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ABSTRACT Massive multiple-input multiple-output (M-MIMO) is one of the key ingredients in the
upcoming 5G technology. The benefits associated with M-MIMO rely largely on the accuracy of channel
state information (CSI) available at the base station (BS). The existing literature mostly employs pilot-aided
schemes which require additional pilots for improving their CSI accuracy; additionally, pilot contamination
degrades their performance to a large extent. In this paper, we design a Space-Alternating Generalized
Expectation-Maximization (SAGE) based semi-blind estimator for pilot contaminated multi-user (MU)
M-MIMO systems. It utilizes both pilot and a few data symbols for CSI estimation through two stages,
namely initialization and iterative SAGE (ISAGE). We obtain an initial channel estimate with the help
of a pilot-aided linear minimum mean squared error (LMMSE) estimator in the initialization stage. The
acquired initial estimate from the former stage is then iteratively updated by SAGE algorithm with the joint
usage of pilot and a few data symbols in ISAGE stage. The inclusion of data information in ISAGE stages’
estimation process aids in simultaneous improvement of CSI accuracy and spectral efficiency (SE) of a
M-MIMO system; which is unlikely for a pilot based estimation scheme. Through simulations, we show
that our estimator obtains a considerable improvement over the existing pilot-aided schemes in terms of
mean squared error (MSE), bit error rate (BER), SE, and energy efficiency (EE) at a nominal increase in
complexity. Besides, on average, it achieves convergence in almost two iterations. We also derive modified
Cramer-Rao lower bound (MCRLB) to validate the estimation efficacy of our estimator. We evaluate a
closed-form expression for lower bound on UL achievable rate of MUM-MIMO systems under both perfect
and imperfect CSI scenario. We also discuss the trade-off between SE and EE.

INDEX TERMS Massive MIMO, semi-blind estimator, SAGE, modified CRLB, pilot contamination.

I. INTRODUCTION
Massive MIMO (M-MIMO) is an integral part of the upcom-
ing 5G system [1], [2]. It is a large scale version of regu-
lar MIMO [3] which obtains the benefits such as increased
data rate, energy efficiency (EE), interference reduction on a
massive scale [4]. M-MIMO prefers time-division duplexing
(TDD) over the frequency-division duplexing (FDD) for the
communication between base station (BS) and user terminals
(UTs) [5]. The channel reciprocity assumption of TDD mode
reduces the load of CSI acquisition at both ends but escalates
the importance of channel estimation. In TDDmode, BS uses
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uplink (UL) training session to obtain the channel state infor-
mation (CSI) and uses it for beam-forming, power allocation,
and pre-coding operation during downlink (DL) transmission
session. The UL training session transmits orthogonal pilot
sequences for CSI evaluation. However, the availability of
a finite coherence interval puts a limit on the pilot length.
In view of this, the same set of pilot sequences are used across
all the cells, which causes severe inter-cell interference dur-
ing the UL training session. This phenomenon is known as
pilot contamination [5] which makes CSI acquisition a chal-
lenging task for the practical realization of multi-user (MU)
M-MIMO [2], [4].

Design of a channel estimator for MU M-MIMO is
an interesting area for the research community, and is
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well addressed in [6]–[20]. The propagation channel of
M-MIMO can be modeled by two popular approach,
namely, rich-scattered Rayleigh channel model [14] and
sparsely-scattered geometric channelmodel [15]–[17].More-
over, these prevailing channel models are associated with the
use-cases of M-MIMO systems in Sub 6 GHz and millimeter
wave (mmWave) bands [21], [22]. The measurements at
Sub 6 GHz band advocates Rayleigh based channel model,
whereas the mmWave band uses a geometric channel model.
Since our work concentrates on the favorable propagation
condition of the Sub 6 GHz band, we will discuss the litera-
ture concerning Sub 6 GHz M-MIMO systems. The existing
pilot based channel estimation schemes [6], [7], [9], [11]–[13]
improve CSI accuracy at the cost of increased pilot length
which further reduces system spectral efficiency (SE).
In addition, the availability of limited coherence interval and
pilot contamination degrades the performance of pilot based
schemes to a large extent. These shortcomings have laid the
need of semi-blind [8], [14], [23]–[26] and blind [10] algo-
rithms for CSI acquisition in massive MIMO. A pilot-aided
Bayesian channel estimator is discussed in [7], [11]. Authors
of [8] have proposed a data-aided estimator that uses pilot,
some a priori data information, and partially decoded data for
CSI acquisition. However, the systemmodel uses a simplified
scenario of one user per cell. A least squared semi-blind
estimator is presented in [24], which sequentially detects UL
data of different users in the target cell and formulates a
constrained minimization problem for each user. However,
it suffers from high computational complexity and requires
large UL data in the estimation process. An expectation-
maximization (EM) based semi-blind estimator is proposed
in [26] without considering the effect of pilot contamina-
tion in CSI acquisition. An eigenvalue-decomposition (EVD)
based blind method is reported in [10], which uses the asymp-
totic orthogonal property of channels in large antenna sys-
tems. But, it suffers from high computational complexity.
Recently, a semi-blind scheme is presented in [14] with
relaxed pilot contamination condition. From the literature
survey, we notice that the estimation schemes of [7]–[9],
[11], [12], [14], [26] assume full knowledge of the interfering
cells’ channel covariance matrix. However, this underlying
assumption is impractical and involves huge overhead [6].
In our work, we exclude this assumption.

We propose an iterative space-alternating generalized
expectation-maximization (SAGE) based semi-blind esti-
mator for pilot contaminated MU M-MIMO systems. The
SAGE algorithm is well known for its simple implementation
and faster convergence [27], and are reported for conventional
MIMO systems in [28], [29]. However, they do not address
the multi-cell approach and the pilot contamination issue,
which restricts their direct application on M-MIMO systems.
Additionally, the definition of complete and incomplete data
space in [28], [29] is different from our approach. There-
fore, the implementation of classical SAGE algorithm [27]
for CSI acquisition process in our work is distinct from the
methods of [28], [29]. In this context, our earlier SAGE

algorithm [30] also lacks the consideration of intra-cell user
interference in its system model and is not applicable to a
realistic environment. This proposed scheme utilizes few data
symbols along with the training sequences in CSI acquisi-
tion. The inclusion of data symbols in the estimation process
simultaneously improves the CSI accuracy and the SE, unlike
pilot-aided methods. Also, the impact of pilot contamination
on CSI accuracy decreases with the increased data length
usage in our algorithm, which is not possible in pilot-aided
estimators. Our semi-blind scheme comprises of two stages:
a) Stage-I (Initialization stage)- We obtain the initial channel
estimate with the help of pilot based estimation scheme,
b) Stage-II (Iterative SAGE (ISAGE) stage)- It iteratively
updates the initial CSI estimate of stage-I through the SAGE
algorithm. To our knowledge, this is the first attempt to
design a SAGE-based semi-blind channel estimator in pilot
contaminated MUM-MIMO systems. The key novelty of our
proposed scheme over the existing one is the non-requirement
of full knowledge of interfering cells’ channel covariance
matrix or their users’ large-scale fading coefficients. Hence,
it removes the unnecessary overheads involved with the coor-
dination from the adjacent neighboring cells. We obtain an
estimate for the sum of interfering cells’ large scale fading
coefficients from the received signals and use it in our estima-
tion process. Furthermore, we derive modified Cramer-Rao
lower bound (MCRLB) [31], [32] to determine the estimation
efficacy of the proposed scheme. We also evaluate a theoreti-
cal bound on UL achievable rate, SE, energy efficiency (EE)
and computational complexity of the proposed estimator.
We evaluate the performance of our estimator in terms of
mean-squared error (MSE), bit-error rate (BER), SE, EE,
and complexity order. We compare the results with existing
schemes of [6], [7], [14], [24], [25]. Major contributions of
our estimator are outlined as:
• An iterative SAGE based semi-blind algorithm is
designed for pilot contaminated MU M-MIMO sys-
tems, which simultaneously improves the CSI accu-
racy and SE with minimum pilot length [33]. It obtains
considerable improvement in terms of MSE, BER,
SE and EE from the existing schemes [6], [7]. Fur-
thermore, it reduces the effect of pilot contamination
by increasing the data length used in the estimation
process instead of introducing additional pilots in the
system.

• It obviates the need of a priori knowledge of interfering
cells’ large-scale fading coefficients during the estima-
tion process, and thus removes huge overhead involved
with it. It evaluates an estimate for the sum of the inter-
fering cell users’ large-scale fading coefficients from the
received symbols. This simple technique adds negligible
complexity to the system.

• We derive a MCRLB on the MSE of semi-blind estima-
tors inM-MIMO systems. Through simulations, we note
that our scheme approaches the MCRLB even at lower
signal-to-noise ratios (SNRs) with large BS antennas
and data length used in the iteration stage (i.e., N ′d ).
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• We obtain a theoretical lower bound on the UL achiev-
able rate of M-MIMO systems for maximal ratio com-
bining (MRC) and zero-forcing (ZF) receivers under
perfect and imperfect CSI. The derived lower bounds
are tight for both the receivers, and CSI availability with
the BS. The designed semi-blind scheme approaches the
SE performance of perfect CSI for large N ′d and/or low
SNR. Furthermore, we evaluate a closed form expres-
sion for the SE and EE of the semi-blind estimator.
We also discuss the trade-off between EE and SE for
both perfect and imperfect CSI through numerical and
analytical results.

• We calculate an upper bound on the computational com-
plexity of the semi-blind algorithm in terms of Big O
notation. The complexity order of our scheme is NiN ′d
times higher than the pilot-aided estimator [7], where
Ni denotes the number of iterations needed for con-
vergence. From extensive simulations, we notice that
our scheme requires around two iterations i.e., Ni=2 for
attaining convergence in the given scenarios which
makes the complexity comparable with the existing
pilot-aided methods. In addition, we provide theoretical
proof on the convergence of our algorithm.

The paper is organized into nine sections: Sec. II provides
the system model for pilot contaminated MU M-MIMO.
Sec. III and IV describes the proposed semi-blind estima-
tor and theoretical lower bound on its UL achievable rate,
respectively. Sec. V discusses the trade-off between SE and
EE, whereas MCRLB calculation is given in Sec. VI. The
convergence proof of our scheme is provided in Sec. VII. The
simulation results are shown in Sec. VIII and conclusions are
drawn in Sec IX.
Notations:Matrices and vectors are shown by capital bold

and small bold letters respectively. Re{.}, Im{.}, (.)T , (.)H ,
(.)∗ and E {.} denote real, imaginary, transpose, Hermitian,
conjugate, and expectation operation respectively. Ca×b and
Ra×b, represents complex valued, and real valued matrix,
respectively of size a × b. tr{A}, 0m×n, and In denotes trace
of matrix A, zero matrix of size m × n, and identity matrix
of size n respectively. CN (µ, σ 2) is the complex Gaussian
distribution with mean µ and variance σ 2; O denotes Big-O
notation for computational complexity.

II. SYSTEM MODEL
We consider an MU M-MIMO system, which contains L
time-synchronized cells sharing the same time-frequency-
pilot resources. Each cell of the system consists of one BS
with M antennas serving K single-antenna UTs such that
M � K [7], [8]. We consider an uplink (UL) transmission
session, which uses the same set of pilot sequences for all the
L cells. The unity pilot reuse factor causes pilot contamina-
tion, where CSI of the desired cell gets contaminated from the
channels of L − 1 interfering cells. We assume cell 1 as the
desired cell and remaining L − 1 cells as interfering cells for
simple system formulation. An example of UL transmission
in seven-cell based MUM-MIMO system is shown in Fig. 1.

FIGURE 1. Schematic diagram of a seven-cell (L = 7) based pilot
contaminated multi-user massive MIMO system.

Thus, received signal at the BS of cell 1 (BS 1) is given as

y =
√
EsG1D

1
2
1 x1 +

√
Es

L∑
l=2

GlD
1
2
l xl + w. (1)

Gl ∈ CM×K , and Dl ∈ RK×K are the small-scale and
large-scale fading matrices of wireless channel between BS 1
and users of cell l respectively for l = 1, . . . ,L. The elements
ofGl are independent and identically distributed (i.i.d .) with
CN (0, 1). Moreover,Gl = [gl1, . . . , glK ] where glk ∈ CM×1

denotes channel vector between k th user of cell l and BS 1 for
k = 1, . . . ,K .Dl = diag (βl1, . . . , βlK ) is a diagonal matrix;
βlk denotes the large-scale fading coefficient between k th UT
of cell l and BS 1. Each BS has knowledge of its cell users
large-scale fading coefficients i.e., Dl is known to l th cell BS
only. In (1), xl representsK×1 transmit vector fromK UTs of
cell l. Further,w ∈ CM×1 is the received additive noise whose
elements are i.i.d. with CN (0,N0);N0 denotes noise variance.
Es and

Es
N0

indicate the average transmit power per user and
the SNR at the transmitter side, respectively; for clarity we
term transmit SNR as SNR.

III. CHANNEL ESTIMATION IN MASSIVE MIMO SYSTEMS
The UL session comprises of training and data transmission,
where all UTs of the L cells simultaneously transmit a trans-
mission frame to their respective BSs. The transmission frame
comprises of N (N = Np + Nd ) symbols where Np pilot
symbols are followed by Nd data symbols. We assume the
channel to remain constant over each transmission frame and
vary independently across the frames i.e., quasi-static. Thus,
the received signal at BS 1 is given by

Y =
√
EsG1D

1
2
1X1 +

√
Es

L∑
l=2

GlD
1
2
l Xl +W. (2)

Y =
[
Yp Yd

]
; Yp ∈ CM×Np and Yd ∈ CM×Nd denotes pilot

and data matrices respectively. Similarly, Xl =
[
Xlp Xld

]
∈

CK×N represents transmit matrix from the users of l th cell,
where Xlp ∈ CK×Np and Xld ∈ CK×Nd are the transmit
pilot and data matrices respectively. Besides, we represent
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TABLE 1. Notations list.

Xl =
[
xHl1, . . . , x

H
lK

]H where xlk ∈ C1×N denotes transmit
vector from k th UT of cell l for l = 1, . . . ,L, and k =
1, . . . ,K . The xlk =

[
xlkp xlkd

]
with transmit pilot xlkp ∈

C1×Np and data xlkd ∈ C1×Nd vectors. In addition, we denote
W =

[
Wp Wd

]
as the received noise matrix. For simplicity,

we consider same transmit power for both pilot and data
symbols. The received pilot at mth antenna of BS 1 is given
as

ymp =
√
Esg1mD

1
2
1Xp +

√
Es

L∑
l=2

glmD
1
2
l Xp + wmp (3)

for m = 1, . . . ,M . The glm ∈ C1×K indicates channel vector
between the UTs of l th cell and mth antenna of BS 1. Due
to pilot contamination, all cells use the same pilot set i.e.
Xlp = Xp for l = 1, . . . ,L. Furthermore, the transmit pilot
sequences are known at the BS and maintains orthogonality
within the cell i.e., XpXH

p = NpIK. The wmp represents noise
corresponding to received pilot ymp. The received data at mth

antenna of BS 1 is

ymd =
√
Esg1mD

1
2
1X1d +

√
Es

L∑
l=2

glmD
1
2
l Xld + wmd . (4)

The transmit data matrix Xld are unknown to their BSs
and are independent of each other i.e. E

{
Xl1dX

H
l2d

}
=

Ndδ(l1 − l2)IK where δ(l1 − l2) = 1 for l1 = l2 other-

wise zero; l1, l2 ∈ {1, . . . ,L}. Moreover, E
{
xl1idx

H
l2jd

}
=

Ndδ (l1 − l2, i− j) where δ (l1 − l2, i− j) = 1 for i = j
and l1 = l2 otherwise zero; i, j ∈ {1, . . . ,K }. We consider
E {xlkd (n)} = 0, and E

{
| xlkd (n) |2

}
= 1 for n = 1, . . . ,Nd .

In addition, Yp =

[
yT1p . . . y

T
Mp

]T
, Yd =

[
yT1d . . . y

T
Md

]T ,
ymd = [ymd (1) . . . ymd (Nd )], Xld = [xld (1) . . . xld (Nd )],
and xld (n) = [xl1d (n) . . . xlKd (n)]T ∈ CK×1. The
wmd represents noise corresponding to received and data
vector ymd .

A. IMPACT OF PILOT CONTAMINATION
The phenomenon of pilot contamination arises due to unity
pilot reuse factor and limited coherence interval, which
acts as a bottleneck for the massive MIMO. The effect of
pilot contamination is shown with the help of following
example.

For ease of exposition, we assume single user per cell
(i.e., K = 1) in a L-cell system (3). Furthermore, we employ
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a simple pilot-aided least squared (LS) estimator [7] for CSI
acquisition at BS 1 as

ĝ(LS)1 =
YpxHp
√
Esβ1Np

= g1︸︷︷︸
desired cell

+

L∑
l=2

√
βl

β1
gl︸ ︷︷ ︸

Interfering cells

+
WpxHp
√
Esβ1Np

. (5)

Due to pilot contamination, we note that the estimated chan-
nel vector of cell 1 i.e., ĝ(LS)1 in (5) contains the CSI of
L − 1 interfering cells. Moreover, the impact of inter-cell
interference in CSI estimate ĝ(LS)1 does not diminish with the
increase in BS antennas (M ). This phenomenon is observed
with every pilot based estimators. Thus, pilot contamination
limits the performance of massive MIMO systems to a large
extent.

The above constraint restricts the usage of training
based schemes and advocates the necessity of semi-blind
approach in channel estimation process of pilot con-
taminated MU M-MIMO systems. In view of this,
we present our semi-blind channel estimator in the following
subsection.

B. PROPOSED ITERATIVE SAGE BASED SEMI-BLIND
CHANNEL ESTIMATOR
The designed semi-blind estimator uses known pilot as well
as unknown data symbols for CSI acquisition. It is an iteration
based scheme where the number of iterations (Ni) are kept
fixed to the minimum value needed to achieve convergence.
It consist of two-stages: Initialization and Iteration stage.
The former stage utilizes a pilot based scheme to obtain the
initial CSI estimate which is then passed to the ISAGE stage.
We employ SAGE algorithm in the ISAGE stage to iteratively
improve the initial CSI estimate accuracy with the help of N ′d
data symbols such that N ′d < Nd . The ISAGE stage is also
known as semi-blind stage. The initialization stage uses Yp

whereas ISAGE stage requires Y′ =
[
YpY′d

]
∈ CM×N ′ for

channel estimation; N ′ = Np + N ′d .

Yp =

K∑
k=1

√
Esβ1kg1kxkp +

√
Es

L∑
l=2

GlD
1
2
l Xp +Wp. (6)

Y′d =
√
EsGlD

1
2
l X
′

1d +
√
Es

L∑
l=2

GlD
1
2
l X
′
ld +W′d , (7)

where Y′d =
[
yd (1), . . . , yd (N ′d )

]
∈ CM×N ′d such that

yd (n) = [y1d (n), . . . , yMd (n)]T for n = 1, . . . ,N ′d .
Moreover, the received vector for CSI acquisition at
mth antenna of BS 1 is given by y′m =

[
ympy′md

]
where y′md =

[
ymd (1), . . . , ymd (N ′d )

]
. Similarly, W′d =[

wd (1), . . . ,wd (N ′d )
]
where wd (n) ∈ CM×1 represents noise

vector corresponding to data symbols at nth time instant for
n = 1, . . . ,N ′d .

1) INITIALIZATION STAGE
We use a pilot-aided linear minimum-mean squared
error (LMMSE) estimation algorithm for obtaining the ini-
tial estimate of channel G1 (i.e., Ĝ(0)

1 ) from received pilot
matrix Yp. Thus, the initial estimate of g1k is given as

ĝ(0)1k =
√
Esβ1k

(
L∑
l=1

Esβlk +
N0

Np

)−1
YpxHkp
Np

(8)

for k = 1, . . . ,K . The inverse term in (8) demands the perfect
knowledge of interfering cell’s large-scale fading coefficients
with BS 1, however, this assumption is impractical and incurs
huge overhead. In order to avoid the unnecessary complexity,
we derive an estimate of the inverse term in (8) with the help
of Yp. We define

qk =
YpxHkp
Np

=
√
Esβ1kg1k +

M∑
l=2

√
Esβlkglk +

WpxHkp
Np

(9)

as a M × 1 random vector with E {qk} = 0M×1 and
E
{
qkqHk

}
=

(
Esβ1k +

∑L
l=2Esβlk +

N0
Np

)
IM . By utilizing

the law of large numbers on qk , we obtain

qHk qk
M
→ Esβ1k +

L∑
l=2

Esβlk +
N0

Np
(10)

for M →∞. By replacing the inverse term of (8) with (10),
the initial estimate of g1k results in

ĝ(0)1k =
√
Esβ1k

(
qHk qk
M

)−1
qk . (11)

2) ITERATION STAGE
It uses a SAGE based semi-blind estimator to iteratively
update the initial CSI estimate Ĝ(0)

1 . For CSI acquisition,
we denote

{
Y′
}
and

{
Y′,X′1

}
as incomplete and complete

data space, respectively; Y′ =
[
y′T1 , . . . , y

′T
M

]T and X′1 =[
Xp X′1d

]
∈ CK×N ′ .

The SAGE algorithm [27] uses hidden data space instead
of complete data space to obtain the maximum likelihood
estimator (MLE) through iterations. It divides the estimation
parameters in groups such that if one group is being updated
the remaining groups remain fixed to their current revised
values. This aids in faster convergence as compared to other
iteration based schemes such as [8]. For channel estimation,
g1m ∈ C1×K denotes the parameter under consideration
and rest of the channel vectors are combined under g1m̃ ∈
C(M−1)×K where m 6= m̃ and m, m̃ ∈ {1, . . . ,M}. From (3)
and (4), we note that channel vector g1m depends solely on
y′m. Thus, we denote

{
y′m,X

′

1

}
as its hidden data space.

y′m =
√
Esg1mD

1
2
1X
′

1 +
√
Es

L∑
l=2

glmD
1
2
l X
′
l + w′m. (12)
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Since X′1d =
[
x1d (1), . . . , x1d (N ′d )

]
∈ CK×N ′d is unknown

at BS 1, we obtain an estimate of X′1d from Y′d to replace it
in the ISAGE stage. We employ LMMSE receiver which is a
sufficient statistic [32] of X′1d for its estimate

S =

{
IK +

(
L∑
l=2

K∑
k=1

βlk +
N0

Es

)
(
D
−

1
2

1

(
GH

1 G1

)−1
D
−

1
2

1

)}−1
√

1
Es

D
−

1
2

1

(
GH

1 G1

)−1
GH

1 Y
′
d ; (13)

the inverse term contains large scale fading coefficients of
the L−1 interfering cells, which are not available with BS 1.
Therefore, we derive an estimate of the inverse term in (13)
with the help of

Z = D
−

1
2

1

(
GH

1 G1

)−1
GH

1 Y
′
d ∈ CK×N ′d . (14)

Z =
[
z(1), . . . , z(n), . . . , z(N ′d )

]
is a random matrix where

z(n) ∈ CK×1 has E {z(n)} = 0K×1 and E
{
z(n)zH (n)

}
=

EsIK +
(
Es
∑L

l=2
∑K

k=1 βlk + N0

)
D
−

1
2

1

(
GH

1 G1
)−1 D− 1

2
1 for

n = 1, . . . ,N ′d . By using the law of large numbers on Z for
N ′d →∞, we obtain

ZZH

N ′d
→ IK +

(
L∑
l=2

K∑
k=1

βlk +
N0

Es

)
(
D
−

1
2

1

(
GH

1 G1

)−1
D
−

1
2

1

)
. (15)

Thus, the resultant estimate of X′1d in (13) reduces to

S =
√
EsN ′d

(
ZZH

)−1
Z. (16)

Due to the non-availability of X′1d with BS 1, we will replace
all the instances ofX′1d in the ISAGE stage with its estimate S
of (16).

In this stage, we represent Ĝ(i)
1 and ĝ(i)1m as the ith iteration

estimate of G1 and g1m respectively where i = 0, 1, . . . ,Ni.
Moreover, each iteration of the SAGE algorithm undergoes
expectation and maximization steps to update the initial CSI
estimate Ĝ(0)

1 .
Expectation step: It evaluates conditional expectation of

the hidden data space log-likelihood function (LLF) given
g1m over the incomplete data space and the current estimate
of G1 as

Qm
(
g1m|Ĝ

(i)
1

)
= E

{
ln f

(
y′m,X

′

1|g1m, ĝ
(i)
1m̃

)
|Y′, Ĝ(i)

1

}
= E

{
ln f

(
ymp|Xp, g1m

)
|Yp, Ĝ

(i)
1

}
+E

{
ln f

(
y′md |X

′

1d , g1m
)
|Y′d , Ĝ

(i)
1

}
,

(17)

where ln f
(
ymp|Xp, g1m

)
and ln f

(
y′md |X

′

1d , g1m
)
denotes

LLF of g1m given ymp and y′md respectively. For LLF, we

associate the inter-cell interference with the received noise
to form a random variable which follows complex Gaus-
sian distribution. This consideration holds true because:
a) Large-scale fading coefficients of interfering cells remain
constant over various transmission frames, b) Channel coef-
ficients of interfering cells follow CN (0, 1), c) Transmit
data symbols of the interfering cell users have zero mean
and unit average power, d) The elements of received noise
follow CN (0,N0).
From (3), we obtain the LLF of g1m given ymp as

ln f
(
ymp|Xp, g1m

)
=

(
ymp −

√
Esg1mD

1
2
1Xp

)
C−1vmp(

ymp −
√
Esg1mD

1
2
1Xp

)H
; (18)

Cvmp is the covariance matrix of vmp where vmp =∑L
l=2
√
EsglmD

1
2
l Xp + wmp. Here, wmp represents received

noise vector at mth antenna of BS 1 with wmp ∼

CN (01×Np ,N0INp ). The elements of vmp have zero mean as
glmk ∼ CN (0, 1) and wmp(n) ∼ CN (0,N0) for l = 2, . . . ,L,
k = 1, . . . ,K , n = 1 . . . ,Np. Furthermore, its covariance
matrix is given by

Cvmp = Es
L∑
l=2

XH
p DlXp + N0INp = Cp. (19)

Similarly, we obtain the LLF of g1m given y′md from (4) as

ln f
(
y′md |X

′

1d , g1m
)
=

(
y′md −

√
Esg1mD

1
2
1X
′

1d

)
C−1vmd(

y′md −
√
Esg1mD

1
2
1X
′

1d

)H
. (20)

Here, Cvmd is the covariance matrix of vmd where vmd =∑L
l=2
√
EsglmD

1
2
l X
′
ld + w′md ∈ C1×N ′d . We indicate the

received noise at mth antenna of BS 1 by w′md ∼

CN (01×N ′d ,N0IN ′d ). The elements of vmd have zero mean
as both wmd and glm are zero mean vectors. Moreover, its
covariance matrix is given by

Cvmd =

(
Es

L∑
l=2

K∑
k=1

βlk + N0

)
IN ′d = cd IN ′d . (21)

Therefore, by replacing the LLFs of (17) with their respective
expressions, we obtain the resultant Qm

(
g1m|Ĝ

(i)
1

)
for the

next step.
Maximization Step: In this step, we update the ith iteration

estimate of g1m to its’ i+1th iteration revised value i.e., ĝ(i+1)1m ,
by maximizing the expectation step.

ĝ(i+1)1m = argmax
g1m

Qm
(
g1m|Ĝ

(i)
1

)
(22)

We evaluate ĝ(i+1)1m by differentiating Qm
(
g1m|Ĝ

(i)
1

)
with

respect to gH1m and equating the resultant term to zero.
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Therefore,

ĝ(i+1)1m =

√
1
Es

ympC−1p XH
p +

y′mdη
(i)
1
H

cd


(
XpC−1p XH

p +
η
(i)
2

cd

)−1
D
−

1
2

1 ; (23)

η
(i)
1 = E

{
X′1d |Y

′
d , Ĝ

(i)
1

}
, η(i)2 = E

{
X′1dX

′

1d
H
|Y′d , Ĝ

(i)
1

}
denotes ith iteration a posteriori expectations of X′1d and
X′1dX

′

1d
H , respectively. Due to the unavailability of X′1d with

BS 1, we substitute it with S of (16). Further, we replace
channel G1 with Ĝ(i)

1 in (16) to obtain the ith iteration of the
above-mentioned a posteriori expectations.

We provide pseudo code for the semi-blind estimator
in Algorithm 1.

Algorithm 1 Pseudo code of SAGE based semi-blind scheme
1: Initialization stage:

2: for k = 1, 2, . . . ,K do

3: Calculate zk =
YpxHkp
Np

.
4: Obtain the initial estimate of g1k as

ĝ(0)1k =
√
Esβ1k

(
zHk zk
M

)−1
zk

5: end for

6: Iterative SAGE stage:

7: N ′d ←number of data symbols used in the ISAGE stage

8: for i = 0, 1, 2, . . . do
9: for m = 1, . . . ,M do
10: Calculate η(i)1 and η(i)2 from S of (16) by replacing

G1 with Ĝ
(i)
1 .

11: Obtain the i+ 1th iteration estimate of g1m as

ĝ(i+1)1m =
1
√
Es

(
ympC−1p XH

p +
y′mdη

(i)
1
H

cd

)
(
XpC−1p XH

p +
η
(i)
2
cd

)−1
D
−

1
2

1

12: Update ĝ(i)1m = ĝ(i+1)1m
13: end for
14: end for

C. COVARIANCE MATRIX OF THE PROPOSED SEMI-BLIND
CHANNEL ESTIMATOR
Initialization stage: For covariance matrix of ĝ(0)1k , we uti-
lize (8) instead of (11) as both (11) and (8) will asymptotically
lead to the same value. Therefore, the covariance matrix
of ĝ(0)1k is given by

E
{
ĝ(0)1k ĝ

(0)H

1k

}
=

β1kNp

β1kNp +
L∑
l=2

βlkNp +
N0
Es

IM (24)

for k = 1, . . . ,K . The elements of ĝ(0)1k has variance

E
{
| ĝ(0)1mk |

2
}
=

β1kNp

β1kNp +
L∑
l=2

βlkNp +
N0

Es

= σ 2
kp, (25)

where m = 1, . . . ,M .
In (25), we note that the initial estimate Ĝ(0)

1 approaches

the perfect CSI i.e. σ 2
kp ' 1 for Np �

∑L
l=2

βlk
β1k
Np +

N0
Esβ1k

.

However, availability of limited coherence interval in wire-
less environment restricts the increment in pilot length and
thus its CSI accuracy. Besides, variance of its estimation error
is given by σ 2

ekp = E
{
|ĝ(0)1mk − g1mk |

2
}
= 1− σ 2

kp.

ISAGE Stage: For covariance calculation of the semi-blind
stage estimate, we consider X′1d and X′1dX

′

1d
H in place of a

posteriori expectation η(i)1 , and η(i)2 , respectively in (23). This
substitution holds true as we use LMMSE receiver for the
detection of X′1d from received matrix Y′d in (13), which is
a sufficient statistic for X′1d [32]. We also remove iteration
index i from ĝ(i+1)1m for clarity and rewrite (23) in (26), as
shown at the bottom of the next page. Thus, its covariance
matrix is given by

E
{
ĝH1mĝ1m

}
= IK +

(
D
−

1
2

1

)
(
XpC−1p XH

p

Es
+

X′1dX
′H
1d

Escd

)−1
D
−

1
2

1 , (27)

where the second term on right side of the equality is a
non-diagonal matrix. However, for large number of inter-
fering users i.e. (L − 1)K � 1, the diagonal elements
of Cp in (27) becomes significantly large in comparison to
its off-diagonal terms such that

Cp '

(
L∑
l=2

K∑
i=1

Esβli + N0

)
INp = cpINp . (28)

Similarly, with large N ′d we obtain

X′1dX
′H
1d ' N ′d IK . (29)

Therefore, from (28) and (29) the covariance matrix of ĝ1m
(27) will asymptotically result in a diagonally dominant
matrix

E
{
ĝH1mĝ1m

}
' IK + D

−
1
2

1

(
XpXH

p

Escp
+
N ′d IK
Escd

)−1
D
−

1
2

1

' IK +
c

Es
(
Np + N ′d

)D−11 ; (30)

where c =
∑L

l=2
∑K

i=1 Esβli + N0 as cp = cd . Furthermore,
variance of the semi-blind stage estimator is

E
{
| ĝ1mk |2

}
= 1+

c

Esβ1k
(
Np + N ′d

) = σ 2
kd (31)

for m = 1, . . . ,M and k = 1, . . . ,K .
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From (31), we observe that for large N ′d , variance of
the ISAGE stage estimator will converge to perfect CSI
i.e., σ 2

kd ' 1. Moreover, its estimation accuracy improves
with the increase in N ′d without adding extra pilots in the
system unlike pilot-aided estimators. Also, the impact of pilot
contamination reduces with the increase in N ′d . We denote
σ 2
ekd = E

{
|ĝ1mk − g1mk |2

}
= σ 2

kd − 1 as variance of its
estimation error.

D. COMPLEXITY ANALYSIS
We characterize complexity of an algorithm by the number of
complex additions and multiplications involved in it. We use
Big O notation to define an upper bound on the increase in
computational complexity.
Complexity of pilot-aided scheme [7]:

Cpilot = O
(
MKNp

)
. (32)

Complexity of the proposed semi-blind estimator:

Cpro = O
(
MKNp +MK 2NiN ′ +MKNiN 2

p

)
' O

(
MK 2NiN ′

)
. (33)

The proposed scheme compises of two stages: intialization
and iteration stage; the former stage uses only pilots for
CSI acquisition, whereas the later stage uses both pilot and
data symbols. Therefore, the complexity order of our esti-
mator comprises of Np and N ′ terms in the expression (33).
Since N ′ = Np + N ′d , we notice that the complexity order
of (33) is largely dependent on Ni and N ′d . Moreover, for
N ′d > Np, the computational complexity Cpro is upper
bounded by O

(
MK 2NiN ′

)
which is approximately NiN ′d

times more than the complexity order of pilot-aided
scheme [7].

IV. ACHIEVABLE RATE ANALYSIS
In this section, we evaluate a theoretical lower bound on
ergodic achievable rate [34] of MU M-MIMO systems under
perfect and imperfect CSI. Thus, we detect the transmitted
data of cell 1 UTs from the received data at BS 1

yd =
√
EsG1D

1
2
1 x1d +

√
Es

L∑
l=2

GlD
1
2
l xld + wd (34)

A. WITH PERFECT CSI
Here, we presume the availability of perfect CSI i.e., G1
at BS 1. We employ linear detector A ∈ CM×K to detect
transmitted data x1d from yd as

rd = AHyd =
√
Es

L∑
l=1

AHGlD
1
2
l xld + AHwd . (35)

The data of k th user is given by

rkd = aHk yd =
√
Esβ1kaHk g1kx1kd + aHk wd

+

K∑
i=1,
i 6=k

√
Esβ1iaHk g1ix1id

+

L∑
l=2

K∑
i=1

√
EsβliaHk glixlid , (36)

where ak and g1k are the k th columns of matrix A and G1,
respectively for k = 1, . . . ,K . In (36), the first term cor-
responds to desired signal and rest of the terms correspond
to noise, intra-cell interference, and inter-cell interference,
respectively. These noise and interference (from cell 1 and
the L − 1 interfering cells) components are undesirable
while recovering data at BS 1; we add them up to form the
aggregate noise. For a fixed G1, we model the noise plus
interference term i.e., aggregate noise as worst case Gaussian
noise [33], [35] and obtain the UL achievable rate for k th

user in (37), as shown at the bottom of the next page.
We employ linear receivers (Rxs) such as maximum-ratio
combiner (MRC) and zero-forcing (ZF) for data detection.

1) MRC RECEIVER
Here, AH

= GH
1 and ak = g1k . Thus, the ergodic achievable

rate for MRC receiver (Rx) is given in (38), as shown at the
bottom of the next page. With the help of Jensen’s inequality
and convex property of log2

(
1+ 1

x

)
, we obtain a lower

bound on the UL achievable rate in (39), as shown at the
bottom of the next page.
Proposition 1: With MRC Rx, the lower bound on

UL achievable rate of cell 1 k th user under perfect CSI is

R̂mrcp,k = log2

1+
Mβ1k∑K

i=1
i 6=k
β1i +

∑L
l=2
∑K

i=1 βli +
N0
Es

 (40)

ĝ1m =

√
1
E s

(
ympC−1p XH

p +
y′mdX

′H
1d

cd

)(
XpC−1p XH

p +
X′1dX

′H
1d

cd

)−1
D
−

1
2

1

= g1m +

(
L∑
l=2

glmD
1
2
l

(
XpC−1p XH

p +
XldX′H1d
cd

)
+

(
wmpC−1p XH

p
√
Es

+
w′mdX

′H
1d

√
Escd

))
(
XpC−1p XH

p +
X′1dX

′H
1d

cd

)−1
D
−

1
2

1 (26)
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Proof: See Appendix A.

2) ZF RECEIVER
The ZF Rx is given by AH

=
(
GH

1 G1
)−1GH

1 which satisfies
AHG1 = IK i.e., aHk g1i = 1 for i = k otherwise aHk g1i = 0
where k, i ∈ {1, . . . ,K }. So, the UL achievable rate of (37)
results in

Rzfp,k = E
{
log2 (1+

β1k∑L
l=2
∑K

i=1βli|a
H
k gli|

2 +
N0
Es
||ak ||2

)}
. (41)

From Jensen’s inequality, we obtain a lower bound on (41) as

Rzfp,k ≥ R̂zfp,k

= log2

1+
β1k

E
{∑L

l=2
∑K

i=1βli|a
H
k gli|

2 +
N0||ak ||2

Es

}

(42)

Proposition 2: For ZF Rx, the UL achievable rate of k th

user with perfect CSI is lower bounded by

R̂zfp,k = log2

(
1+

β1k (M − K )∑L
l=2
∑K

i=1 βli +
N0
Es

)
(43)

Proof: See Appendix B.

B. WITH IMPERFECT CSI
In practical scenario, BS 1 uses an estimator to obtain the CSI.
However, the acquired channel Ĝ1 is an estimate of true CSI
G1 with estimation error E1 = Ĝ1 − G1. We assume E1 to
be independent of Ĝ1 [33]. Thus, BS 1 treats Ĝ1 as true CSI
for the data recovery of cell 1 UTs with the linear receiver Â
from received data yd (34) as

r̂d = ÂHyd =
√
EsÂH

(
Ĝ1 − E1

)
D

1
2
1 x1d

+

√
Es

L∑
l=2

ÂHGlD
1
2
l xld + ÂHwd . (44)

The recovered data of k th user is given by

r̂kd =
√
EsâHk

(√
β1k ĝ1kx1kd −

K∑
i=1

√
β1ie1ix1id

+

K∑
i=1
i6=k

√
β1iĝ1ix1id +

L∑
l=2

K∑
i=1

√
βliglixlid

+ âHk wd

=

√
EsâHk

(√
β1k ĝ1kx1kd −

√
β1ke1kx1kd

+

K∑
i=1
i 6=k

√
β1ig1ix1id +

L∑
l=2

K∑
i=1

√
βliglixlid

+ âHk wd ;

(45)

âk , ĝ1k , glk and e1k denote k th column vectors of Â, Ĝ1, Gl ,
E1, respectively. Furthermore, the first term on right side of
the equality in (45) corresponds to desired component and the
last four terms account for estimation error, intra-cell interfer-
ence, inter-cell interference, and additive noise, respectively.
To obtain a lower bound on the achievable rate, we consider
the estimation error (e1k ) of the channel estimate ĝ1k as a vari-
ant of additive noise such that the resulting noise is replaced
by a worst case noise (i.e., Gaussian distribution) [33]. For
a given Ĝ1, we sum up the interference, estimation error
and noise terms to form the aggregate noise [33]. Since we
consider channel estimate Ĝ1 as the true CSI, the ergodic
UL achievable rate of k th user under imperfect CSI is given
in (46), as shown at the bottom of the next page and the
details of its derivation is given in Appendix C. We consider
MRC and ZF Rxs for the data recovery of cell 1 UTs in the
following subsections:

1) MRC RECEIVER
We have ÂH

= ĜH
1 and âk = ĝ1k for k = 1, . . . ,K . So,

the UL achievable rate of k th UT with MRC Rx i.e., Rmrcim,k
is given in (47), as shown at the bottom of the next page.
From Jensen’s inequality and convex property of log

(
1+ 1

x

)

Rp,k = E

{
log2

(
1+

Esβ1k |aHk g1k |
2

Es
∑K

i=1,i 6=k β1i|a
H
k g1i|

2 + Es
∑L

l=2
∑K

i=1 βli|a
H
k gli|

2 + N0||ak ||2

)}
(37)

Rmrcp,k = E

log2
1+

(
Es
∑K

i=1,i 6=k β1i|g
H
1kg1i|

2
+ Es

∑L
l=2
∑K

i=1 βli|g
H
1kgli|

2
+ N0||g1k ||2

Esβ1k ||g1k ||4

)−1 (38)

Rmrcp,k ≥ R̂
mrc
p,k = log2

1+

(
E

{∑K
i=1,i 6=k β1i|g

H
1kg1i|

2
+
∑L

l=2
∑K

i=1 βli|g
H
1kgli|

2
+

N0
Es
||g1k ||2

β1k ||g1k ||4

})−1
(39)
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function, we achieve a lower bound on Rmrcim,k in (48), as shown
at the bottom of this page.
Proposition 3: By using MRC Rx, the UL achievable rate

of cell 1 k th user under imperfect CSI is lower bounded by

R̂mrcim,k

= log2

1+ β1kMσ 2
ku∑K

i=1IEi +
∑K

i=1
i6=k
IGi +

∑L
l=2

∑K
i=1βli +

N0
Es

 ;
(49)

IEi = β1iσ 2
eiu, and IGi = β1iσ

2
iu for u ∈ {p, d} where p, and d

stand for pilot-aided, and semi-blind estimators, respectively;
σ 2
eiu and σ

2
iu represent variance of the estimation error, andCSI

estimate of the estimator. For the proposed scheme, σ 2
ip and

σ 2
id is obtained from (25) and (31), respectively.
Proof: Refer Appendix D.
For Es → 0, the lower bound on achievable UL rate for

MRC Rx tends to R̂mrcim,k → log2
(
1+ M

N ′
)
.

2) ZF RECEIVER

It is given by ÂH
=

(
ĜH

1 Ĝ1

)−1
ĜH

1 which satisfies ÂH Ĝ1 =

IK i.e. âHk ĝ1i = 1 if k = i, otherwise zero for k, i ∈ {1, . . .K }.
Thus, we denote Rzfim,k as the k

th user UL achievable rate for
ZF Rx and it is given in (50), as shown at the bottom of the
next page. From Jensen’s inequality, we obtain a lower bound
on Rzfim,k which is shown in (51), as shown at the bottom of
the next page.
Proposition 4: With ZF Rx, the UL achievable rate of k th

user with imperfect CSI is lower bounded by

R̂zfim,k = log2

(
1+

(M − K ) β1kσ 2
ku∑K

i=1 β1iσ
2
eiu +

∑L
l=2

∑K
i=1βli +

N0
Es

)
.

(52)

Proof: Refer Appendix E.

For Es→ 0, the lower bound on achievable UL rate for ZF
Rx tends to R̂zfim,k → log2

(
1+ M−K

N ′
)
.

V. SPECTRAL AND ENERGY EFFICIENCY ANALYSIS
In this section, we study the relationship between SE and EE
such that the service providers can select an operating point
as per the traffic demand [34]. Therefore, we define the SE of
M-MIMO systems under perfect and imperfect CSI as

SBp =
K∑
k=1

R̂Bp,k and SBim =
N − Np
N

K∑
k=1

R̂Bim,k , (53)

respectively, where B ∈ {mrc, zf }. Furthermore, we describe
EE [34] of M-MIMO systems for perfect and imperfect CSI
as

ηBp =
SBp
Es
, and ηBim =

SBim
Es
, (54)

respectively.
We discuss the trade-off between SE and EE of the

semi-blind estimator under imperfect CSI condition. For sim-
plicity, we useD1 = IK andDl = βIK for l ∈ {2, . . . ,L − 1}
[6], [34]. Thus, the variance of our estimator and its estima-
tion error becomes σ 2

kd = 1 + EsKβ(L−1)+N0
EsN ′

and σ 2
ekd =

EsKβ(L−1)+N0
EsN ′

, respectively for k = 1, . . . ,K .

A. MRC RECEIVER
We obtain the SE and EE of our semi-blind scheme in (55),
as shown at the bottom of the next page. Furthermore, upper
and lower limits on the EE of (55) is given by

lim
Es→0

ηmrcim = lim
Es→0

Smrcim

Es
= ∞, (56)

lim
Es→∞

ηmrcim = lim
Es→∞

Smrcim

Es
= 0, (57)

respectively.

Rim,k = E

{
log2

(
1+

β1k |âHk ĝ1k |
2∑K

i=1 β1i|â
H
k e1i|

2 +
∑K

i=1,i 6=kβ1i|â
H
k ĝ1i|

2 +
∑L

l=2
∑K

i=1 βli|â
H
k gli|

2 +
N0
Es
||âk ||2

)}
(46)

Rmrcim,k = E

log2
1+


∑K

i=1 β1i|ĝ
H
1ke1i|

2
+
∑K

i=1
i 6=k
β1i|ĝH1k ĝ1i|

2
+
∑L

l=2
∑K

i=1 βli|ĝ
H
1kgli|

2
+

N0
Es
||ĝ1k ||2

β1k ||ĝ1k ||4


−1

 (47)

Rmrcim,k ≥ R̂
mrc
im,k = log2

1+

E


∑K

i=1 β1i|ĝ
H
1ke1i|

2
+
∑K

i=1
i 6=k
β1i|ĝH1k ĝ1i|

2
+
∑L

l=2
∑K

i=1 βli|ĝ
H
1kgli|

2
+

N0
Es
||ĝ1k ||2

β1k ||ĝ1k ||4



−1

(48)
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B. ZF RECEIVER
From (52), we obtain SE and EE of our semi-blind scheme
in (58), as shown at the bottom of this page. The upper and
lower limits on EE of the semi-blind scheme are shown as

lim
Es→0

η
zf
im = lim

Es→0

Szfim
Es
= ∞, (59)

lim
Es→∞

η
zf
im = lim

Es→∞

Szfim
Es
= 0, (60)

respectively. From the above equations we infer that the EE
of our algorithm decreases with an increase in SE and vice
versa. This indicates a trade-off between its’ EE and SEwhich
is similar to the perfect CSI.

VI. MCRLB FOR AN UNBIASED SEMI-BLIND ESTIMATOR
IN MU MASSIVE MIMO SYSTEMS
Cramer-Rao lower bound (CRLB) provides the lowest
achievable MSE for an unbiased estimator. However, its cal-
culation in the presence of unknown parameters is difficult
to compute due to which we use a looser bound known as
MCRLB. Thus, we derive a MCRLB for semi-blind based
unbiased estimator of pilot contaminated M-MIMO systems.

A. MODIFIED CRAMER-RAO LOWER BOUND
CALCULATION
For MCRLB, we consider full knowledge of X′1d with BS
1 andN ′ as the observation interval for CSI estimation.More-
over, we denote F as the Fisher information matrix (FIM)
of channel G1. The small-scale fading channel coefficients
corresponding to mth antenna of BS 1 i.e., g1m, depends only
on the received signal by the same antenna y′m. Therefore, its
FIM F becomes block diagonal with Fm as the FIM for g1m.
The parameter vector for Fm is ηm = [Re {g1m} Im {g1m}] ∈
R1×2K . For further calculations, we rewrite (3) and (4) as

ymp =
√
Esg1mD

1
2
1Xp + vmp = ump + vmp, (61)

y′md =
√
Esg1mD

1
2
1X
′

1d + vmd = umd + vmd , (62)

respectively. We model vmp and vmd as CN
(
01×Np ,Cvmp

)
and CN

(
01×N ′d ,Cvmd

)
, respectively for Cvmp = Cp (19) and

Cvmd = cd IN ′d (21). Thus, the received vector ymp, and y′md
follow CN

(
ump,Cvmp

)
, and CN

(
umd ,Cvmd

)
, respectively.

The LLF of parameter ηm is

ln f
(
y′m|X

′

1, ηm
)
=
(
ymp − ump

)
C−1p

(
ymp − ump

)H
+

(
y′md − umd

) (
y′md − umd

)H
cd

. (63)

The FIM of parameter ηm is given as

Fm = 2Es

[
Re [U] −Im [U]
Im [U] Re [U]

]
, (64)

where U = D
1
2
1XpC−1p XH

p D
1
2
1 +

1
cd
D

1
2
1X
′

1dX
′H
1dD

1
2
1 .

Since XpXH
p = NpIK and E

{
X′1dX

′H
1d

}
= N ′d IK ,

the off-diagonal terms of (64) reduces to zero. Therefore,
the resultant FIM of ηm is

Fmk = 2Esβ1k

[
uk 0
0 uk

]
, (65)

where uk = xkpC−1p xHkp +
x′1kdx

H
1kd

cd
for k = 1, . . . ,K .

We obtain the MCRLB of g1mk by performing inverse opera-
tion on Fmk as

MCRLB(g1mk ) = [1 j]
1

2Esβ1k

[
1
uk

0
0 1

uk

][
1
−j

]
. (66)

Hence, the MCRLB of g1mk is given by

E
{
|ĝ1mk − g1mk |2

}
≥

1

Esβ1k
(
xkpC−1p xHkp +

N ′d
cd

) , (67)

From (67), we note that the MCRLB for unbiased semi-blind
estimator is inversely proportional to the amount of data
incorporated in the channel estimation process (N ′d ), i.e.
larger the N ′d lower the MSE.

Rzfim,k = E

log2
1+

∑K
i=1β1i|â

H
k e1i|

2
+

(∑L
l=2

∑K
i=1βli +

N0
Es

)
||âk ||2

β1k

−1

 (50)

Rzfim,k ≥ R̂
zf
im,k = log2

1+
β1k

E
{∑K

i=1β1i|â
H
k e1i|

2 +

(∑L
l=2

∑K
i=1βli +

N0
Es

)
||âk ||2

}
 (51)

Smrcim =
N − Np
N

K log2

(
1+

Es
(
βK (L − 1)+ N ′

)
+ N0

Es (βK (L − 1) (2K − 1+ N ′)+ N ′(K − 1))+ N0 (2K − 1+ N ′)

)
and ηmrcim =

Smrcim

Es
(55)

Szfim =
N − Np
N

K log2

(
1+

(M − K )
(
Es
(
Kβ(L − 1)+ N ′

)
+ N0

)
EsKβ (L − 1) (K + N ′)+ N0 (K + N ′)

)
, and η

zf
im =

Szfim
Es

(58)
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B. TEST OF UNBIASEDNESS FOR THE DESIGNED
SEMI-BLIND ESTIMATOR
For bias calculation of the proposed estimator, we assume full
information of transmit matrix X ′1d with BS 1 (26). Therefore,

E
{
ĝ1m

}
= g1m + E

{(
L∑
l=2

glmD
1
2
l

(
XpC−1p XH

p

+
XldX′H1d
cd

)
+

(
wmpC−1p XH

p
√
Es

+
w′mdX

′H
1d

√
Escd

))
(
XpC−1p XH

p +
X′1dX

′H
1d

cd

)−1
D
−

1
2

1

 . (68)

Since noise component
[
wmpw′md

]
is independent of[

XpX′1d
]
, the expectation term in right side of the equality

is approximated to zero. Thus, E
{
ĝ1m

}
' g1m which implies

that our estimator is asymptotically unbiased.

VII. CONVERGENCE ANALYSIS OF THE PROPOSED
SEMI-BLIND ESTIMATOR
In this section, we will prove the convergence property of
the proposed semi-blind estimator which utilizes a SAGE
algorithm for pilot contaminated multi-user massive MIMO
systems following [27]. It shows that if initial values of
parameters using a SAGE algorithm are initialized in a region
suitably close to the local maximum, then over iterations,
the sequence of estimates will monotonically converge to the
norm of it. Since we implement SAGE algorithm in channel
estimation problem of a linear systemmodel (1), convergence
of the proposed semi-blind estimator is guaranteed.

From previous section, we know that SAGE algorithm
uses hidden data space and incomplete data space to obtain
maximum likelihood estimator (MLE) through iterations.
It divides the estimation parameters in groups such that if one
group is being updated the remaining groups remain fixed
to their current revised values. In our work, g1m ∈ C1×K

denotes the parameter under consideration and rest of the
channel vectors are combined under g1m̃ ∈ C(M−1)×K where
m 6= m̃ and m, m̃ ∈ {1, . . . ,M}. We indicate Sm and Y′ as
hidden data and incomplete data space, respectively where
Sm =

{
y′m,X

′

1

}
. For convergence proof, we have made the

following assumptions [27]:
• The regularity condition for convergence of likelihood
and the sequence of estimates are satisfied.

• The maximum point of the likelihood is an interior point
of the parameter space.

From (12), we note that the mean of hidden data space Sm is
linear with g1m i.e., Sm ∼ CN

(
g1mX′1,CSm

)
;

CSm =

[
Cvmp 0Np×N ′d
0N ′d×Np Cvmd

]
∈ CN ′×N ′

; (69)

Cvmp andCvmd matrices are given in expression (19) and (21),
respectively.

Therefore, convergence of the proposed SAGE based
semi-blind algorithm can be proved by satisfying the follow-
ing theorem [27].
Theorem 1: U ⊂ G is a region of monotone convergence

in norm if there exists a nonsingular matrix T such that U is
an open ball with respect to the norm ||.||T and
1). For m = 1, . . . ,M , the norm of composite matrix
||Mm

(
g1m, Ĝ

(i)
1

)
||T ≤ 1 for all Ĝ(i)

1 ∈ U and g1m ∈

Qm
(
g1m|Ĝ

(i)
1

)
,

2). For any ĝ(i)11, . . . , ĝ
(i)
1M ∈ U and g1m ∈ Qm

(
g1m|Ĝ

(i)
1

)
with

m = 1, . . . ,M

||M1(g11, Ĝ
(i)
1 ) . . .MM (g1M , Ĝ

(i)
1 )|| ≤ 1; (70)

G represents subset of CM×K and i indicates the iteration
number.
Proof: To establish the first statement, we need the Hessian

of the problem i.e., H = −∇
2 Qm

(
g1m|Ĝ

(i)
1

)
. We note

that the Hessian matrix H of (17) is the Fischer informa-
tion matrix (FIM) of g1m (i.e., Fm), which is given in (64).
Moreover, Fm is a positive definite matrix which defines
Qm

(
g1m|Ĝ

(i)
1

)
as a strictly concave objective of Ĝ1. This

guarantees the existence of a non-empty region of monotone
convergence in norm U which satisfies the statements of
theorem 1 forT = (Fm)

1
2 [27]. Also, for the SAGE algorithm

Mm
= T−1PmT [27]. Since T is a non-singular matrix,

||Mm
(
g1m, Ĝ

(i)
1

)
||T = ||TMm

(
g1m, Ĝ

(i)
1

)
T−1||

= ||TT−1PmTT−1||
= ||Pm|| (71)

where Pm is the orthogonal projection onto the mth col-
umn of T. Since an orthogonal projection is non-expansive,
||Mm

(
g1m, Ĝ1

)
||T = ||Pm|| ≤ 1 satisfies the first condi-

tion of Theorem 1.
To prove the second statement of theorem 1, we consider

the Gauss-Siedel method which is an iterative technique that
converges for a linear problem Ax = b, if A is well condi-
tioned (i.e., positive definite or diagonally dominant). In our
work, we utilize X′1 =

[
XpX′1d

]
as A matrix for estimation

of g1m. Since we employ Zadoff-Chu (ZC) codes [36] for
generating pilot sequences and i.i.d. unit energy symbols
for data sequence, the transmit matrix X′1 forms a positive
definite matrix. Therefore, for all the M antennas we have

||M1(g11, Ĝ1) . . .MM (g1M , Ĝ1)||T ≤ 1. (72)

From (71) and (72), we note that the proposed SAGE based
semi-blind estimator converges to the norm of Ĝ(i)

1 .
The convergence proof will conclude the following state-

ments [27], [37]:
• If a SAGE algorithm is initialized in a region suitably
close to a local maximum in the interior of parameter
space, then the sequence of estimates will converge
monotonically in norm to it.
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• For suitably regular objective function, the region of
monotone convergence in norm is guaranteed to be
non-empty.

• The asymptotic convergence rate of a SAGE algorithm
will be improved if one chooses a less informative hid-
den data space.

VIII. RESULTS AND DISCUSSION
In this section, we simulate, and discuss the MSE, BER,
SE and EE performance of the semi-blind estimator against
the existing schemes of pilot contaminated M-MIMO
systems.
Simulation Environment: We consider a four cell system

i.e. L = 4, where each BS serves K = 4 single-antenna
UTs. The transmission frame comprises of N = 200 symbols
with four pilot (Np = 4) and 196 data symbols (Nd = 196).
The consideration of 200 symbols for one transmission frame
goes in-line with a typical LTE communication scenario [3],
[8], [34], [38], [39]. This ensures that the transmission frame
is within the coherence interval of 1 ms [3], [8], [34]. Further-
more, we use the minimum pilot length, i.e., Np = K [33] for
channel estimation in all the simulations. Our estimator uses
Np = 4 and N ′d = 20 symbols for CSI acquisition, where
N ′d = 20 accounts only 10% of the transmission frame.More-
over, the approximation using law of large numbers holds true
in (10) and (15) for M ≥ 16 and N ′d ≥ 20, respectively. We
consider a fixed case of large-scale fading coefficients [6],
[34], where β1k = 1 (D1 = IK ) and βlk = β (Dl = βIK )
such that 0 ≤ β < 1 for l = 2, . . . ,L, and k = 1, . . . ,K .
The β quantifies pilot contamination intensity on desired cell
(i.e., cell 1) as the impact of the same increases with β. The
noise variance (N0) is taken as 1. We employ Zadoff-Chu
code [36] and BPSKmodulation for generating pilot, and data
sequences, respectively. We compare our scheme against the
existing estimators [6], [7] whose results are regenerated as
per the simulation environment. We label the ISAGE stage
estimate as proposed with iteration number in legend of all
the figures. We follow the above-mentioned parameters for
all the simulations unless specified.

A. MSE AND BER PERFORMANCE ANALYSIS
Fig. 2 shows MSE performance of M = 32 and K = 4
M-MIMO system, where the proposed scheme achieves a
significant improvement in MSE compared to the estimators
of [6], [7] with the increase in SNR. This enhancement is
attributed to the addition of N ′d data symbols in the CSI acqui-
sition process which reduces the effect of pilot contamination
and additive noise. We obtain amaximumMSE gain of about
6 dB from [6], [7] for SNR≥10 dB. Furthermore, the CSI
accuracy of the semi-blind estimator improves from iteration
1 to 2, but the difference becomes negligible between iteration
2 and 3. This indicates that it converges in two iterations.
So, we plot the rest of the results of our algorithm with two
iterations only. In addition, the MSE of SAGE iteration 2
tends toward the derived MCRLB with a difference of 0.5 dB
between them for SNR≥ 0 dB.

FIGURE 2. MSE vs. SNR for M = 32, and K = 4 massive MIMO system
with β = 0.1, N ′

d = 20.

FIGURE 3. BER performance for M = 32, and K = 4 massive MIMO
system with β = 0.1, N ′

d = 20.

We also plot BER performance of the same configuration
for both ZF and MRC Rx in Fig. 3. At a BER of 3 × 10−3,
the semi-blind scheme obtains an SNR gain of about 12 dB
and 5 dB from the estimators of [6], [7] while using MRC
and ZF Rx, respectively. Moreover, the BER performance of
our scheme improves considerably with the increase in SNR.
Besides, at BER of 10−3, ISAGE iteration 2 trails by 3 dB
in SNR from the perfect CSI case for both MRC and ZF Rx.
Thus, we conclude that the semi-blind scheme obtains consid-
erable improvement from the existing pilot-aided estimators
in terms of MSE and BER at the cost of a nominal increase
in complexity.

The convergence of our semi-blind estimator in two itera-
tions can be intuitively explained as:
• The proposed algorithm uses two stages to obtain a
CSI estimate, namely, initialization and iteration stage.
In the initialization stage, we use a pilot based LMMSE
method for an initial estimate of channel parameters,
which is then refined in the iteration stage (ISAGE
stage) through the SAGE algorithm. The iteration stage
uses both known pilot and unknown data symbols for
updating the initial CSI estimate. Since data information
is unavailable with the BS, we use an LMMSE detector
for decoding the unknown data sent from users of the
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desired cell. For data recovery, we treat the available
channel estimate as true CSI and replace all the instances
of true CSI with the channel estimate. Therefore, first
iteration of the proposed scheme uses pilot based initial
estimate (i.e., Ĝ(0)

1 ) for obtaining an estimate of X′1d
from received Y′d with the help of (16). The recovered
data of N ′d length is then combined with the known
pilot sequence of Np length for refining the initial CSI
estimate Ĝ(0)

1 during the first iteration of SAGE algo-
rithm. Due to the incorporation of N ′d data symbols in
the estimation process, CSI accuracy of channel estimate
obtained from the first SAGE iteration (i.e., Ĝ(1)

1 ) is sig-
nificantly improved from the initial CSI estimate (Ĝ(0)

1 ).
• During the second iteration of ISAGE stage, we utilize
the channel estimate of the first iteration (i.e., Ĝ(1)

1 ) for
detecting X′1d from received Y′d . As the first iteration
estimate Ĝ(1)

1 is more accurate than the initial estimate
Ĝ(0)

1 , the K users data information is correctly recovered
with Ĝ(1)

1 than Ĝ(0)
1 . Hence, we infer that the estimated

CSI accuracy is highly dependent on how correctly the
algorithm can detect the transmit data X′1d . However,
during the third iteration, the data detection of X1d ′

employs estimated channel coefficients of second iter-
ation (i.e., Ĝ(2)

1 ) which obtains limited improvement in
CSI accuracy from iteration 1s’ updated CSI (Ĝ(1)

1 ).
Additionally, usage of large BS antennas aids in the
accurate recovery of X′1d with fewer iterations.

We display the impact of N ′d on CSI accuracy of the
semi-blind estimator in Fig. 4. We note that its’ MSE
equals the derived MCRLB for N ′d ≥ 60 with all the
given SNRs. Moreover, the CSI accuracy improves with the
increase in N ′d . We observe that, it requires about 84, and
48 N ′d to obtain a MSE of -16 dB at 0 dB, and 10 dB SNR,
respectively. Thus, the semi-blind estimator demands less N ′d
with the increased SNR which further reduces its computa-
tional complexity. For the given frame length i.e., N = 200,
we achieve a maximum MSE gain of about 15 dB and 16 dB
with N ′d = 196 from [6], [7] at 0 dB and 5 dB SNR,
respectively. Therefore, we conclude that for large N ′d our
semi-blind estimator attains the MCRLB even at low SNRs.
From the above discussion, we conclude that the estimation
accuracy of the estimator depends largely on data length used
in the channel estimation process (i.e., N ′d ). Thus, the choice
of N ′d should be made as per the systems’ objective. For
example, if a system demands an accurate CSI, we choose a
higher number for N ′d with the help of (31); whereas a system
with a constraint on signal processing ends may not opt for
larger N ′d and can be evaluated from the joint optimization of
(31) and (33).

The effect of pilot contamination on the proposed estimator
and [6], [7] scheme is shown in Fig. 5. We note that the
semi-blind estimator obtains an appreciable gain inMSE over
the schemes of [6], [7] for β < 0.45. The MSE of semi-blind
scheme improves by doubling M from 32 to 64 for β > 0.1;
however, the CSI accuracy of pilot based schemes [6], [7]

FIGURE 4. MSE vs. N ′

d plot for M = 32, and K = 4 M-MIMO system with
β = 0.1.

FIGURE 5. MSE vs. β curve for M = 32,64, and K = 4 M-MIMO system
with N ′

d = 20.

does not show any improvement with the increase in M .
Therefore, the semi-blind estimator is more robust to the pilot
contamination in comparison to the pilot based methods.

To determine the effectiveness of our proposed scheme
against the existing semi-blind estimators [14], [24], [25], we
have shown MSE performance in Fig. 6 and Fig. 7. For a
fair comparison, we have simulated our algorithm as per their
simulation environment. As a result, Fig. 6 displays analogy
with the MSE of data-aided scheme [14], whereas Fig. 7
shows with the estimators of [24], [25]. The description on
both these figures are provided as:
• From Fig. 6, we note that the MSE curve of our scheme
converges at 0.172 for M ≥ 128 in L = 19 cells
with K = 10 massive MIMO configuration. It attains a
maximum MSE gain of about 0.07 from the data-aided
method [14] at M = 8. Moreover, it guarantees a mini-
mum MSE gain of around 0.03 for rest of the given BS
antennas (M ). Therefore, the proposed semi-blind esti-
mator outperforms the existing data-aided scheme [14]
for all the givenM with the above system configuration.

• The effect of N ′d on MSE performance of our algorithm
and estimators of [24], [25] for a seven-cell system
(L = 7) with M = 60, K = 4 massive MIMO
structure is shown in Fig. 7. We observe that the MSE
of proposed estimator improves with the increase in N ′d ,
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FIGURE 6. MSE vs. M performance for L = 19 and K = 10 M-MIMO
configuration at 0 dB SNR; N ′

d = 100, Np = 10,and β = 0.1.

FIGURE 7. MSE vs. N ′

d plot for L = 7, M = 60, and K = 4 M-MIMO system
at 10 dB SNR; Np = 8 and β = 0.3.

but it ceases at 0.02 for N ′d ≥ 300. However, the MSE of
data-aided scheme [24] converges to 0.03 for N ′d ≥ 300.
In addition, our estimator attains a considerable gain of
about 0.12 and 0.45 in MSE from the methods of [24]
and [25], respectively atN ′d = 40.We notice that the dif-
ference between theMSE of our algorithm and [24], [25]
reduces with the increase in N ′d , despite the proposed
scheme ensures aMSE gain of about 0.1 and 0.01 against
the data-aided methods of [25] and [24], respectively.
Thus, the proposed estimator surpasses the existing
data-aided techniques of [24], [25] for all the given N ′d .
Note that algorithm [24] requires six iterations to con-
verge and scheme [25] utilises computationally demand-
ing singular-value-decomposition (SVD) for CSI acqui-
sition. Hence, the proposed algorithm is less computa-
tionally complex than the existing data-aided schemes
of [24], [25].

B. SPECTRAL EFFICIENCY PERFORMANCE ANALYSIS
We ascertain the tightness of the derived bound on the UL
achievable rate of MRC and ZF Rx in Fig. 8 forM = 32 and
K = 4 M-MIMO system. We note that the derived bound
on SE of both perfect CSI and imperfect CSI is tight for

FIGURE 8. SE vs. SNR plot for M = 32, and K = 4 M-MIMO systems;
β = 0.1, N ′

d = 20.

FIGURE 9. SE vs. M curve for K = 4, β = 0.1, and N ′

d = 20 M-MIMO
system.

all the given SNRs. Additionally, we notice that our scheme
attains a minimum gain of 4 bits/sec/Hz and 1.2 bits/sec/Hz
in SE against [6], [7] with ZF and MRC Rx, respectively.
Therefore, the semi-blind scheme is more spectrally efficient
than the existing methods [6], [7]. Since the theoretically
derived bound closely matches the simulation-based results,
the rest of the figures will use the analytical bounds for
comparisons.

Fig. 9 shows the effect of increased BS antennas (M ) on the
SE of both the semi-blind and pilot-aided [6], [7] schemes.
We note that for M ≥ 200 difference between SE of the
perfect CSI and the proposed scheme with 20 N ′d remains
constant at about 1.4 bits/sec/Hz and 0.8 bits/sec/Hz with ZF
and MRC Rx, respectively. Besides, this difference reduces
to 0.8 bits/sec/Hz by increasing N ′d to 100 for ZF Rx. The SE
of [6], [7] with 10 dB SNR lies below the proposed
schemes’ SE of 0 dB SNR for all the given M . Hence,
the semi-blind estimator is power-efficient in comparison to
existing schemes [6], [7] as it demands less SNR for the
same SE.

The impact of pilot contamination on SE of M = 50, 100
and K = 4 massive MIMO system for ZF and MRC Rx is
plotted in Fig. 10.
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FIGURE 10. SE vs. β performance for (a) ZF and (b) MRC receiver;
K = Np = 4, N ′

d = 20.

ZF Receiver: In Fig. 10 (a), we note that the semi-blind
scheme approaches the SE of perfect CSI for β ≥ 0.35.More-
over, its SE tends toward 16 and 12.5 bits/sec/Hz forM = 50
andM = 100, respectively. In addition, the SE of semi-blind
scheme with M = 50 and SNR= 0 dB outperforms the SE
of [6], [7] with M = 100 and SNR= 10 dB for β > 0.25.
Moreover, at 0 dB SNR and M = 100, our scheme achieves
a considerable gain in SE from estimators [6], [7] for all the
given values of β.
MRC Receiver: Similarly in Fig. 10 (b), the SE of

semi-blind scheme approaches the SE of perfect CSI for
β > 0.4 with MRC Rx. Further, its’ SE with M = 50
and M = 100 advances towards 10.5 and 14.5 bits/sec/Hz
respectively. Besides, SE curve of estimator [7] with M =
100 and SNR=10 dB lags behind our scheme with fewer
BS antennas and lower SNR i.e., M = 50 and SNR=0 dB
for β > 0.35. From Fig. 10, we notice that the semi-blind
scheme requires fewer BS antennas and low SNRs to achieve
a given SE against the pilot-aided estimators. So, our scheme
reduces the hardware complexity, cost, and circuit power
consumption involved with a large number of BS antennas.
Besides, we note that the ZF Rx performs fairly well against
the MRC for all the given M , β and SNRs. However, com-
plexity involved with the ZF Rx is much higher compared to
the MRC.

Fig. 11 plots the Es required to achieve a SE of 5
bits/sec/Hz per user as a function of M . For ZF Rx,

FIGURE 11. Es vs. M plot for a SE of 5 bits/sec/Hz per user with
K = Np = 4, and N ′

d = 20,40,100.

FIGURE 12. SE vs. K plot for M = 100 and K = Np M-MIMO system with
β = 0.1 and SNR=5 dB.

we observe that the Es vs. M curve of proposed estimator
(M > 180 and N ′d = 100) coincides with the same of
perfect CSI. For MRC Rx, we require M ≥ 300 and N ′d =
100 to attain the performance of perfect CSI. In addition,
by doubling the number of BS antennas from M = 100 to
M = 200, the Es of the proposed estimator reduces by 5 dB
using ZF Rx. Similarly, with MRC Rx the Es of proposed
scheme reduces by about 8.5 dB while increasing M from
200 to 400. We also note that the MRC Rx requires more Es
in comparison to ZF to achieve the same SE per user for all
the given M and N ′d . Hence, we conclude that our schemes’
power requirement matches with the perfect CSI condition
for large N ′d .
The relationship between the number of users per cell (K )

and SE for M = 100 based M-MIMO is shown in Fig. 12.
We note that the proposed estimator closely follows perfect
CSI condition for M

K ≥ 10 whereas the difference increases
for MK < 10. For ZF Rx, the estimator can obtain a maximum
SE of 68, 73 and 75 bits/sec/Hz for N ′d = 20, 100, 196,
respectively with only K = 36 users per cell. However,
the estimators of [6], [7] using ZF Rx can achieve only
51 bits/sec/Hz with 36 users per cell. Moreover, for ZF Rx,
the maximum number of users which can be served simul-
taneously at an SE of 40 bits/sec/Hz is 72 (90 with MRC)
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FIGURE 13. EE vs. SE performance for K = Np = 4 based M-MIMO system.

and 56 (64 with MRC) for the proposed and pilot aided [7]
estimator, respectively. Therefore, the semi-blind scheme can
accommodate more number of users in comparison to pilot
aided estimators for a given SE and BS antenna constraint.

C. ENERGY EFFICIENCY VERSUS SPECTRAL EFFICIENCY
TRADE-OFF
Fig. 13 shows the trade-off between EE and SE for M =
50, 100 and K = 4 based M-MIMO system configuration.
We obtain the points shown on the curves by calculating
the EE and SE for the given values of Es. We note that the
ZF Rx outperforms the MRC for all the given configura-
tions; moreover, the difference between them increases with
the increase in Es. With MRC Rx, the proposed estimator
achieves a gain of about 2 bits/sec/Hz in SE and 4 bits/Joule
in EE by doubling the BS station antenna from M = 50
to M = 100 at Es = 0 dB. Similarly, we obtain a gain of
about 4 bits/sec/Hz in SE and 4 bits/Joule in EE with ZF Rx.
Furthermore, the proposed scheme approaches perfect CSI
condition with the increase in N ′d . In addition, for Es ≤ 0 dB
the semi-blind scheme with MRC Rx and M = 100 obtains
a considerable improvement in EE and SE from estimator [7]
using ZF Rx and M = 100.

D. PERFORMANCE SUMMARY OF THE PROPOSED
ESTIMATOR
In this subsection, we summarize the performance of our
estimator in the following points:
• The CSI accuracy of our algorithm significantly
improves with the inclusion of moreN ′d in the estimation
process against the existing pilot-aided schemes.

• The proposed scheme requires on an average two itera-
tions for attaining convergence under the given scenarios
which makes the complexity comparable with the exist-
ing pilot-aided methods.

• The MSE of our estimator attains MCRLB with the
increased N ′d even at lower SNRs.

• The minimum transmit power needed to attain a given
spectral efficiency by our algorithm matches with the
perfect CSI condition for large N ′d and BS antennas M .

• The estimation process of proposed method serves more
number of users in comparison to existing pilot-aided

estimators by increasing the N ′d for a given spectral
efficiency, SNR, and BS antenna constraint.

• The energy efficiency and spectral efficiency of our
estimator considerably improves with the increase inN ′d .

• The proposed estimator is practically realizable as the
minimum number of BS antennas and N ′d needed to
satisfy the approximations using law of large numbers
in the estimation process is 16 and 20, respectively.

• The usage of a large number of data symbols in the
estimation process (N ′d ) induces proportional increase
in the computational complexity order of the proposed
scheme.

IX. CONCLUSION
In this paper, we have presented a SAGE-based semi-blind
channel estimator for pilot contaminated MU M-MIMO sys-
tems. The algorithm obtains a maximum MSE gain of about
6 dB from the existing pilot-aided estimators by incorporating
only 20 data symbols (N ′d ) in the estimation process. Further,
it is more robust to the pilot contamination in comparison
to the existing pilot based schemes. In addition, the CSI
accuracy of the proposed estimator coincides with the derived
MCRLB for large values of N ′d . The estimator also gains
at least 4 bits/sec/Hz and 1.2 bits/sec/Hz in SE from the
existing pilot-aided estimators with ZF and MRC receiver,
respectively. Moreover, it achieves the SE of perfect CSI
condition with large M , large N ′d , or in the case of the high
pilot contaminated region. It can also accommodate more
number of users in comparison to pilot aided estimators for
a given SE and BS antenna constraint. Therefore, the pro-
posed estimator improves the overall performance of an MU
M-MIMO system at a nominal increase in computational
complexity.

APPENDIXES
APPENDIX A
PERFECT CSI: UL ACHIEVABLE RATE WITH MRC RECEIVER
The lower bound on Rmrcp,k of (39) can be rewritten as (73)

which is shown at the top of the next page; where g̃1i =
gH1kg1i
||g1k ||

and g̃li =
gH1kgli
||g1k ||

. The random variable g̃1i conditioned on
g1k follows CN (0, 1) for i = 1, . . . , k − 1, k + 1, . . . ,K .
Similarly, g̃li ∼ CN (0, 1). By using E

{
||g1k ||2

}
= M ,

E
{
|g̃1i|2

}
= 1 and E

{
|g̃li|2

}
= 1 in (73), as shown at the the

top of the next page, we obtain the closed form expression
in (40).

APPENDIX B
PERFECT CSI: UL ACHIEVABLE RATE WITH ZF RECEIVER
Since E

{
|glim|2

}
= 1, the expectation term E

{
|aHk gli|

2
}

reduces to E
{
||ak ||2

}
in (42) for l = 2, ..,L, i = 1, ..,K

and m = 1, ..,M . Further,

E
{
||ak ||2

}
= E

{[(
GH

1 G1

)−1]
kk

}
=

1
K

E
{
tr
[(

GH
1 G1

)−1]}
(74)
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R̂mrcp,k = log2

1+

E


∑K

i=1
i 6=k
β1i|g̃1i|2 +

∑L
l=2
∑K

i=1βli|g̃li|
2
+

N0
Es

β1k ||g1k ||2



−1
 (73)

R̂mrcim,k = log2

1+

E


∑K

i=1 β1i|ẽ1i|
2
+
∑K

i=1
i 6=k
β1i|
˜̂g1i|2 +

∑L
l=2
∑K

i=1 βli|g̃li|
2
+

N0
Es

β1k ||ĝ1k ||2



−1 (77)

R̂zfim,k = log2

1+
β1k(∑K

i=1β1iσ
2
eiu +

∑L
l=2

∑K
i=1βli +

N0
Es

)
E
{
||âk ||2

}
 . (78)

As G1 follows zero mean complex Gaussian distribution,
E
{
tr
(
GH

1 G1
)−1}

=
K

M−K forms a K × K central complex
Wishart matrix with M (M > K ) degrees of freedom [34].
Therefore,

E
{
aHk ak

}
=

1
M − K

(75)

forM ≥ K+1. In (42), we replaceE
{
|aHk gli|

2
}
andE

{
aHk ak

}
with 1

M−K to obtain the analytical expression for lower bound

on the UL achievable rate Rzfp,k in (43).

APPENDIX C
IMPERFECT CSI: UL ACHIEVABLE RATE
From (45), we obtain the desired signal power as
Esβ1k |âHk ĝ1k |

2. We represent the power of inter-cell inter-
ference and intra-cell interference, CSI estimation error and
additive noise as

Intk = Esβ1k |âHk e1k |
2
+

K∑
i=1,i 6=k

Esβ1i|âHk ĝ1i|
2

+

L∑
l=2

K∑
i=1

Esβli|âHk ĝli|
2
+ N0||âHk ||

2. (76)

We obtain ergodic UL achievable rate of k th user in (46) by
considering the Intk term as worst-case uncorrelated additive
noise [33].

APPENDIX D
IMPERFECT CSI: UL ACHIEVABLE RATE WITH MRC
RECEIVER
By central limit theorem, elements of the proposed estimate
ĝ1k can be approximated as a complex Gaussian distribution
with CN

(
0, σ 2

iu

)
. Therefore, R̂mrcim,k of (48) can be rewrit-

ten as (77) which is shown at the top of this page, where

ẽ1i =
ĝH1ke1i
||ĝ1k ||

, ˜̂g1i =
ĝH1k ĝ1i
||ĝ1k ||

and g̃1i =
ĝH1kgli
||ĝ1k ||

.
The ẽ1i is a Gaussian random variable conditioned on

ĝ1k with zero mean and σ 2
eiu variance. Similarly, ˜̂g1i and

g̃1i has zero mean with variance σ 2
iu and one, respectively

for u ∈ {p, d}. By substituting these values in (77), we obtain
the lower bound on UL achievable rate R̂mrcim,k in (49).

APPENDIX E
IMPERFECT CSI: UL ACHIEVABLE RATE WITH
ZF RECEIVER
As e1i and ĝ1k are independent of each other, |âHk e1i|

2 of (51)
becomes ||âk ||2σ 2

eiu. Thus, UL achievable rate R̂zfim,k of (51)
reduces to (78) which is shown at the top of this page.

Moreover, E
{
||âk ||2

}
can be written as

E
{[(

ĜH
1 Ĝ1

)−1]
kk

}
=

1
K
E
{
tr
[(

ĜH
1 Ĝ1

)−1]}
=

1

(M − K ) σ 2
ku

. (79)

By using complex Wishart matrix property of (79) in (78),
we obtain the resultant lower bound of UL achievable rate
with ZF Rx in (52).
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