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ABSTRACT Algebraic structures are widely studied mathematical structures in abstract algebra. Enumer-
ating higher order algebraic structures is a computationally intensive task due to large number of possible
permutations and the presence ofmany symmetrically equivalent redundant structures. This paper describes a
comprehensivemethodology and a novel algorithm to efficiently enumerate higher order algebraic structures.
Enumeration of these structures is performed in two steps, namely: generation of complete set of algebraic
structures with given constraints, and then computationally demanding task of performing isomorphism
checking to identify isomorphism classes. In this paper we choose to study inverse property loops (IP loops),
a particular class of algebraic structures, but the methodology can be applied to enumerate any algebraic
structure with given constraints. IP loop constraints are modeled in Google’s or-tools constraint solver
to generate the complete set of IP loops of given order. The paper then discusses and evaluates several
techniques to efficiently identify isomorphism classes within these algebraic structures. A novel algorithm
is proposed that utilizes valid mappings and a tree data structure for efficient isomorphism checking. The
algebraic structures are also modeled as color graphs and isomorphism classes are determined using state of
the art graph isomorphism checking tool (nauty). The performance of these proposed isomorphism checking
approaches is then evaluated using a diverse set of algebraic structure problems. It also presents an efficient
use of multi-core systems to further enhance the efficiency of isomorphism checking. The proposed approach
was then used to solve the previously computationally unsolved problem of determining isomorphism classes
of exponent 3 IP loops of order 15.

INDEX TERMS Algebraic structures, constraint solver, IP loops, isomorphism checking, isomorphism
classes, nauty.

I. INTRODUCTION
Algebraic structures are of interest to mathematicians
because of their special properties and their practical appli-
cations in different areas such as formation of statis-
tical designs, construction of error codes, cryptography,
etc [1]–[3]. In abstract algebra, an algebraic structure refers
to a set with one or more finite operations defined on it that
satisfies a list of axioms. Quasigroups, groups, loops and IP
loops are some of the widely studied algebraic structures [4].
A quasigroup (Q, ∗) is a groupoid Q with a binary operation
∗ such that for each x, y ∈ Q, x ∗ a = y and b ∗ x = y
have unique solutions. In other words, the main difference
between a quasigroup and a group is that quasigroup has
no requirement of associativity. The multiplication table of a
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finite quasigroup is called a Latin square. A quasigroup with
an identity element e such that for each x ∈ Q, x ∗ e = x =
e ∗ x is called a loop. An inverse property (IP) loop is a loop
L if it has a two-sided inverse x−1 such that x−1 ∗ (x ∗ y) =
y = (y ∗ x) ∗ x−1 for each x, y ∈ L.
Researchers had interest in counting and enumerating alge-

braic structures for over three centuries. The On-line Ency-
clopedia of Integer Sequences (OEIS) maintains a record
of currently known counts of algebraic structures such as
Latin squares [36] and loops [37]. Earliest history of counting
Latin squares (LS) goes back to at least 1782 as the number
of reduced LS of order 5 was known to Euler [15] and
Cayley [14]. Since that time, researchers have been trying
to get the next order algebraic structures [4], [11], [16],
[19], [24], [25]. Despite their interest in algebraic structures,
there has been considerable delay in achieving consecu-
tive milestones. This was because of sheer computational
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complexity of the problem. There are numerous other studies
on counting algebraic structures which have reported incor-
rect counts [13], [17], [18], [20]. These historical results were
obtained through deduced mathematical formulas, applying
algorithmic approaches or formulating them as constraint
programming problems [7], [8], [11], [24], [25]. In this paper
we use constraint programming and isomorphism checking
techniques to enumerate algebraic structures.

Algebraic structures of any order (n) can be enumerated
and counted by modeling them as a finite domain constraint
satisfaction problem (CSP). One or more relevant constraints
need to be applied on CSP variables to enumerate required
algebraic structures. Table 1 shows the constraints for Latin
square, loop and IP loop properties. Based on specified CSP
constraints the constraint solver efficiently explores the state
space and finds all possible solutions that satisfy the required
algebraic structure properties.

TABLE 1. Few example algebraic structures and corresponding
constraints.

Algebraic structures obtained from constraint solvers have
symmetries [5], [6]. In other words, each obtained solution
may have several equivalent solutions. For example, there
are 161280 Latin squares of order 5, of which only 1411
isomorphism classes exist [4]. As the order of algebraic struc-
ture (n) becomes higher the number of symmetries increases
enormously. Practically it is sufficient to find only one solu-
tion from each class of equivalent solutions. The enumeration
time of constraint solvers is greatly reduced if these sym-
metries are eliminated during the search itself. In [7] some
symmetric breaking constraints for IP loops are proposed.
Our previous work [21] proposed a mining-based approach
to identify additional such constraints. Symmetric breaking
constraints such as those suggested in [7], [21] remove many
redundant solutions. However, even after applying symmetric
breaking constraints the solutions generated by the constraint
solver have enormous number of symmetric copies. These
redundant symmetric copies are then eliminated using a sep-
arate post-processing step in order to get the final unique
solutions (isomorphism classes). This paper proposes a novel
algorithm to efficiently enumerate algebraic structures in this
post-processing step. A previous work [23] has also listed IP
loop algebraic structures of order 7, 9, 11 and 13 labelled with
their corresponding isomorphism classes.

Unfortunately, most of the earlier work on enumeration
of algebraic structures does not provide any details about

the performance characteristics of the system. [12] briefly
mentions that IP Loop of order 13 were enumerated on an
ordinary desktop system in less than a day. In comparison,
our proposed algorithm can enumerate IP loop of order 13 in
six hours (21952 seconds) on an ordinary desktop system.
Due to the lack of prior performance characteristics, we have
chosen to compare our work with nauty, a state of the art
isomorphism checking tool [9].

This paper presents a novel algorithm to efficiently identify
the isomorphism classes of algebraic structures by eliminat-
ing redundant copies. It also describes the mechanism for
modeling the algebraic structures as color graphs and then
use state of the art graph isomorphism tool (nauty) to iden-
tify the isomorphism classes. The paper then evaluates the
results obtained using a comparative analysis of the proposed
isomorphism checking approaches for a diverse range of
algebraic structure problems. It also presents an approach to
efficiently utilize multi-core systems to further enhance the
performance of isomorphism checking. The proposed parallel
implementation is then used to solve the previously unsolved
problem of determining isomorphism classes of exponent 3 IP
loops of order 15 [22].

The rest of the paper is organized as follows. Section II
describes the related background information for constraint
programming, isomorphism classes and graph isomorphism.
Section III explains the overall methodology used to effi-
ciently generate and then determine isomorphism classes of
algebraic structures. It also discusses several isomorphism
checking approaches including our novel algorithm (TVMC)
and the details of modeling algebraic structures as color
graphs to apply graph isomorphism approach and its parallel
implementation. Section IV shows the results of the compar-
ative study conducted to evaluate the isomorphism checking
approaches on a diverse range of problems. It also evaluates
the results of using a parallel implementation on multi-core
systems with different hardware architectures. Section V con-
cludes the paper with possible future research directions.

II. BACKGROUND
This section briefly describes the background information
about constraint solvers, isomorphism classes and graph
isomorphism.

A. CONSTRAINT PROGRAMMING
Constraint programming (CP) is a paradigm where con-
straints are used to capture desired properties in the solution.
These constraints represent relations between variables of
the system. Constraint programming aims at finding feasible
solutions to the problem that satisfies all the given constraints.
CP has been applied in several domains including com-
puter graphics, natural language processing, scheduling, and
planning. There are several free and commercial constraint
solvers available which allow users to model problems as
finite domain constraint satisfaction problem (CSP) such as
JaCoP [34], GECODE [35] and Google’s or-tools [32]. The
enumeration problem is modeled as CSP where the range of
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FIGURE 1. Examples of algebraic structures.

the binary operation ∗ is a CSP variable whose domain con-
sists of elements of the algebra. The properties of algebraic
structures (Latin square, Loop, and IP loop) are captured in
the form of constraints that are applied on CSP variables.

Table 1 shows few algebraic structures and the correspond-
ing constraints. Latin square constraint implies that each
symbol (element) is uniquely present in any row and in any
column. An example of Latin square of order 5 is shown
in Figure 1(a). The loop constraint enforces existence of
identity element (e) such that a binary operation (∗) between e
and any other element (x) results in the same element (x). For
example, in Figure 1(b) e = 0 and (2 ∗ 0) = (0 ∗ 2) = 2,
whereas (2 ∗ 0) 6= (0 ∗ 2) 6= 2 in Latin square shown
in Figure 1(a). The IP loop constraint implies existence of
left and right inverses (x−1) such that x−1 ∗ x = e and
x ∗x−1 = e and holds left inverse property (x−1 ∗ (x ∗y) = y)
and right inverse property ((y ∗ x) ∗ x−1 = y) for each
element of the loop. For example in Figure 1(c), the inverse
of element 1 is 2, and 2 ∗ (1 ∗ 3) = (3 ∗ 1) ∗ 2 = 3. On the
contrary in Figure 1(b), the inverse of element 1 is 1, but
1 ∗ (1 ∗ 3) 6= 3 and (3 ∗ 1) ∗ 1 6= 3. Additionally, symmetry
breaking constraint suggests that the difference between any
element to its inverse is not more than one. Finally, exponent
3 constraint implies that x ∗ x = x−1 for every element. For
example (8 ∗ 8) = 7 = 8−1 in Figure 4, which shows two
examples of exponent 3 IP loops of order 15.

We had initially considered JaCoP as the constraint solver
due to its ease of use and our familiarity with Java Language.
However, JaCoP did not scale quite well and resulted in out
of memory errors for IP loop of order 13. We then switched
to Google’s or-tools which is one of the leading constraint
solver and performed native computations for Java and other
programming languages. It turned out to be good enough for
our enumeration requirements. For example, it took about
12 minutes (732 seconds) to enumerate 7.8 million IP loops
of order 13. The details of our constraints programming
implementation using or-tools are provided in Section III-A.

B. ISOMORPHISM CLASSES
We call two algebraic structures (e.g. Latin squares, loops or
IP loops) (L1, ∗1) and (L2, ∗2) of order n isomorphic to each
other if there exists a bijective function f : A → B, where
A = {0 . . . n − 1} and B is any permutation of A, such that
for all indices u and v in L1:f (u ∗1 v) = f (u) ∗2 f (v). In our
case, L1 (n × n) is isomorphic to L2 (n × n) if ∀i, j < n,

f (L1[i][j]) = L2[f (i)][f (j)]. All those structures that are iso-
morphic to each other belong to one isomorphism class. For
example, Figure 2 shows two IP loops L1 and L2, which look
quite different from each other (as highlighted), but belong
to the same isomorphism class because there exists a bijec-
tive function, f : {0, 1, 2, 3, 4, 5, 6} → {0, 1, 2, 4, 3, 5, 6}
that satisfies the isomorphism property for each element of
L1 and L2. Please note that f (0) = 0, f (1) = 1, f (2) = 2,
f (3) = 4, f (4) = 3, f (5) = 5 and f (6) = 6. For example,
it can be seen that at indices (i, j) = (1, 3), isomorphism
property is satisfied as f (L1[1][3]) = L2[f (1)][f (3)] = 5.
We can also represent the above bijective function f as

f : (3 4), which means that symbols 3 and 4 are swapped.
Another way to check isomorphism between two algebraic
structures L1 and L2 is to generate L2 from L1 by swapping
particular rows, columns, and the values according to the
function f . For example, in Figure 2, L2 can be generated
from L1 by swapping rows 3 and 4, column 3 and 4, and
values 3 and 4. Finding isomorphism in this way, by applying
the above formula for all permutations of f is extremely time
consuming and involves huge number of possibilities for even
slightly large value of n.

FIGURE 2. IP loop of order 7 (L1 on the left and L2 on the right) are
isomorphic to each other.

C. GRAPH ISOMORPHISM
The idea behind isomorphism is helpful in finding structural
similarity between two graphs. Two graphs G1 and G2 are
isomorphic (G1 ' G2) if there exists a bijection between the
vertex sets of G1 and G2, f : V (G1)→ V (G2) such that any
two vertices v and v′ in G1 are adjacent if and only if f (v) and
f (v′) are adjacent in G2. The graph isomorphism problem is
a computational problem of determining whether two finite
graphs are isomorphic. It is used in a variety of applications
such as in molecular science [26], [27], the design of elec-
tronic circuits [28]–[30], automata theory [31] etc. nauty [9]
is one of the most efficient graph isomorphism checking
tools.
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FIGURE 3. The process for enumerating isomorphism classes of algebraic structures.

III. PROPOSED METHODOLOGY
The steps for generation of isomorphism classes of algebraic
structures of any given order are shown in Figure 3. The
input is a set of constraints and the order of the enumer-
ated algebraic structure. The first step in the methodology
is to use a constraint solver to enumerate complete set of
algebraic structures. In the second step, one of the several
isomorphism checking approaches can be used to determine
isomorphism classes. The input to isomorphism checking
approach varies based on its mechanism. The brute force
approach requires generation of all possible mapping for the
given order of algebraic structure. The tree-based approach
requires as input a set of valid mappings generated based
on the constraints and order of algebraic structure. While
a graph isomorphism approach (such as nauty) requires
as input the set of algebraic structures modeled as color
graph.

The following subsections describe each of these steps in
more details.

A. GENERATING ALGEBRAIC STRUCTURES USING
CONSTRAINT SOLVER
In this process, we generate all the algebraic structures of
any order n with given constraints. We generate the algebraic
structures by representing it as a matrix, Matn of order n
(that is, n rows and n columns) where, each element of the
matrix is a domain variable that contains a value in the range
{0 . . . n− 1}. We consider 0 to be the identity element of our
algebraic structures. We then apply algebraic structure con-
straints on Matn using a generic constraint solver (Google’s
or-tools), to generate a set Sn = {mat1,mat2, . . .matp} such
that each mati ∈ Sn represents a valid algebraic struc-
ture of order n. This set obviously contains many matrices
which are isomorphic copies of each other. Table 5 shows
the matrix Matn (represented as variable x) and the imple-
mentation of the algebraic structures constraints of Table 1
using Google’s or-tools. The interested readers can refer
to [33] to get further insights about the functions used in the
implementation.
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B. IDENTIFYING ISOMORPHISM CLASSES USING
BRUTE FORCE APPROACH (BF)
As described in Section II-B, any two algebraic structures
are isomorphic to each other if there exists a mapping which
can map one structure to another. The brute force approach
is based on generating all possible permutations of f (called
mappings henceforth) and then using them to check for iso-
morphism over complete set of algebraic structures. If n is
the order of algebraic structure, m is the total number of
all possible mappings, p is the total number of algebraic
structures in the complete set and i is the total number of
isomorphism classes within these algebraic structures, then
the computational complexity of brute force approach is
O(n2mpi). Unfortunately, m, p and i increase exponentially
as a result of increase in the order n of algebraic structure.
For example, the number of possible mappingsm increase by
a factor of n!. So, for order 11 algebraic structures, we need
to test 11! (about 4 million mappings) to test for isomorphism
between a pair of algebraic structures. The number jumps to
13! (about 6 billion) for order 13 algebraic structures. This
is clearly not a computationally feasible solution for higher
order algebraic structures.

In the next subsections, we present a series of approaches
to improve the performance of isomorphism checking. As the
brute force approach has a computational complexity of
O(n2mpi), our proposed approaches are mainly intended at
reducing the impact of each parameter. In Section III-C,
we propose brute force with caching (BFC) approach to
reduce the time to identify an isomorphism class by caching
the set of useful mappings. In Section III-D, we present valid
mappings with caching (VMC) approach which improves
BFC approach by reducing the number of possible mappings
(m) in addition to using cached lookup of these mappings.
In Section III-E we present a tree-based approach (TVMC)
that improves VMC by reducing the impact of i by using
a tree data structure to keep the set of known isomorphism
classes. In Section III-F we present an approach (GISM)
to model algebraic structures in color graph format and
then use a graph isomorphism checking tool nauty. Lastly,
in Section III-G we provide details of an approach
(PAR-GISM) that uses multiple parallel instances of nauty
to further enhance the efficiency of identifying isomorphism
classes.

C. BRUTE FORCE WITH CACHING APPROACH (BFC)
Certain insights can be utilized to improve the performance
of brute force approach. These insights include:
• The set of isomorphism classes is tiny in compar-
ison to the completely enumerated set of algebraic
structures. This highlights the presence of a large
number of redundant (isomorphic copies) algebraic
structures

• Amapping can be utilized to identify several isomorphic
copies

• Not every mapping is useful in identifying isomorphism
classes

• All mappings have to be checked only if an algebraic
structure is not isomorphic to current set of known iso-
morphism classes

As the number of isomorphism classes is quite small as
compared to the total number of algebraic structures, making
a right guess on the mapping can increase system perfor-
mance (as we do not have to continue the search). A pre-
viously discovered mapping can be cached to see if it can
be reused for identifying another isomorphism class. This
idea is implemented in our BFC approach. As the pair of
algebraic structures are tested with available mappings, any
mapping which successfully identifies an isomorphism class
is stored in a cache. In subsequent tests, the cached mappings
are checked before the complete set of mappings. A cache hit
occurs when a cached mapping is successful in identifying an
isomorphism.

For example, in IP loop of order 11 problem, there are
6464 algebraic structures and 3.6 million mappings. The
isomorphism checking using BFC approach resulted in a
speedup of 2.7 over BF approach (Table 3), with a cache hit
ratio of 77% (i.e. 77% of the time the cached mapping was
used to identify the isomorphism).

Although BFC approach is useful in enhancing the perfor-
mance, it is still not computationally feasible to test billions
of mappings on thousands of algebraic structures (e.g. for IP
loop order 13).

D. VALID MAPPINGS WITH CACHING APPROACH (VMC)
In this section, we describe a technique used to reduce the
set of possible mappings. We observed that there are many
permutations (mappings) of f which do not satisfy the iso-
morphic relation f (m1[i][j]) = m2[f (i)][f (j)] for all values of
i, j ≤ n because of constraints shown in Table 1. We consider
these mappings as invalid and discard them. We can use
constraint solver to find all valid mappings which satisfy
isomorphic relationship between two algebraic structures (IP
loops in this case). The constraint solver models the system
by specifying the relevant constraints from Table 1. After the
constraints are embedded in the model, the constraint solver
searches the state space to find those permutations that satisfy
these constraints. All such permutations are called ‘‘valid
mappings’’. If the set S represents all the permutations of f
and the set Sv represents all the valid mappings then Sv ⊆ S.
If m = (|S|) is the total number of all possible mappings, and
v = (|Sv|) is the total number of valid mappings then it turns
out that v� m. This reduced set of mappings (i.e. Sv) is then
used for identifying isomorphism classes.

Figure 4 shows an example of invalid mapping f (4 5). This
mapping, if applied to a valid IP loop structure (shown on left)
will produce an algebraic structure (shown on right) which
does not satisfy the basic symmetry breaking constraint
(i.e. |x − x−1| ≤ 1). For example, in the algebraic structure
on the right side, for x = 3; x−1 = 5 and thus |x− x−1| > 1.
Detecting isomorphism classes using valid mappings

reduces the time complexity from O(n2mpi) to O(n2vpi)
where v� m. For example, for IP loop of order 13, the total
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FIGURE 4. Example of an invalid mapping which produces an algebraic structure (on the right) that does not satisfy the
basic symmetry breaking constraint (|x − x−1| ≤ 1).

number of possible mappings (m) is approximately 480 mil-
lion but there are only 43, 720 valid mappings (i.e. v =
0.0000913 × m). This results in much faster isomorphic
detection. Please note that the valid mappings are cached in
the samemanner as described in the BFC approach in the pre-
vious subsection. The valid mappings with caching (VMC)
approach thus augments the brute force with caching (BFC)
approach.

E. TREE-BASED APPROACH WITH VALID MAPPINGS
AND CACHING (TVMC)
In the approaches mentioned in the previous subsections,
the identification of a new isomorphism class requires check-
ing an algebraic structure against all the previously discov-
ered isomorphism classes using the available set of mappings.
As a result, the computational complexity increases with the
increased number of discovered isomorphism classes. A care-
ful analysis reveals that many of these isomorphism classes
share similar structure (elements) and many redundant com-
putations could be avoided with a suitable re-organization of
isomorphism classes elements. We propose to represent the
isomorphism classes using a tree-based structure to reduce
the computational complexity. Figure 5 shows an example
on how seven isomorphism classes (labelled (a) to (g)) are
represented within our proposed tree structure. The tree struc-
ture is built such that each branch of the tree represents one
isomorphism class, and each level in the tree represents a
unique position of the matrix element. Every newly discov-
ered isomorphism class is added to the existing tree as shown
in Algorithm. 1. As long as two isomorphism classes have the
same element values, they are represented by a single branch
in the tree. If element values differ at any depth in a branch,
a new offshoot is created to represent all the subsequent
values.

The tree representation of isomorphism classes allows the
identification of isomorphism class of an algebraic structure
with a single traversal of the tree. The traversal begins from

the root and continues to traverse all nodes at each level
(left to right). At every level in the tree, if the algebraic
structure does not map to any node then the complete subtree
of the node is discarded from the search space. For example
in Figure 5, as the algebraic structure does not map to the
first node at levelm01, the isomorphism classes (a) and (b) are
discarded from search space. Also, if the algebraic structure
maps to one of the nodes in tree then rest of the siblings
at current level and their corresponding sub-trees are dis-
carded from search space. For example in Figure 5, as the
algebraic structure maps to the second node at level m01,
the isomorphism classes (d), (e), (f) and (g) are discarded
from search space. If it does not match any node in the tree at
current level then the whole search space is discarded and the
search restarts with a new valid mapping. The isomorphism
checking algorithm using tree-based structure is shown in
Algorithm. 3. The tree representation of the isomorphism
classes reduces the computational complexity of checking
for isomorphism from O(n2vpi) to O(n3vp), thus reducing
the time complexity exponentially (as n � i for higher
order algebraic structures). This is possible because in TVMC
approach an algebraic structure is checked against all isomor-
phism classes by traversing the tree structure only once. Thus,
in the worst case, n elements are checked at each level which
makes the time complexity of checking a single algebraic
structure with a single mapping to O(n3). Whereas, in VMC
approach a single algebraic structure is checked for a single
mapping against all i isomorphism classes making it O(n2i).

F. GRAPH ISOMORPHISM APPROACH (GISM)
Graph isomorphism is a well established research area
with many state of the art graph isomorphism checking
tools (e.g. nauty). These approaches use graph canoniza-
tion to efficiently identify isomorphism classes. However,
the use of these approaches requires that algebraic struc-
tures be represented in an equivalent graph format. In order
to represent an algebraic structure of order n as a graph,
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FIGURE 5. Tree traversal for identifying the isomorphism class. The tree structure helps in eliminating large part of the
search space to efficiently identify the isomorphism class.

we model it as a color graph [10]. The rows (r0, r1, . . . , rn)
are represented by n same color vertices. Similarly, columns
(c0, c1, . . . , cn) and symbols (s0, s1, . . . , sn) are represented
by their corresponding same color vertices. The matrix posi-
tions (a00, a01, . . . , aij) are represented by n2 same color
vertices. The graph has a total of n2 + 3n vertices with four
different kinds of color vertices.

Figure 6 shows how an order 3 algebraic structure is
modeled as a graph. Each vertex color is represented by a
unique shape. There is an edge between every matrix position
vertex (aij) and its corresponding row ri, column cj and its
value smatrix[i][j]. Please note that all the edges are the same
(i.e. there is no edge coloring). The edges are shown with
different styles for clarity in the diagram to differentiate
between overlapping edges. Additionally, edges have been
added between every triplet of ri, ci, si to disallow any
paratopism. That is, although the graph representation would
allows swapping of columns with each other, rows with each
other and symbols with each other, it will not allow swapping
of a row with column or row with a symbol etc. This would
prevent formation of conjugate algebraic structures. Please
note that edges between every triplet of ri, ci, si are not shown
as connected in the diagram for clarity purpose.

The algebraic structures generated using constraint solver
are modeled into their corresponding graph representation
and stored in a file (g6 or s6 format). These graphs can be used

FIGURE 6. Modeling algebraic structure as a graph representation.

by nauty to identify isomorphism between these graphs by
generating their canonical labels. Figure 7 shows an example
of how two algebraic structures which are represented by our
graph representation are identified as isomorphic due to bijec-
tive mapping shown in the figure. Note that, we have rear-
ranged the graph vertices to clearly visualize that the given
bijective mapping indeed produces an identical isomorphic
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FIGURE 7. Ismorphism checking between two isomorphic algebraic structures using nauty.

TABLE 2. Time taken to generate complete set of algebraic structures, all mappings, valid mappings and graphs.

graph. We have used the small order 2 algebraic structure in
this figure for clarity purpose.

G. PARALLEL GRAPH ISOMORPHISM APPROACH
(PAR-GISM)
The graph isomorphism based approach provides an efficient
way to perform isomorphism checking of higher order alge-
braic structures. However, it does not make use of multiple
cores available on most of the system. In order to take advan-
tage of the multiple cores, we propose a data parallelism
approach called PAR-GISM. In this approach, the set of
4-color graphs is equally divided between multiple parallel
instances of nauty. Each instance determines the respective
isomorphism classes within its assigned set of color graphs.
The results are then merged to form a single file which can
easily be analyzed by a single instance nauty to determine the
final set of isomorphism classes.

This resulted in a highly scalable and efficient mechanism
for enumeration of higher order algebraic structures using
multi-core systems. For example, we observed a speedup
of 13 by using this approach on a 36-core machines with
64 threads for enumerating IP loops of order 13. More impor-
tantly, this helped us to solve the previously computationally
unsolved problem of determining isomorphism classes of
exponent 3 IP loops of order 15 [22].

IV. RESULTS
A series of experiments were conducted to evaluate and
compare effectiveness of the proposed approaches. The ini-
tial set of experiments were conducted on a regular desk-
top system (dual core Intel i7 processor @ 2.8 GHz and
8 GB of RAM) with Windows 10 OS. In Section IV-A,
we present the computational requirements for complet-
ing the pre-processing steps before conducting isomorphism
checking. Section IV-B presents a comparative analysis of
BF, BFC, VMC, TVMC and GISM isomorphism checking
approaches. In Section IV-C, we present the results of a more
rigorous set of experiments conducted on several hardware
platforms to evaluate and compare the performance of GISM
and its parallel implementation (PAR-GISM).

A. PRE-PROCESSING STEPS
As shown in Figure 3, certain pre-processing steps
(i.e. to generate the complete set of algebraic structures, all
mappings (S), valid mappings (Sv) and to convert algebraic
structures into graphs) are required before conducting iso-
morphism checking using our proposed approaches. Table 2
shows the computational time required to complete these
pre-processing steps.

The generation of complete set of algebraic structures
is required for every approach. Other pre-processing steps
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TABLE 3. Isomorphism checking time and speedup (in brackets) of proposed approaches for enumerating algebraic structures.

are based on particular isomorphism checking approach. For
higher order algebraic structures, the pre-processing time
is quite small as compared to isomorphism checking time
(shown in Table 3). The computational time required to com-
plete pre-processing steps can be further optimized by using
a parallelized approach but we did not focus on this aspect of
the problem in this paper.

We have excluded the pre-processing time from our com-
parative analysis of the isomorphism checking approaches in
the subsequent sections. The execution times in the subse-
quent sections refers to the time required for isomorphism
checking only.

B. COMPARATIVE ANALYSIS OF PROPOSED APPROACHES
Table 3 shows the isomorphism checking time (in seconds)
and speedup gained by the proposed approaches for an
increasing order of algebraic structures. The speedup is com-
puted relative to the previous approach (i.e. speedup of BFC
is relative to BF approach while speedup of VMC is relative
to BFC etc.). It can be seen that with the increase in order
of algebraic structures, the number of algebraic structures,
isomorphism classes and the mappings required to check
for isomorphism increase exponentially. The BF approach
works quite well for enumerating lower order IP loops of
order 7 and 9, but the enumeration time increases by a
factor of 4000 for enumerating IP loops of order 11 due
to 100 fold increase in the number of solutions and about
100 fold increase in the number of mappings. Note that the
enumeration time likely to exceed a week is shown as not
feasible (NF).

Figure 8 provides a comparison of isomorphism check-
ing times (Y-axis drawn on log10 scale) with the
increased computational complexity of algebraic structures.

BFC performs slightly better than BF approach due to
increased cache hit ratio. The performance gain becomes
larger with higher order algebraic structures (IP loop of
order 11). Figure 9 shows the number of cache hits andmisses
encountered during the enumeration of isomorphism classes
for IP loop of order 11 and exponent 3 IP loop of order
13 respectively. It can be seen that the cache hits dominate
cache misses by a factor of 3 and thus reduce the time
to identify an isomorphism class using cached mappings.
As shown in Table 3, these cache hits result in a speedup for
enumerating isomorphism classes for IP loop of order 11 by
almost a factor of 3.

The VMC approach provides considerably larger speedup
over BFC due to drastically reduced number of valid map-
pings. The speedup increases with the increased order of
algebraic structures, as the difference between number of
valid mappings (|Sv|) and all possible mappings (|S|) grows
exponentially wider. For example, the time taken to enumer-
ate exponent 3 IP loops of order 13 is drastically reduced
by a factor of 2666 with VMC approach as the number of
mappings get drastically reduced by a factor of about 14000.
The VMC approach performs better than all other approaches
for lower order algebraic structures (IP loop of order 7 and 9).
However, the performance of VMC degrades drastically for
higher order algebraic structures (IP loop of order 11 and
beyond) due to increased number of isomorphism classes and
valid mappings.

TVMC approach performs better than VMC for higher
order algebraic structures due to efficient use of tree struc-
ture to reduce the computations in the presence of a large
number of isomorphism classes. It can be seen that the
speedup of TVMC against VMC increases with the increase
in number of isomorphism classes. For example, there is
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FIGURE 8. A comparison of execution times with BF, BFC, VMC, TVMC and GISM approaches for different
problem sizes.

FIGURE 9. Number of cache hits and misses of mappings during
enumeration of isomorphism classes of various algebraic structures.

a speedup of 2.4 for IP Loop of order 11 which contains
49 isomorphism classes. However, for loop of order 7,
the number of isomorphism classes is comparatively larger

FIGURE 10. The performance improvement of TVMC over VMC approach
for Loop 7 as a function of increased number of isomorphism classes. For
brevity purpose, the plot only shows data for first 3000 Loop 7 algebraic
structures. The increase in execution time is minimal in TVMC as
compared to VMC approach because of proposed tree structure.

(23746 isomorphism classes). This results in a large
speedup gain (by a factor of 2513) for TVMC over VMC
approach. As expected, TVMC approach does not perform
better than VMC approach for lower order algebraic struc-
tures (when i ≤ n). This can partially also be attributed
to the overhead of creating and managing tree data struc-
ture for a small number of isomorphism classes. We also
evaluated the performance impact of increasing number
of isomorphism classes on VMC and TVMC approaches.
Figure 10 compares the execution time performance for VMC
and TVMC approaches during the enumeration of initial
3000 algebraic structures of loop of order 7. The x-axis
shows the number of algebraic structures processed in an
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increment of 100. The left vertical axis shows the execu-
tion time (in ms) for VMC and TVMC approaches, while
the right vertical axis shows the number of isomorphism
classes identified during enumeration. It can be seen that
as the number of discovered isomorphism classes increase,
the execution time of VMC increases almost linearly with it.
The execution time of TVMC, as expected, is largely unaf-
fected by the increase in number of discovered isomorphism
classes.

Although GISM approach does not perform better than
TVMC for the algebraic structure problems analyzed in
this comparative study. But it can be clearly seen that the
performance of GISM approach closes in to TVMC with
the increase in the order of algebraic structures and it is
expected to outperform TVMC approach for higher order
algebraic structures (e.g. for IP loops beyond order 13).
Another nice aspect of GISM approach is that it consumes
relatively small amount of memory in comparison to TVMC
approach. For example, for enumerating IP loops of order
13, GISM approach used on average about 4.6MB of mem-
ory as compared to the 305MB used by the TVMC. This
makes TVMC a less scalable choice for parallel implemen-
tation (as 64 instances would require around 20GB of RAM).
These two insights (i.e. better performance expectation in
enumerating higher order algebraic structures and relatively
small memory consumption) led us to consider using GISM
approach for attempting to enumerate even higher order alge-
braic structures with a parallel implementation (as described
previously in Section III-G). In the next section, we describe
the results obtained using parallel implementation of GISM
(PAR-GISM) and its comparison with single instance of
GISM.

C. AN EVALUATION OF GISM AND PAR-GISM
APPROACHES FOR ENUMERATING HIGHER
ORDER ALGEBRAIC STRUCTURES
The experiments described in the previous section showed
that GISM is expected to perform better than other
approaches for enumeration of higher order algebraic struc-
tures and it has relatively small memory consumption.
We conducted further experiments to determine the potential
of speedup by using parallel instances ofGISM (PAR-GISM).
We also desired to use the PAR-GISM approach to solve a
previously unknown and computationally challenging prob-
lem of enumerating exponent 3 IP loops of order 15.
These experiments were conducted on the following machine
architectures:
• Intel i7 (dual core with 4 logical processors @
2.8 GHz)

• Mac Pro 5,1 (12 cores Intel Xeon @ 2.4 GHz))
• Amazon Web Services (AWS) EC2 c4.8xlarge instance
(36 cores @ 3.5 GHz)

In order to gauge the potential of speedup by using the
parallel GISM approach (PAR-GISM), we first evaluated the
performance improvements in enumerating IP loops of order

FIGURE 11. Performance evaluation of PAR-GISM on three different
hardware architectures with an increasing number of threads for
enumerating IP loops of order 13.

13 on all three hardware architectures with varying number
of threads.

Figure 11(a) shows the speedup gained on these machines
with an increasing number of parallel executing threads.
As expected, the speedup increases with increased number
of threads on multi core systems. The speedup is initially
linear but slowly degrades as it reaches an optimal point. The
optimal point depends upon the number of available cores.
For example, the optimal point for AWS 36-core machine
is reached with 64 threads while for 12-core Mac Pro 5 it
is reached with 32 threads. The reason for continuous loss
in speedup is the increased amount of time spent in the
final execution (with merged file) and in chunking (splitting
the graphs). The final execution time increases since size of
the merged file (containing output graphs from each thread)
increases with increased number of threads. This, in turn,
makes it more time consuming for final instance of nauty
to determine the isomorphism classes. Figure 11(b) shows
the time break-down for chunking (splitting), parallel and
final execution time as the percentage of total time on Mac
Pro 5. It can be seen that as the number of threads are
increased the time to split and the time of final execution starts
to increase, thus reducing the benefit gained from parallel
threads.

Encouraged with these results, we attempted to solve the
computationally challenging task of determining previously
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TABLE 4. Performance gain by using parallel nauty instances for enumeration of IP loops on AWS 36-core machine.

unknown set of isomorphism classes for exponent 3 IP
loops of order 15. We were able to successfully deter-
mine the isomorphism classes on AWS 36-core machine in
approx. 29 hours with 32 threads [22]. Table 4 shows the
computational problems and the corresponding maximum
speedup obtained by using PAR-GISM approach on AWS
36-core machine. Note that the enumeration time with GISM
exceeding one week is shown as not feasible (NF).

We conducted a series of experiments to evaluate the per-
formance gain on all three architectures, with problems of
varying complexity and with increased number of threads.
Figure 12a shows the results for IP loop of order 11. The
horizontal axis showing the number of threads is drawn on
log2 scale. It can be seen that parallelization provides almost
linear improvement in execution time on all architectures
which subsequently turns into sub-linear improvement and
then starts to deteriorate. The optimal point depends on the
number of available cores. Intel i7 machine initially performs
better than Mac Pro 5 since its core is operating at higher
speed. However, after 4 threads the performance of Mac
Pro 5 gets better because of available cores. AWS 36-core
machine outperforms due to large number of cores and higher
operating speed of each core. A similar trend is visible for
IP loop of order 13 in Figure 12b. The execution time of
this problem was reduced from about 10 hours (with single
thread) to less than one hour (with 64 threads) on AWS
36-core machine. Figure 12c shows the execution time for
enumerating exponent 3 IP loop of order 15. Due to the
large amount of time (in weeks) needed to solve this problem
on a single nauty instance, we chose to perform experiment
with 16 threads and higher. The best case execution time for
this problem was 29 hours with 32 threads on AWS 36-core
machine.

Figure 13a shows the box plots of parallel execution time
variation on 12-core Mac Pro 5 for enumerating IP loop of
order 13. It can be seen that there is huge difference in parallel
execution times with fewer threads. As the number of threads
are increased the variations become smaller but even in the
best case (with 64 threads) there is substantial (by a factor
of 3) difference in parallel execution times. This implies that a
suitable load balancing scheme can be considered to improve
the overall total execution time. Figure 13b shows the parallel
execution time variations for enumerating exponent 3 IP
loops of order 15. In this case, the difference in parallel

FIGURE 12. Total execution time for enumeration of different algebraic
structures with increased number of parallel threads on three different
machine architectures.

execution times is marginal compared to the average parallel
execution time and thus indicating lesser benefit for any load
balancing scheme.

41320 VOLUME 8, 2020



M. A. Khan: Efficient Enumeration of Higher Order Algebraic Structures

TABLE 5. Implementation of algebraic structures constraints in Google or-tools.
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FIGURE 13. Parallel execution time variations on 12-core Mac Pro 5.

It can also be observed in Figure 13a that the parallel
execution time drops considerably even with larger number
of threads than the available cores (16-32 threads on 12-core
system). This indicates that a single instance thread is spend-
ing considerable time in I/O (reading and sorting graphs
from disk) providing ample opportunities to other threads
to simultaneously continue their execution. This behavior
continues, to a smaller extent, up to 128 threads. A similar
trend is visible in Figure 13b for exponent 3 IP loop of
order 15 with considerable improvement in parallel execution
time from 16 to 32 threads. The parallel execution time,
however, starts to increase with 128 threads indicating higher
competition among threads for available cores. There are also
more outliers in this case, indicating that some threads finish
earlier while others have to wait for core availability and end
up finishing later.

In general, we have observed that PAR-GISM approach
can be scaled higher to solve other computationally challeng-
ing problems. The speedup factor is more profound when
compared across different machine architectures. For exam-
ple, it took about 19 hours to solve IP loop of order 13 prob-
lem on Mac Pro 5 with a single nauty instance, while the
same problemwas solved on 36-coremachinewith 32 threads
in 0.7 hours (speedup of 27).

Algorithm 1Add aMatrix Representing an Isomorphism
Class to the Tree Structure
function AddMatrixToTree (m : matrix to be added);
Input : Matrix m to be added into the tree t
Output: Tree t
Node node = null;
if root = null then

root = AddSubTree(0, 0, m);
else

/* root already exists; skip first
element as it is always 0 */

row = 0, col = 1, t = root;
/* identify a child node that has

same value as the element at
current m[row,col] */

while t 6= null do
found = false;
list = t.GetAllChildren();
for each child in the list do

if child.value == m[row][col] then
found = true;
break;

end
end
if found then

/* found a child having same
value at m[row][col] */

if child is leaf then
return;

end
/* traverse next level of the

tree */
t = child, col++;
if col == n then

col = 0, row++;
end

else
/* no child found, we have to

add matrix m to the tree
at this level */

break;
end

end
/* add remaining columns in the

current row to tree */
parent_node = child.Parent();
node = AddSubTree(n-1, col, m);
parent_node.Add(node);
/* add all columns of each

remaining row to tree */
parent_node = node;
node = AddSubTree(row + 1, 0, m);
parent_node.Add(node);

end
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Algorithm 2Add Subtree inm From Position (Row, Col)
function AddSubTree (Add subtree in m from position
(row, col));
Input : position:(row, col), matrix m
Output: Node
Node node = null;
for i = row to n− 1 do

for j = col to n− 1 do
if node == null then

/* first node in the tree */
node = new Node(m[i][j]);

else
/* get last child */
leaf = node.GetFirstLeaf();
leaf.add(new Node(m[i][j]));

end
end

end
return node;

Algorithm 3 Find Isomorphism With Given Mappings
function FindIsomorphism (m : matrix to be checked for
isomorphism);
Input : Matrix m to be checked for isomorphism

against mapping f
Output: true or false
Node t = root;
for i = 0 to n− 1 do

for j = 0 to n− 1 do
list = t.GetAllChildren();
rhs = m[f(i)][f(j)];
for each child in the list do

lhs = child.value;
if lhs == rhs then

matched = true;
/* no need to check other

children */
break;

end
end
if not matched then

/* must match at least one
child at each level */

return false;
else

/* the child that matched */
t = child;

end
end

end

V. CONCLUSION
Algebraic structures are widely used in several scientific
disciplines. Enumerating higher order algebraic structures

and identifying their isomorphism classes is a computation-
ally challenging task. This paper presents a methodology
for efficiently enumerating isomorphism classes of algebraic
structures. A novel algorithm (TVMC) is proposed that uti-
lizes valid mappings, caching and a tree-based data structure
to efficiently enumerate the isomorphism classes for given
algebraic structures. The paper also presents the mechanism
to model algebraic structures as color graphs and then use
a state of the art graph isomorphism algorithm to identify
the isomorphism classes. A comparative analysis is then
performed to evaluate the performance of the isomorphism
checking approaches. The enumeration of IP loops of order
13 which took 9 hours with state of the art graph isomor-
phism approach (nauty) on a regular desktop system was
enumerated by our proposed algorithm (TVMC) in about six
hours. A similar performance improvement is observed in
several other enumeration problems. The paper also presents
a parallel implementation to further enhance the isomorphism
checking approach on multi-core systems. The proposed par-
allel implementation was able to enumerate IP loops of order
13 within 41 minutes on a 36-core machine. The parallel
implementation was then used to enumerate the previously
unsolved problem of determining isomorphism classes of
exponent 3 IP loops of order 15.

This work can be extended in multiple directions. The
parallel approach can be utilized to enumerate other currently
unsolved algebraic structures like IP loops of higher order
(order 15 and beyond), symmetric IP loops, C-loops and
flexible loops. The proposed TVMC algorithm can be further
optimized to make better memory usage and to develop a
parallel implementation of TVMC with a shared tree struc-
ture. The parallel implementations of TVMC or GISM based
approaches can be further enhanced with a distributed mech-
anism to dynamically allocate tasks among nodes based on
their capabilities and current workload. The storage foot-
print for enumerating higher order algebraic structures in
the distributed systems can be reduced by performing alge-
braic structure generation and isomorphism checking simul-
taneously on different nodes with proper communication
and coordination between these nodes. Another interesting
direction is to determine the upper bound of the proposed
TVMC algorithm. It is quite challenging to determine the
upper bound in the presence of multiple factors including
number of enumerated algebraic structures (p), number of
valid mappings (v), order of algebraic structure (n), the com-
plex relationship between these algebraic structures and the
machine architecture.
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