking through the
intermediate verification successfully. As a result, after being
captured, the damage scope of sensors are limited in their
local areas. Experiments show that with ten sensors captured,
there is only 3.2% of the forged reports escaping the security
checking of LOCF, while a huge fraction (92.8%) of forged
reports are unrecognizable in existing schemes.

Second, the optimal covering degree 1 is derived from
covering efficiency and overhead of the network. Compared
with random deployment, 1 covering strategy guarantees
much better covering performance on t-threshold based fil-
tering mechanisms. Further analysis and simulation results
illustrate that, in situation of 2t covering degree, the proba-
bilities in 1 covering and random deployment to guarantee
t-threshold based covering are 80% and 2.6%, respectively.
The rest part of the paper is organized as follows. Related

filtering schemes and covering algorithms are introduced
in Section II. The derivation of optimal covering degree is
illustrated in Section III. Detailed design of the proposed
LOCF scheme is presented in Section IV. We evaluate the
performance of LOCF in Section V. Simulations are shown
in Section VI. Finally, Section VII is the conclusions.

II. RELATED WORK
Existing filtering mechanisms mainly adopt symmetric key
technique [7]–[14] or public key infrastructure [15]–[17] to
encrypt and verify reports. For reason that mainstream sen-
sors only equipped with limited battery and computational
abilities, symmetric key based methods may be more appli-
cable than public key based ones [5], [6]. Fan et al. [7] firstly
investigated false data injection problem and proposed a
probabilistic en-route verifying scheme (SEF). It equips each
sensor with a group which is used to generate endorsement
for the reports. For the fact that the number of groups is much
less than the number of nodes, each group would be shared by
a group of nodes. As a result, MACs generated by detecting
sensors may be verified by downstream sensors with the same
group. However, the relationship between number of groups
and size of the network is not investigated in the scheme.

Yu et al. [8] presented a grouping-based mechanism
(GRSEF), which divides sensors into exactly t groups rather
than n groups in SEF (n > t). Grouping method is achieved
through multiple axes based keys distribution. It elimi-
nated redundant groups thus improved the filtering efficiency
greatly; however, the robustness to tolerate sensors failure
is weakened than existing schemes. GRSEF also provides a
feasible solution for filtering false data in situations of mobile
sinks.

Yu et al. [9] presented an overhead balanced scheme
(DEFS). Along multiple fixed paths, keys are distributed
through the so-called Hill Climbing method. In this method,
the number of keys distributed is inversely proportional to
distance between source sensor and forwarding sensor. Con-
sequently, overhead of sensors can be balanced to a certain
extent. However, fixed paths are fragile to dynamic topology
of sensor networks.

Bashir et al. [10] proposed a ERFS scheme to filter out
RFID copies in sensor networks. The authors argue that
redundant copies shorten the lifetime of the network during
forwarding such useless information. Differ to related RFID
copy filtering schemes which check copies in BS, ERFS per-
forms copy detecting by cluster heads. However, the cluster
based organization is unsuitable for the situation when event
happens among multiple clusters.

Dobrev et al. [11] proposed a OARB scheme with the help
of rotating and bean sensors. It aims to detect the intruder
within some fixed period under the assumption that intruder
is moveable and appears everywhere. Minimum number of
rotating sensors and beam sensors are used to monitor attack-
ing behavior on the path from cluster head to sink. It performs
well in optimal networks, but is hard to be extended to regular
networks with constrained capabilities.

Li et al. [12] presented a voting mechanism based filtering
algorithm called PVFS. In the scheme, each intermediate
node uses the probability of di/ d0 to store the authentication
key for a node within the source cluster, and verifies the
votes carried in the report during forwarding. Here di and
d0 mean the distance between source cluster to sink, and
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the distance between forwarding cluster to sink, respectively.
Based on PVFS, Su et al. [13] utilizes context-aware architec-
ture (CAA) to analyze sensing data, and then sends decision
message to ordinary nodes. Guan et al. [14] judges the con-
fidence of information through the residual signal generated
by the estimators. However, the deploying cost of CAA and
estimator is high, and the locating accuracy is inefficient in
both of them.

Yang et al. [15] proposed a public key technique based
scheme (CCEF). Differ than in symmetric key based
schemes, it first shares a pair of public keys between each
sensor and sink, and then verify reports on forwarding sensors
through a witness key. Wang et al. [16] adopted elliptic curve
cryptography technique to amend CCEF. Ayday et al. [17]
employs the idea of random network coding to verify reports.

On sensor network covering, Wei et al. [18] raised
a dynamic mechanism called DCA, which implements
trans-regional coverage through adapting the geometric
boundaries to the overlapping region. Moreover, multiple
sensor nodes are scheduled synchronously utilizing the Cen-
tralized Voronoi Tessellation theory. This algorithm is able to
achieve high covering efficiency.

Gil et al. [19] proposed a solution for a special NP-
complete problem:Maximum Set Covers for DSNs (MSCD),
and also presented a node dispatching method for target
coverage, which takes use of genetic algorithm to seek out the
optimal collection of covers, thus to prolong the monitoring
life cycle of the network.

Bara’a et al. [20] modeled the MSCD problem, and then
constructed a kind of energy-efficient sensor network to pro-
vide stable covering performance. The algorithm can fur-
ther enhance the reliability of the generated set cover by a
post-heuristic step.

As can see above, without checking the legitimacy of posi-
tions, existing filtering mechanisms fail to resist collusion
attacks; and sensor coverage required by t-based authentica-
tion is not regulated in them which reduced the applicability
of these algorithms. In this paper, we commit to find a solu-
tion to cope with these problems simultaneously.

III. OPTIMAL COVERAGE DEGREE
As discussed before, random deployment method forms some
sparse areas in actual deployed networks and thus is not
suitable for false data filtering.We adopt a covering algorithm
to deploy sensors. For simplicity, the covering of at least
t groups simultaneously is noted as t−k cover; For some
covering algorithm with covering degree 1, the probability
of t-k cover is noted as p1(t, . . . , n), here n is total number of
groups.
Definition 1: Given the covering expectation threshold θ

and increment threshold ε, here 0< θ <1, 0< ε <1.
Assume that all sensors in the network are deployed accord-
ing to some kind of covering algorithm. With 1 increasing,
if (p1(t, . . . , n)−p1−1(t, . . . , n) ≥ ε) and (p1+1(t, . . . , n)−
p1(t, . . . , n) < ε) under the condition that p1(t, . . . , n) ≥ θ ,
we say 1 is optimal.

Here the parameter θ is set to guarantee that the covering
degree is large enough, thus to meet the requirements of
t-based filtering. The selection of θ is a trade-off between
energy cost and filtering ability. A larger θ brings a bigger t-k
cover probability required by the filtering algorithm; while it
also incurs a larger energy cost resulted by a higher covering
degree. Only if the covering degree meets the requirement
limited by θ , we then start to seek out the optimal covering
degree. The criteria is that, given a threshold ε, (it should
be small enough), with the increment of the covering degree,
if the increment of t−k cover probability is not larger than ε,
we treat the covering degree 1 as the optimal covering
degree. That is because with the increment of 1, the t−k
cover probability only has a small increment while the energy
consumption can be increased considerably. The selection
of ε is similar to θ .
Theorem 1: Assuming each sensor randomly selects one

from n groups. The probability for getting t different groups
for totally 1 sensors is

p1(t, . . . , n) = 1−

t∑
m=1

C(n,m)C(1− 1,1− m)

C(n+1− 1)
(1)

Proof: Note B1 as the collection of 1 nodes, and B2
as the collection of n groups. There are C(n + 1 − 1,1)
combinations for each element in B1 maps one group in B2
randomly. And there areC(n, t)C(1−1,1−t) combinations
for t sensors holding different groups. So, the probability of
t sensors holding different groups is

p1(t) =
C(n, t)C(1− 1,1− t)

C(n+1− 1,1)
(2)

The probabilities for each sensor to hold 1, . . . , t-1 groups
can be calculated in the same way. Therefore, the probability
for each sensor to hold at most t groups can be computed as

p1(1, . . . , t) =

t∑
m=1

C(n,m) · C(1− 1,1− m)

C(n+1− 1,1)
(3)

Thus the probability of holding at least t groups is
p = 1− (p1(1)+p1(2)+. . .+p1(t)).
On the one hand, the covering degree could not be too

small so as to guarantee the effectiveness of t−k cover; on
the other hand, it could not be too large to avoid incur-
ring huge energy cost for energy constrained sensor net-
works. As a result, a suitable covering degree should be
selected to meet the aforementioned two requirements simul-
taneously. The following is to derive the optimal covering
degree.
Theorem 2: Assuming sensors are deployed according

to some kind of covering algorithm, and each data report
is attached with t MACs. Let ε be 0.05, and θ be 0.8,
we say 1 =2t is the optimal covering degree for t-based
filtering.
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FIGURE 2. Theoretical and simulation results of covering probability.

Proof: According to theorem 1, we get,

P1+1(t) =
C(n, t) · C(1,1+ 1− t)

C(n+1,1+ 1)

=
1 · (1+ 1)

(1+ 1− t) · (n+1)
P1 (4)

As n is larger than one, when t = 1, we can get the
following equation,

P2(t) =
C(n, 1) · C(1, 1)
C(n+ 1, 2)

=
2

n+ 1
≤ 0.8 (5)

We assume that Equation 4 is right under the condition of
t = k , then in the case that t = k+1, we can get,

P2(k + 1) =
C(n, k + 1)C(2k + 1, k + 1)
C(n+ 2k + 1, 2k + 2)

=
4(n− t)(2t + 1)2

(t + 1)(n+ 2t + 1)(n+ 2t)
P2t (6)

Obviously,there is,

4(n− t)(2t + 1)2

(t + 1)(n+ 2t + 1)(n+ 2t)
≤ 1 (7)

Consequently, we get P2(k + 1) ≤ P2(t) ≤ 0.8.
Using derivative methods, in case that 1 ≥ 2t , there is
In(1 + 1,1) ≤ 0.05 = ε. In the similar way, we can
compute In(1,1 − 1) ≥ 0.05 = ε. From the above we
know, for the corresponding covering algorithm, only when
its covering degree 1 equals to 2t , it is the optimal one for
t-based filtering.
For simplicity, we investigate the changes of p according to

1 by treating both of the number of groups n and the system
threshold t as constants. Fig. 2 illustrates the mathematical
and experimental curves of p when t = 5, n = 10, θ =
0.8, and ε = 0.05. The experimental values are averaged
on 500 randomized experiments. From the curve we know,
when 1 < 2t , with the increasing of covering degree, p
increases quickly. For example, when the covering degree
increases from seven to eight, the increment of p is 0.02
(larger than ε). While when 1 >2t , p can only get a small

increment according to the increase of covering degree, e.g,
the increment of p is 0.04 < ε when the covering degree
increases from 11 to 12. Therefore, both theoretical analysis
and experimental results show that 1 = 2t is the optimal
covering degree.

IV. THE LOCF SCHEME
LOCF includes four stages: network initialization, Event
reporting, intermediate verification and sink authentication.
For faked reports escaping from verification successfully,
sink executes the final judgement. As the sink guarding phase
is almost the same as in existing en-route verification strate-
gies, we are going to omit this here.

A. NETWORK MODEL AND ATTACK MODEL
The target network considered in this paper includes a huge
amount of ordinary sensors, which are all not equipped with
anti-tamper devices. The sensing and transmission radii of
ordinary sensors are denoted as rs and rc, respectively. These
battery-powered sensors only have weak capabilities on com-
puting, transmission and self-protection. As a comparison,
the sink node has ample energy and powerful data processing
ability. As the ultimate guard of the security design, sink is
able to detect out all faked reports through the full knowledge
of all secrets.

We assume that the sensors are intensively deployed,
so that each area is usually covered by a group of sensors
simultaneously. But sparse regions are also common in some
complicated terrain. After detecting an event, the sensor with
the strongest signal (called SS) on this event among all
detecting sensors is selected as the represent to generate a
data report. We assume that all other detecting sensors can
communicate with the SS using transmission radius rc. The
SS summarizes all the detecting results and synthesizes a
legitimate report, which is then forwarded to sink through
traversing several hops.

We assume that sensor network has a short safe bootstrap-
ping phase after network deployment, during which sensor
nodes are safe (attackers cannot compromise them) to dis-
tribute keys, locations and neighbor information. After the
bootstrapping phase, the adversary can compromise multiple
sensor nodes, obtain their security information and take full
control of them. We further assume that the attacker cannot
compromise the sink. In this paper, we focus on collaborative
false report injection attacks [1], [20], i.e., a group of compro-
mised nodes from different geographical areas inject forged
data reports into the network; however, if the adversary has
compromised enough nodes within a circular area with radius
rs, it is able to launch various kinds of attacks to ruin the
network completely, which is out of the scope of this paper.

B. NETWORK INITIALIZATION
Before being deployed, each sensor takes k keys from a group
including m keys randomly (k < m). There are totally n
groups with equal size divided from N keys. All sensors
are then deployed according to the covering algorithm DCA
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presented in [18]. According to Theorem 2 proved in section
III, we set the covering degree to 2t here.
After deployment, the localization algorithm SPAWN pre-

sented in [21] is adopted to obtain sensors’ positions. We use
Li:(Xi, Yi) to denote the position of Si, here Xi and Yi are x
coordinate and y coordinate of the sensor, respectively. Then,
c pieces of package (Si, Li,Ui) are disseminated through mul-
ticast algorithm [22], in which seeds are distributed uniformly
to each sensor with a probability of c/ Na, whereUi marks the
group index in Si, and Na denotes the size of the network.

The parameter c affects the filtering efficiency and security
performance. In the extreme situation that c is zero, the
defending ability of LOCF is equal to SEF. For caching
positions of other sensors, some more storage overhead is
needed. For example, assume a key occupies 64bits and a
position occupies 10bits, then we need 1KB to cache 100keys
and 100positions. This is affordable in mainstream sensors
equipping with 128KB ROM [19].

C. EVENT REPORTING
WSN is usually deployed to monitor some kind of physi-
cal signal and generate reports in some fixed period. When
there is the need to report an event, several detecting sensors
collaborate with each other in the following manner. First,
the representative sensor SS calculates the position of the
event Le through three anchor sensors. Second, SS sends its
detecting value to t−1 one hop neighbors, which are selected
randomly. Third, each designated neighbor produces a MAC
for the signal if the received value matching with the value
of its own; other, event reporting fails. The produced MAC
is then sent to SS as the endorsement of the event. Finally,
SS synthesizes the information of t detecting sensors and
produces a report as: {E , Le; Te; MACi1, MACi2, . . . , MACit ;
Lj1, Lj2, . . . , Ljt}, here MACi = Ki(e), which is produced by
key Ki, it and jt denote index of the key and ID of the sensor,
respectively.

D. INTERMEDIATE VERIFICATION
In the route of forwarding report R to sink, the intermediate
sensor first executes regular verification, i.e., whether the
report carried enough needed information: t different groups,
t sensor IDs, t MACs and t positions. If any of the attached
information is inadequate, the forwarding is abandoned. Then
the sensor verifies whether all these positions included are
rational according to the equation dis |Le, Ljt | ≤ rs, here
rs is the sensing radius, and dis |Le, Ljt | represents the dis-
tance between the stimulus and detecting sensor. If dis |Le,
Ljt | > rs, the position Ljt is treated as irrational and the
forwarding is also abandoned. Next, the sensor has to check
the validity of positions and MACs in the report. It traversals
all attached positions and cached ones, and executes consis-
tency checking. Moreover, it also traversals all attached key
indexes and cached ones, and carries out the verification as
follows: produces a new MAC using its cached key, and see
if the result matches the corresponding one attached. When
the verification checks, the forwarding is abandoned and the

report is dropped. There are also situations that the sensor
cannot execute correctness checking of positions and MACs,
i.e., the stored information is other than the attached infor-
mation. In this case, the sensor forwards the report to next
hop. If all verification passed, the report is also forwarding to
next sensor. The pseudo-codes for intermediate verification
is given in Algorithm 1.

Algorithm 1 Intermediate Verification in LOCF
//∗ on obtaining the data report R∗//
1. Verify whether t pieces of {ik , Mik} blocks attached in

R; abandon forwarding otherwise.
2. Verify whether the t indexes {ik , 1 ≤ k ≤ t} come from

different groups; abandon forwarding otherwise.
3. Verify whether t pieces of {jk , Ljk} blocks attached in R;

abandon forwarding otherwise.
4. For each attached Ljk , check equation dis |Le, Ljk | ≤ rs;

abandon forwarding otherwise.
5. If cached a position L for some detecting sensor, it check

the consistency of the two positions; abandon forward-
ing otherwise.

6. If cached a key K for some attached MAC, it check the
consistency of the two MACs through re-producing and
comparison; abandon forwarding otherwise.

7. Send R to the next hop.

E. SINK AUTHENTICATION
The sink is the only node in this deployed network with
strong capabilities on computation, transmission, storage and
self-protection. Thus it is reasonable for sink to execute as
the final guard for the filtering mechanism. Upon receiving
the final report, the sink node can authenticate all attached
information in the report. That is because it possesses all keys
and locations of all nodes. At first, sink execute the ordinary
check of the number of MACs and locations, and then also
verify the correctness of each MAC through re-computing
and comparison. It also has to check the correctness and
legitimacy of all locations carried in the report. Only when
all authentications passed, the report is accepted by the sink.
Finally, the sink needs to respond to themessage carried in the
report according to some predefined rules, which is out of the
scope of this paper. The pseudo-codes for sink authentication
is shown in Algorithm 2.

V. PERFORMANCE EVALUATION
A. COMPROMISE ROBUSTNESS
LOCF first validates the correctness of all MACs in the report
as existing mechanisms, and then judges the rationality of
positions of all detecting sensors. Hence, arbitrary sensors
captured cannot be abused to forge irrational reports. Con-
sidering the conspiratorial attack in Fig. 3, here we assume t
is five and the attacker has captured five sensors S1, . . . , S5
with different key groups. If a forged report R is like this:
{e, Le, Te; Mi1, Mi2, . . . , Mi5; Lj1, Lj2, . . . , Lj5}, then R will
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Algorithm 2 Sink Authentication
//∗ on obtaining the data report R∗//
1. Verify whether t {ik , Mik ; jk , Ljk} blocks attached in R;

if not, reject the data report.
2. Verify whether the t indexes {ik , 1 ≤ k ≤ t} come from

different groups; if not, reject the data report.
3. Check each attached location according to equation dis
|Le, Ljk | ≤ rs; reject the data report otherwise.

4. Check the correctness of each attached location accord-
ing to the prior knowledge, reject the data report other-
wise.

5. Authenticate the correctness of each attached MACs
through re-producing and comparison; if outmatches
occurs, reject the report.

6. Accept and respond to R.

FIGURE 3. Resisting conspiratorial attack.

be judged as irrational by forwarding sensors quickly. For
the interval between S1 and S3 is too bigger (≥2rs), there is
no way to construct dis |Le, L1| ≤ rs and dis |Le, L3| ≤ rs
simultaneously.

To fake a report which can sneak the verification of LOCF
successfully, the attacker should obtain t different groups
within some πr2s region. Only in this situation, can it forge
t rational positions and t correct MACs.
Theorem 3: In LOCF, after compromising Nc sensors ran-

domly (Nc ≥ t) in the monitoring region with size D, the
probability for the attacker getting at least t different groups
within some πr2s region is

pL =
Nc∑
i=t

A(i, n)
C(i,Nc) · (πr2s /D)

i
· (1− πr2s /D)Nc−i

ni
(8)

Proof: Note the πr2s region as D0 in Fig. 3. Each sen-
sor lies in D0 with probability p0 = πr2s / D. Then the
probability of t sensors lying in D0 can be computed as
pu = C(t,Nc)pt0(1− p0)

Nc−t . And each of these sensors has
probability pr = A(i, n)/ nt to hold a different group. Thus t
different groups lying in D0 with probability prpu.

The probability that the attacker holding exactly
t + 1, . . . , n groups in D0 can be calculated in the same way
as holding t groups. As a result, the probability pL can be
calculated through accumulation.

The SEF scheme is a basic framework for most of previous
filtering mechanisms, so it is reasonable to be taken as a refer-
ence on performance evaluation of LOCF. Fig. 4 compares the
analytic and experimental curves pS and pL as the parameters
t , D0/ D and n are set to 5, 1/4 and 20. Here pS is the
probability to ruin SEF according to Eq. 1. The experimental
curves are averaged over 500 runs. From Fig. 4 we know, SEF
can be ruined quite possibly only with little captured sensors.
But a huge amount of captured sensors are necessary to ruin
LOCF with a big probability. For example, the probabilities
for SEF and LOCF to be ruined by 10 captured sensors
are 0.928 and 0.032, respectively. Thus, both analysis and
experiments show LOCF exhibits better robustness than SEF
on sensor compromise.

FIGURE 4. Analytic and experimental curves of pS and pL.

B. FILTERING ABILITY
In situation that totally Nc (Nc < t) sensor nodes within a
πr2s region are captured by the attacker, a forged appear-
ingrational report should carry exactly t-Nc faked MACs and
t-Nc faked positions. Thus an intermediate sensor node has
probability to verify one of the faked MACs as pa = (k/m)
(t-Nc)/n = k(t-Nc)/N .
And the probability that Si possesses one of the faked

locations is pb = 1−(1−c/Nc)t−Nc. LetP1 bePa+Pb−PaPb,
then the portion of detected reports in h hops is computed as
ph = 1 − (1 − p1)h. As a result, the transmitting hops for a
faked report is

H =
∞∑
i=1

p1 · i(1− p1)i−1 (9)

C. ENERGY COST
The energy cost of LOCFmainly includes four aspects: (1)the
communication cost on sensors deployment according to cov-
ering algorithm and position dissemination during initializa-
tion; (2)the communication cost among all detecting sensors
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on collaborated reports production; (3)the computation cost
of verification; (4)the communication cost on transmitting
reports.

As the authors in [13] pointed out, compared with the
energy cost on transmitting reports, the cost of MAC calcu-
lation, transmitting short packages among detecting sensors
on reports production and position dissemination are much
smaller, thus they are omitted on the following analysis. Note
the size of a pure report as Ie, the size of sensor ID as
Is, the size of position as Ip, and the size of MAC as Im,
respectively. Then, the size of reports in LOCF and SEF is
Ie0 = Ie + Ip + t(Is + Ip+ Im) and Ie1 = Ie + t(Is + Im),
respectively. Obviously, compared with SEF and the other
derivative en-route filteringmechanisms, the redundant infor-
mation incurred in LOCF increases certain transmitting cost,
but it is rational for bringing extra ability on defending con-
spiratorial attacks. Further, the proposed LOCF also reduces
cost through the quick filtering of faked reports, which is
going to be verified in the simulation results part.

VI. SIMULATION RESULTS
To further test the effectiveness of the proposed LOCF
scheme, we construct an experimental platform using Python
and C++ language. Due to limited space, we only evaluate
the performance on t − k cover effectiveness, compromise
robustness, filtering capacity and energy cost, under the sit-
uation that c = 25, 50, θ = 0.8, and ε = 0.05. The
simulated environment is illustrated as below. In the given
50× 50 m2 region, 500 sensors are deployed: (1) uniformly;
(2) according toDCA covering algorithm. A sink and a source
node locate in two ends of the region. The data transfer time
for each report is set at 10ms. For both SEF and LOCF, we use
20 groups each of which containing 15 keys. The averaged
keys cached by each sensor is set at seven, and other settings
of parameters are illustrated in Table 1. All results are mean
value for 15 tests.

TABLE 1. Variables setting.

We choose four representative sensors, S1, S2, S3 and S4
whose coordinates are (0, 50), (25, 50), (25, 25) and (35,
35) respectively, to compare the t−k cover effectiveness of
two deployment strategies: random deployment and DCA
covering algorithm. From Table 2 we can see that using
random deployment, there are only small amounts of t−k
covers of the selected four sensors, while with DCA covering
algorithm, the number of t−k cover is much larger that

TABLE 2. Comparison of t−k cover.

FIGURE 5. t−k cover changes with deployed sensors.

random deployment do. For example, for the two boundary
sensors, there are only three t−k covers in random deploy-
ment, compared with 43 t−k covers in DCA.
Fig. 5 shows the change of t−k cover according to the

number of deployed sensors in the network. From Fig. 5 we
get the following observations: (1) when deployed small
amounts of sensors, both the performance on t−k cover of
random deployment and DCA is weak. For example, with
200 deployed sensors, the t−k cover probabilities of them
are only 6% and 4%, respectively. This is because small
deploying density usually leads to bad covering effectiveness;
(2) According to the increase of deployed sensors, t−k cover
effectiveness of random deployment increases slowly, e.g.,
there is only an increment of 3% of the covering probability in
random deployment from 200 deployed sensors to 400.While
under the same situation, there is a big increment of 86%
of t−k cover effectiveness in DCA. The reason is that some
sparse regions (with less than t sensors with different groups
covered) in the network formed through random deployment
but not in DCA.

Fig. 6 plots how f changes according to Nc, here f is a
filtering metric which means the additive reports abandoned
during forwarding. From Fig. 6 we know: (1) LOCF performs
better than SEF in compromise robustness. The number of
captured sensors that SEF, and LOCF can resist is 12 and
130, respectively. (2) With Nc increasing, the filtering effi-
ciency of SEF declines rapidly, while in LOCF it declines
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FIGURE 6. Filtering efficiency changes with Nc.

FIGURE 7. Proportion of abandoned reports changes with hops.

gracefully. The reason is that LOCF can limit the conspired
destructiveness of compromised nodes through the bounding
of sensors and locations. (3) The filtering efficiency in LOCF
is much better than SEF with a fixed Nc. Take Nc = 10 as an
example, f gets the value of 21 in SEF, 38 in LOCF (c = 25),
and 75 in LOCF (c = 50), respectively. (4) The parameter c
has a positive linear relationship with filtering efficiency.

Fig. 7 shows the proportion of abandoned reports changes
with the forwarding hops H . From Fig. 7 we observe that as
being forwarded further, the proportions of dropped reports
are getting larger gradually both in SEF and LOCF. And
within some fixed hops, LOCF exhibits better filtering perfor-
mance than SEF. Take H = 5 for instance, the percentage of
dropped faked reports is 24% in SEF, 66% in LOCF (c = 25),
and 78% in LOCF (c = 50), respectively. This is because
that LOCF can drop more faked reports than SEF through
additional location rationality checking.

Fig. 8 illustrates how energy cost E changes with the
number of compromised sensors Nc. From Fig. 8 we note
that, LOCF has better energy cost performance than SEF in
most situations. For example, with 30 compromised sensors,

FIGURE 8. Energy cost as a function of captured sensors.

FIGURE 9. Energy cost E changes with H.

the energy cost is 13.4Joules in SEF, 3.9Joules in LOCF
(c = 25), and 2.3Joules in LOCF (c = 50), respectively.
The exception is in situation of four compromised sensors.
The reason for this is that the filtering efficiency of LOCF is
equal to SEF under c = 25 and Nc <4, but the size of packet
in LOCF is larger. Combined with these two factors, LOCF
performs a little weaker than SEF in this situation.

Fig. 9 plots the curves of energy cost along with transmit-
ting hops. From Fig. 9 we get that, when data reports traveling
more than two hops in the network, LOCF outperforms both
SEF and NFFS in energy cost for the earlier filtering of
faked reports. This is because SEF and NFFS only verify
the attached MACs thus is weaker in filtering efficiency
than LOCF which authenticate additionally the legitimacy of
locations in the report.

VII. CONCLUSION
Faked reports injection is one of the critical threat in wireless
sensor networks, which depletes the constrained energy of
nodes and deceives users on decision making easily. Existing
MAC verification based security designs cannot defend con-
spiratorial attacks by a group of captured sensors, and also
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fails to regulate sensors coverage required by t-based authen-
tication. The novel solution in this paper is first to deploy sen-
sors through deriving the optimal covering degree rather than
the random deployment method adopted in almost all existing
mechanisms, and then verify both the validity of attached
MACs and positions of detecting sensors, and the rationality
of positions. Analytic and experimental results demonstrate
that LOCF is able to defend conspiratorial attacks efficiently
and guarantee t−k cover with a high probability. As for next
step, we are going to study the case of multiple sinks and seek
a way to extend the results to protect data security in internet
of things.
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