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ABSTRACT This paper investigates the self-healing control problem for the large launch vehicle (LLV)
with system uncertainties, external disturbances, and actuator faults. First, the attitude dynamics of the
LLV are presented, and the control-oriented model subject to undesired malfunctions is structured. Second,
a novel extended state observer (ESO) is designed to estimate the disturbances and fault informations, and the
nonlinear gain functions with two different linear ranges are introduced to improve the estimation accuracy
and reduce the effect of peaking value problem. Then, an integral terminal sliding mode fault tolerant
control scheme is proposed for the attitude faulty system, which would stabilize the closed-loop system
even existing the disturbances and actuator failures. Besides, utilizing the adaptive dynamic programming
(ADP) technique, a supplementary control with actor-critic structure is employed to further improve the
system tracking performance and provide the additional compensation control input according to the bias
between the desired value and actual one. Finally, the effectiveness of the proposed method is verified by
the simulation results.

INDEX TERMS Self-healing control, large launch vehicle, extended state observer, sliding mode control.

I. INTRODUCTION
With the development of the deep space explorations,
the large launch vehicles (LLVs) have received extensive
attention in aerospace engineering in the past few decades [1].
Different from traditional launch vehicles, the LLV can
provide tremendous lift to deliver more payloads to the
pre-selected orbit [2], [3]. However, the aerodynamic insta-
bility, fuel sloshing, strong nonlinearity and flex-mode have
brought great challenges for the design of flight control
system [4], [5]. Especially considering the severe flight
environment during the ascent phase and complex vehicle
structure, it is inevitable that several system or component
malfunctions are encountered [6], which may cause the
system performance degradation even instability. Therefore,
a more safe and reliable control system is required to accom-
modate undesirable failures.
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The self-healing control technique is an effective method
to counteract system malfunctions and maintain control per-
formance with an acceptable degree, and many research
results on the self-healing control have been obtained [7], [8].
Among these optional self-healing control approaches,
the passive fault tolerant control and active fault tolerant
control are the most common control techniques [9]. The
fixed control structure is usually utilized to be robust against
the given faults in the passive tolerant control. Thus, passive
tolerant control method can be regarded as a special form of
the robust control [10]. Considering the external disturbances
and unknown actuator loss of effectiveness, the passive fault
tolerant control approach is proposed in [11] for the hyper-
sonic vehicle by the terminal sliding mode technique. In [12],
an integral sliding mode fault tolerant control scheme is
proposed for the spacecraft attitude system and the adaptive
method is applied to remove the restriction for the boundary
of faults informations. In [13], a passive fault tolerant attitude
stabilization control method is designed, which can guarantee
local finite-time stability despite control input saturation.
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Although these passive tolerant control methods have rela-
tively simple control structure and not require online fault
informations, the fault-tolerant capability is severely limited
and only specific types of failures can be handled [14], which
serious restrict the application of the passive fault tolerant
control.

The active fault tolerant control method makes up for
the above shortcomings, which can reconfigure the control
parameters and structure based on the online fault estimation
informations by the fault diagnosis (FD) mechanism [15].
Thus, a better robustness and fault acceptability can be
obtained by the active fault tolerant control, and many related
results have been achieved. In the active fault tolerant control
design, the detections and estimations of the fault information
are crucial issues and plentiful approaches are researched.
The extended state observer (ESO), as an effective tool to
estimate total disturbances [16]–[19], is extensively used
during the fault tolerant design process. Considering the
actuator faults for the air-breathing hypersonic vehicle,
Liu et al. [20] developed an ESO-based back-stepping fault
tolerant control scheme for the attitude system, and two ESOs
are applied in each step, where the first ESO is used to
approximate the virtual control command and the second
one estimates the unknown disturbances, uncertainties and
actuator faults simultaneously. In [21], a fixed-time extended
state observer is proposed to estimate the grid fin faults
and system uncertainties for reusable launch vehicle, and
an adaptive fault-tolerant control method is developed by
the nonsingular fast terminal sliding mode technique, which
could guarantee a good tracking performance. For the non-
linear actuator faults and time-varying input delay, the state
estimation methods based on the T-S fuzzy approach are
proposed in the [22], and non-fragile reliable controller is also
designed to ensure the asymptotic stability of the closed-loop
systems. The ESO based on the sigmoid function is developed
in [23] to estimate the compound disturbances caused by large
attitude maneuver and complicated external environment for
the reusable launch vehicle. According to the concept of
self-healing control method, the fault tolerant control strategy
is proposed in the [24] and [25], which integrate the FD and
controller in a dynamic system. Combined with the sliding
mode and dynamic surface techniques, a self-healing strategy
for the hypersonic flight vehicle is proposed in [9] to ensure
the stability of the faulty systems. However, the ESO-based
self-healing control for large launch vehicle is still an open
issue and needs further research, which mainly motivates this
study.

On the other hand, most ESO-based fault tolerant control
approaches are in absence of the learning and parameter
updating capabilities, which would limit the further improv-
ing of the system control performance when encountering
undesired malfunctions. Different from the traditional con-
trol methods, adaptive dynamic programming (ADP) is a
data-driven learning technique and independent of the system
model and, which has the ability to learn and tune con-
troller parameters online [26]–[28]. In [29], an observer-critic

structure-based ADP is proposed to handle the decentral-
ized tracking control problem, and the Hamiltonian-Jacobi-
Bellman equation is solved by a critic neural network.
A model-free control scheme for a class of nonlinear sys-
tem is devised in [30] based on an incremental approximate
dynamic programming (I-ADP). Combing with ADP and
sliding-mode control technique, the tracking control issue is
solved in [31] for air-breathing hypersonic vehicles. If there is
a discrepancy between the actual value and reference signals,
the proposedADP arithmetic would produce a supplementary
control input to improve the system performance. Although,
both fault tolerant control and ADPmethods have made some
achievements, the organic combination of two approaches
requires further study.

Motivated by the above discussions, a self-healing control
strategy for the large launch vehicle with actuator faults is
proposed in this paper. The main contributions of this work
can be summarized as follows:

1) Applied with a nonlinear gain function, a novel ESO
is proposed to estimate the actuator faults and disturbances,
and two different forms of observations are integrated into
one ESO, which would avoid the peaking value problem.

2) Based on the estimated informations, an integral termi-
nal sliding mode fault tolerant control scheme is designed for
the attitude tracking system of LLV, and the finite time stabil-
ity of the closed-loop system can be achieved in presence of
disturbances and actuator malfunctions.

3) To further improve the system tracking performance,
an ADP with actor-critic structure is employed in the sup-
plementary controller, which would learn and tune controller
parameters according to the bias between the actual value and
the desired one.

The remainders of this paper are organized as follows:
Section II introduces the attitude dynamics of the LLV and the
control-oriented modes with actuator faults are established.
The ESO and fault tolerant control schemes are proposed
in Section III, and the design of supplementary controller
based on ADP is also described in this section. Furthermore,
the simulation results are presented in Section IV. Finally,
Section V provides a discussion of conclusions.
Notation: Rn is the n-dimensional Euclidean space, and
|| · || refers to the Euclidean vector norm. In denotes the
n-dimensional identity matrix. For a matrix Q ∈ Rm×n,
QT and Q−1 are the transposition and inverse of Q, respec-
tively. The λmin(Q) represents the minimum eigenvalue of the
matrixQ, and x× stands for the skew-symmetric matrix corre-
sponding to the vector x = [x1, x2, x3]T ∈ R3. Furthermore,
sat (·) and sgn(·) represent the standard saturation function
and sign function, respectively.

II. DYNAMIC MODEL AND PROBLEM FORMULATION
In this section, the attitude dynamics of the large launch
vehicle is first introduced, and the control-oriented mod-
els with actuator malfunctions are constructed. Besides,
the main objective of this note is also formulated in this
section.
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FIGURE 1. The configuration of propulsive engines.

A. ATTITUDE DYNAMICS OF LLV
A class of large launch vehicles (LLV) is considered in this
paper, and the propulsion system of the LLV is constituted by
two central rocket engines (CREs) and four strap-on rocket
boosters (SRBs), which would provide the control torques for
three channels, i.e. the pitch, yaw and roll channel [2]. The
main control objective of this note is to design a self-healing
control strategy for attitude dynamics of the LLV with actu-
ator failures, so the rotational equation is only expressed in
this paper, more information for the LLV mode can be found
in [6] and [21]. The dynamic model of the rotational motion
for LLV is given as follows:

Jω̇ = −ω×Jω + τ + d (1)

where τ ∈ R3 is the control torque vector, d =[
dx , dy, dz

]T is the unknown external disturbances, J =
diag

(
Jxx , Jyy, Jzz

)T
∈ R3×3 denotes the moment of inertia for

the axisymmetrical structure LLV, ω =
[
ωx , ωy, ωz

]T
∈ R3

represents the inertial angular velocity vector of the LLV
with respect to an inertial frame y, and ω× stands for the
skew-symmetric matrix operator, which can be expressed as

ω× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


The configuration of the propulsive rocket engines for

LLV is presented in Fig. 1. Arrows denote the positive direc-
tions of engine, and it can be found that four SRBs can only
move in one axis, while two CREs can move in two axes [6].
Note that the control torque for the pitch channel can be
provided by the 2−th SRB and 4-th SRB, for the yaw channel
can be offered by the 1-th SRB and 3-th SRB. Two CREs can

contribute the control torques for both pith and yaw channels.
Specially, the control torque for the roll channel is generated
by all engines.

Thus, the equivalent deflection angle δ =
[
δx , δy, δz

]T for
three channels can be described by

δ = TCREδ
CRE
+ TSREδ

SRE (2)

where δCRE =
[
δCRE1 , δCRE2 , δCRE3 , δCRE4

]T
∈ R4 and δSRE =[

δSRE1 , δSRE2 , δSRE3 , δSRE4

]T
∈ R4 represent the deflection

angles of SRBs and CREs, respectively. The TCRE, TSRE ∈

R3×4 are the distribution matrices, and their forms are given
as follows

TCRE =

 1
/
2 1

/
2 1

/
2 1

/
2

0 −1 0 1
−1 0 1 0


and

TSRE =

 1
/
4 1

/
4 1

/
4 1

/
4

0 −1
/
2 0 1

/
2

−1
/
2 0 −1

/
2 0

 .
Then, the control torque τ can be obtained

τ = Gδ =


−T (4R+ r) δx

−
5
2
T (L − xm)δy

−
5
2
T (L − xm)δz

 (3)

where diagonal matrix G ∈ R3×3 is the moment conversion
matrix, R and r denote the distances from x-axis to the SRB
and to CRE, respectively. xm stands for the location of mass
center, L denotes the distance from the engine to the top
of the rocket, and T represents the thrust magnitude. More
informations about the LLV can be found in [2] and [6].

According to the transformational from the inertial frame
to body frame, the attitude dynamics can be obtained as
follows

ξ̇ =

 φ̇ψ̇
θ̇

 = S (ξ)ω

=

 1 tanψ sinφ tanψ cosφ
0 cosφ − sinφ
0 secψ sinφ − secψ cosφ

ωxωy
ωz

 (4)

where the attitude vector ξ = [φ,ψ, θ ]T ∈ R3, φ,ψ and θ
represent roll angle, yaw angle, and pitch angle, respectively.

B. PROBLEM FORMULATION
The gain and bias faults are considered for CREs and SREs
in this paper, which commonly occurs on the actuator sys-
tem [34]. And the actuator fault model including both sorts
of faults is generally formed as{

δCREf = ECREδCRE + ρCRE,

δSREf = ESREδSRE + ρSRE,
(5)
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where ECRE
= diag

(
eCRE1 , eCRE2 , eCRE3 , eCRE4

)
and ESER

=

diag
(
eSRE1 , eSRE2 , eSRE3 , eSRE4

)
represent actuator effective-

ness, such that 0 < eCREi ≤ 1, 0 < eSREi ≤

1 (i = 1, 2, 3, 4), ρCRE =
[
ρCRE1 , ρCRE2 , ρCRE3 , ρCRE4

]T
and

ρSRE =
[
ρSRE1 , ρSRE2 ρSRE3 , ρSRE4

]T
are the bias faults.

Therefore, the actual control torques τ f = Gδf =

TCREδ
CRE
f + TSREδ

SRE
f , where τ f ∈ R3 and δf =[

δ
f
x , δ

f
y , δ

f
z

]T
∈ R3.

According to (1)-(5), the attitude system with actuator
faults for the LLV can be rewritten as

ξ̇ = S (ξ)ω,
ω̇ = J−1

(
−ω×Jω + τ f + d

)
= −J−1ω×Jω + J−1G (Eδ + ρ)+ J−1d.

(6)

Define tracking errors as e1 = ξ − ξ c and e2 = ξ̇ − ξ̇ c,
where ξ c and ξ̇ c denote the command attitude vector and its
derivative, respectively. Then, the following attitude tracking
error system is given
ė1=e2,
ė2= Ṡ (ξ)ω + S (ξ) ω̇ − ξ̈ c
=
(
Ṡ−SJ−1ω×Jω

)
ω+SJ−1G (Eδ+ρ)+SJ−1d−ξ̈ c.

(7)

In order to describe simply, the (7) can be rewritten as{
ė1 = e2,
ė2 = Fω + G1δ + D− ξ̈ c.

(8)

where F = Ṡ − SJ−1ω×Jω,G1 = S (ξ) J−1G and
D = SJ−1 · {G [(E− I) δ +ρ]+ d} . Therefore, the control-
oriented attitude tracking models with actuator faults for the
LLV are established.
The main control objective of this note is to design an

FTC strategy for attitude dynamics of the LLV, which would
make the attitude angle track the given command with a good
performance even in the presence of uncertainties, external
disturbances and actuator faults simultaneously.
Assumption 1: The compound disturbance D in (8) is

bounded and differentiable, i.e., there exist positive constants
d1 and d2, such that ‖D‖ ≤ d1 and

∥∥Ḋ∥∥ ≤ d2.
Remark 1: The deflection angles of aerodynamic sur-

face and engines are continuous and bounded within certain
ranges. Thus, the additional aerodynamic uncertainties and
disturbances are also bounded. Moreover, it is reasonable for
the engineering practice to assume that the actuator faults and
external disturbances are bounded. The similar assumption
could be found in [9].

III. MAIN RESULTS
In this section, the self-healing control strategy for LLV
is proposed to stable attitude tracking systems. In order
to estimate malfunction informations and external distur-
bances, an extended state observer is first constructed.
Then, employed the sliding mode technique, an ESO-based

fault tolerant controller is proposed to ensure the stabil-
ity of the closed-loop system. Finally, an adaptive dynam-
ics programming tool is used to improve the tracking
performance.

A. ESO DESIGN
To estimation the compound disturbance D in (8), which
includes fault signals and system uncertainties. The following
extended state observer is designed

˙̃e2=Fω+G1δ+D̃−ξ̈ c+r1

[
1
µ1
(e2−ẽ2)+

r3 (µ1−µ2)

µ2

· sat
(

1
µ1r3

(e2 − ẽ2)
)]
,

˙̃D=r2

[
1

µ2
1

(e2−ẽ2)+
r3
(
µ2
1−µ

2
2

)
µ1µ

2
2

sat
(

1
µ1r3

(e2−ẽ2)
)]
,

(9)

where ẽ2 ∈ R3 and D̃ ∈ R3 denote the observer states, ri,
(i = 1, 2, 3) and µj, (j = 1, 2) are observer gains to be
determined later.

According to the proposed ESO (9), the following theorem
can be obtained.
Theorem 1: Consider the attitude tracking error system (8)

and the ESO (9) under the Assumption 1, if the observer
gains ri, (i = 1, 2, 3) andµj, (j = 1, 2) are positive constants,
such that µ2 < µ1 � 1, then the estimation errors would
converge to some small residual set of zero, i.e. ‖e2 − ẽ2‖ →
o(µ2

2) and
∥∥∥D− D̃∥∥∥ → o(µ2) for ∀t > tµ1 + tµ2 , where

tµ1 and tµ2 are positive scalars corresponding to µ1 and µ2,
respectively.

Proof: Define the auxiliary variables as: yµ1
=

1
µ1
(e2 − ẽ2) , yµ2

=
1
µ2
(e2 − ẽ2), yD = D − D̃, and define

the new estimation errors variables as y = [yµ1
, yD]

T, ȳ =
[yµ2

, yD]
T. Then, taking the derivative of yµ1

and yD yields
ẏµ1
=

1
µ1

[
yD − r1yµ1

−
r1r3 (µ1 − µ2)

µ2
sat
(
yµ1

r3

)]
,

yD = Ḋ−
r2
µ1

[
yµ1
+
r3
(
µ2
1 − µ

2
2

)
µ2
2

sat
(
yµ1

r3

)]
.

(10)

Consider the following Lyapunov function candidate as

V1 =
1
2

(
yTµ1

P1yµ1
+ yTDP2yD − 2yTµ1

P3yD
)

+ λ

3∑
i=1

∫ yiµ1

0
sat

(
yiµ1

r3

)
dyiµ1

, (11)

where constant λ > 0, yiµ1
, (i = 1, 2, 3) stands for the

different elements of the column vector yµ1
. The terms in the

first bracket of Eq. (11) are constituted by the observation
errors of ESO, which would guarantee the estimation errors
converge to some small residual set of zero. According to pro-
posed ESO (9), the saturation function sat

(
1

µ1r3
(e2 − ẽ2)

)
is
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involved, which would synthesize two distinct linear regions
in ESO (9). The nonlinear gain function adopted is a com-
bination of two distinct linear regions, which correspond to
the transient and steady phase of the disturbance observer,
respectively. And P i, (i = 1, 2, 3) represents positive definite
symmetric matrices, such that P1−P3 > 0 and P2−P3 > 0.
According to the Young’s inequality [38], the following
inequality can be obtained

1
2

(
yTµ1

P1yµ1
+ yTDP2yD − 2yTµ1

P3yD
)

≥
1
2

[
yTµ1

(P1 − P3) yµ1
+ yTD (P2 − P3) yD

]
> 0. (12)

Furthermore, considering the integral term in (11), the sat-
uration function sat

(
yiµ1

/
r3
)
is an add function for yiµ1

,

which implies that λ
3∑
i=1

∫ yiµ1
0 sat

(
yiµ1
r3

)
dyiµ1
≥ 0. Therefore,

the function V1 is a positive function, i.e., the choice of the
Lyapunov function candidate is reasonable.

Then, taking the time derivative of V1 along (10) yields

V̇1

=

(
yTµ1

P1 − yTDP3

)
ẏµ1
+

(
yTDP2 − yTµ1

P3

)
ẏD

+ λ

3∑
i=1

sat

(
yiµ1

r3

)
ẏiµ1

=
yTµ1

P1−yTDP3

µ1

[
yD−r1yµ1

−
r1r3 (µ1−µ2)

µ2
sat
(
yµ1

r3

)]
+

(
yTDP2 − yTµ1

P3

)
×

{
Ḋ−

1
µ1

[
r2yµ1

+
r2r3

(
µ2
1 − µ

2
2

)
µ2
2

sat
(
yµ1

r3

)]}

+
λ

µ1

[
yTD−r1y

T
µ1
−
r1r3 (µ1−µ2)

µ2
satT

(
yµ1

r3

)]
sat
(
yµ1

r3

)

= −
yTµ1

(r1P1 − r2P3) yµ1

µ1

+
yTµ1

(P1 − r2P2 + r1P3) yD
µ1

−
yTDP3yD
µ1

+
r3
µ1

yTµ1

[
−r1 (µ1−µ2)

µ2
P1+

r2
(
µ2
1−µ

2
2

)
µ2
2

P3

]
sat
(
yµ1

r3

)

+
r3
µ1

yTD

[
r1 (µ1−µ2)

µ2
P3 −

r2
(
µ2
1−µ

2
2

)
µ2
2

P2

]
sat
(
yµ1

r3

)

+
λ

µ1

[
yTD−r1y

T
µ1
−
r1r3 (µ1−µ2)

µ2
satT

(
yµ1

r3

)]
sat
(
yµ1

r3

)
+

(
yTDP2 − yTµ1

P3

)
Ḋ. (13)

Let matrices P i, (i = 1, 2, 3) and the constant λ satisfies
the following conditions

P1 − P3 > 0,
P2 − P3 > 0,
r1P1 − r2P3 > 0,
P1 − r2P2 + r1P3 = 0,

r2r3
(
µ2
1

/
µ2
2 − 1

)
P2 − r1r3

(
µ1
/
µ2 − 1

)
P3 = λI.

(14)

Then, it can be deduced that

V̇1

=−
yTµ1

(r1P1 − r2P3) yµ1

µ1
−
yTDP3yD
µ1

+

(
yTDP2−yTµ1

P3

)
Ḋ

+
yTµ1

µ1

[
−r1λI +

r2r3
(
µ2
1 − µ

2
2

)
µ2
2

P3

−
r1r3 (µ1 − µ2)

µ2
P1

]
sat
(
yµ1

r3

)
−
r1r3λ (µ1 − µ2)

µ1µ2
satT

(
yµ1

r3

)
sat
(
yµ1

r3

)
. (15)

According to the previous constraint µ2 < µ1 and condi-
tion (14), we have

−r1λI+
r2r3P3

(
µ2
1−µ

2
2

)
µ2
2

−
r1r3P1 (µ1 − µ2)

µ2
<0 (16)

To describe the subsequent proof clearly, the following two
compact sets are introduced

51 =

{
y ∈ R6

|V1(y) ≤ K1

}
52 =

{
y ∈ R6

|V1(y) ≤ K2

}
(17)

where 52 is a positive constant such that max
y∈52
{y1µ1

, y2µ1
,

y3µ1
} ≤ r3 and 51 = max {V1 (0) ,52}. Then, the following

two steps would be given to complete the subsequent proof.
Step 1: Consider the situation that if y ∈ 51 − 52,

there exists a moment tµ1 such that y ∈ 52 for ∀t ≥ tµ1 .
On account of the different value of the

(
yµ1

/
r3
)
, the follow-

ing two cases would be discussed, respectively.
Case A: For

∣∣yiµ1

∣∣ ≤ r3, i = 1, 2, 3, we have

sat
(
yµ1

r3

)
=

[
sat

(
y1µ1

r3

)
, sat

(
y2µ1

r3

)
, sat

(
y3µ1

r3

)]T

=

[
y1µ1

r3
,
y2µ1

r3
,
y3µ1

r3

]T
=
yµ1

r3
. (18)

Thus, combing with the Young’s inequality [38], the Lya-
punov function (11) can be rewritten as follows

V1 =
1
2

(
yTµ1

P1yµ1
+ yTDP2yD − 2yTµ1

P3yD
)
+

λ

2r3
yTµ1

yµ1

≤
1
2

∥∥∥∥P1 + P3 +
λ

r3
I
∥∥∥∥ ∥∥yµ1

∥∥2 + 1
2
‖P2 + P3‖

∥∥yD∥∥2 ,
(19)

VOLUME 8, 2020 43017



X. Liang et al.: Self-Healing Control for LLV Based on ESO and ADP

According to the Assumption 1 and conditions (14), we can
be obtained that

V̇1

= −
yTµ1

(r1P1−r2P3) yµ1

µ1
−
yTDP3yD
µ1

+

(
yTDP2 − yTµ1

P3

)
Ḋ

+
yTµ1

µ1

[
−
r1λ
r3

I+
r2
(
µ2
1−µ

2
2

)
µ2
2

P3−
r1 (µ1−µ2)

µ2
P1

]
yµ1

−
r1λ (µ1 − µ2)

µ1µ2r3
yTµ1

yµ1

=−
1
µ1

yTµ1

(
r1λ
r3

µ1

µ2
I+r1

µ1

µ2
P1−r2

µ2
1

µ2
2

P3

)
yµ1
−
yTDP3yD
µ1

+

(
yTDP2 − yTµ1

P3

)
Ḋ

≤ −
1

2µ1

(
yTµ1
01yµ1

+ yTDP3yD
)
+g1d2 ‖y‖−

1
2µ1

g2 ‖y‖2 ,

(20)

where 01 ,
r1λ
r3

µ1
µ2
I + r1

µ1
µ2
P1 − r2

µ2
1
µ2
2
P3, g1 = ‖P2‖ +

‖P3‖, and g2 denotes the minimum eigenvalue of the matrix
diag {01,P3}.
Let µ1 ≤

g2
2g1d2

min
y∈51−52

‖y‖, it yields

V̇1≤−
1

2µ1

(
yTµ1
01yµ1

+yTDP3yD
)
−‖y‖

(
g2
2µ1
‖y‖−g1d2

)
≤−

1
2µ1

(
yTµ1
01yµ1

+ yTDP3yD
)
≤

g3
µ1

V1 (21)

where g3 = min
{

λmin(01)
‖P1+P3+λ/r3I‖ ,

λmin(P3)
‖P2+P3‖

}
.

Case B: For ∀
∣∣yiµ1

∣∣ > r3, i = 1, 2, 3, we have

sat
(
yµ1

r3

)
= sgn

(
yµ1

)
(22)

In order to avoid the awkward phrasing, define the n as
the number of yiµ1

such that
∣∣yiµ1

∣∣ > r3, and m denotes the
number of yiµ1

such that
∣∣yiµ1

∣∣ ≤ r3. Then, substituting (22)
into (11) yields

V1=
1
2

(
yTµ1

P1yµ1
+yTDP2yD−2y

T
µ1
P3yD

)
+

m∑
i=1

λ

2r3

(
yiµ1

)2
+

n∑
j=1

(
λ

∣∣∣yjµ1

∣∣∣− λr3
2

)

≤
1
2
yTµ1

(
P1 + P3 +

λ

r3
I
)
yµ1
+

1
2
yTD (P2 + P3) yD

+

n∑
j=1

(
λ

∣∣∣yjµ1

∣∣∣− λr3
2

)

≤
1
2

∥∥∥∥P1 + P3 +
λ

r3
I
∥∥∥∥ ∥∥yµ1

∥∥2 + 1
2
‖P2 + P3‖

∥∥yD∥∥2
+

n∑
j=1

(
λ

∣∣∣yjµ1

∣∣∣− λr3
2

)
(23)

Combined with the (15) and the Young’s inequality [38],
we have

V̇1 ≤ −
yTµ1

(r1P1 − r2P3) yµ1

µ1
−
yTDP3yD
µ1

+ g1d2 ‖y‖ −
1
µ1

n∑
i=1

∣∣∣yiµ1

∣∣∣0i2
−

n∑
j=1

(
r1r3λ(µ1µ2 − µ2)

µ1µ2

)
≤ −

1
2µ1

yTµ1
(r1P1−r2P3) yµ1

−
1

2µ1
yTDP3yD+g1d2 ‖y‖

−
1

2µ1
g4 ‖y‖2 −

g5
µ1

n∑
j=1

(∣∣∣yiµ1

∣∣∣− r3
2

)
(24)

where 02 = r1λI +
r1r3(µ1−µ2)

µ2
P1 −

r2r3
(
µ2
1−µ

2
2

)
µ2
2

P3 is a pos-

itive definite symmetric matrix, 0i2 denotes the i-th diagonal
element for 02, g4 is the minimum eigenvalue of the matrix
diag {(r1P1 − r2P3) ,P3}, g5 is the minimum eigenvalue of
the matrix 02.
Let µ1 ≤

g4
2g1d2

min
y∈51−52

‖y‖, equation (24) can be

expressed as

V̇1 ≤ −
1

2µ1
yTµ1

(r1P1 − r2P3) yµ1

−
1

2µ1
yTDP3yD −

g5
µ1

n∑
j=1

(∣∣∣yiµ1

∣∣∣− r3
2

)
≤ −

g6
µ1

V1 (25)

where g6 = min
{
λmin(r1P1−r2P3)
‖P1+P3+λ/r3I‖ ,

λmin(P3)
‖P2+P3‖

,
min(02)

λ

}
.

According to the (21) and (25), utilizing the comparison
principle of ordinary differential equations, one can further
obtain that

V1 (y(t)) ≤ e
−
g7
υ1 V1 (y(0)) (26)

where υ1 ≤ min
{

g2
2g1d2

min
y∈51−52

‖y‖ , g4
2g1d2

min
y∈51−52

‖y‖
}

and g7 = min {g3, g6}.
Therefore, it can be obtained that y ∈ 52, for ∀t ≥ tµ1 =

υ1
g7

ln
(
K1
K2

)
, which means that even y ∈ 51 − 52, the V (y)

would decrease until y ∈ 52 again.
Step 2:Consider the situation that y ∈ 52, we have

∣∣yiµ1

∣∣ ≤
r3, (i = 1, 2, 3), for ∀t ≥ tµ1 . Thus, the following estimation
error system can be obtained

ẏµ2
=
yD − r1yµ2

µ2

ẏD = −
r2
µ2

yµ2
+ Ḋ

(27)

Select the Lyapunov function candidate as follows

V2 =
1
2

(
yTµ2

P1yµ2
+ yTDP2yD − 2yTµ2

P3yD
)

(28)
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Based on the Young’s inequality [38], we have

1
2
yTµ2

(P1 − P3) yµ2
+

1
2
yTD (P2 − P3) yD

≤ V2 ≤
1
2
yTµ2

(P1 + P3) yµ2
+

1
2
yTD (P2 + P3) yD (29)

So, the time derivative of V2 can be obtained

V̇2=
(
yTµ2

P1 − yTDP3

)
ẏµ2
+

(
yTDP2 − yTµ2

P3

)
ẏD

=−
yTµ2

(r1P1−r2P3) yµ2

µ2
−
yTDP3yD
µ2

+

(
yTDP2−yTµ2

P3

)
Ḋ

(30)

Then, it yields

V̇2 ≤ −
yTµ2

(r1P1 − r2P3) yµ2

µ2
−
yTDP3yD
µ2

+ g1d2 ‖ȳ‖

≤ −
g8
µ2

V2 + g1d2

√
V2
g9

(31)

where g8 = min
{
2λmin(r1P1−r2P3)
‖P1+P3‖

,
2λmin(P3)
‖P2+P3‖

}
and g9 denotes

theminimum eigenvalue of thematrix diag
{
P1−P3

2 ,
P2−P3

2

}
.

On account of the Eq. (31), it can be found that if

V2 >
4g21µ

2
2d

2
2

g28g9
, we have

V̇2 ≤ −
g8
µ2

V2 + g1d2

√
V2
g9
≤ −

g8
2µ2

V2 < 0 (32)

According to the comparison principle of ordinary differ-
ential equations, it follows that

V2 (ȳ (t)) ≤ e
−

g8
2µ2

(
t−tµ1

)
V2
(
ȳ
(
tµ1

))
(33)

Recalling the definition y and ȳ, we can conclude that when
t ≥ tµ1 , y ∈ 52, and there exists a positive constant K3 such
that V2 (ȳ (t)) ≤ K3. Then, for t ≥ tµ1 + tµ2 , where tµ2 ,
2µ2
g8

ln
(

max
{
4g21µ

2
2d

2
2

/
g28g9,K3

}
4g21µ

2
2d

2
2

/
g28g9

)
, we can obtain that

V2 ≤
4g21µ

2
2d

2
2

g28g9
(34)

Besides, on basis of the (28), it holds that

‖ȳ(t)‖≤

√
V2(ȳ(t))
g9

≤
2g1µ2

2d2
g8g9

(35)

‖e2(t)−ẽ2(t)‖=µ2
∥∥yµ2

(t)
∥∥ ≤ µ2 ‖ȳ(t)‖≤

2g1µ2
2d2

g8g9
(36)∥∥∥D(t)−D̃(t)∥∥∥= ∥∥yD(t)∥∥≤‖ȳ(t)‖≤ 2g1µ2d2

g8g9
(37)

Therefore, it can be concluded that the estimation errors
‖e2 − ẽ2‖ and

∥∥∥D− D̃∥∥∥would converge to some small resid-

ual set of zero for t > tµ1 + tµ2 . �
Remark 2: It can be seen form the proposed ESO (9) that

there are two different form of the observer caused by the

saturation function sat
(

1
µ1r3

(e2 − ẽ2)
)
. For

∣∣∣∣ ei2−ẽi2µ1r3

∣∣∣∣ ≤ 1, i =

1, 2, 3, the corresponding observer is given as follows
˙̃e2 = Fω + G1δ + D̃+

r1
µ2
(e2 − ẽ2)

˙̃D =
r2
µ2
2

(e2 − ẽ2)
(38)

Thus, it is obvious that the observer operates within a larger
linear region attributed to the parameter µ2 during the steady

phase. Conversely, when

∣∣∣∣ ei2−ẽi2µ1r3

∣∣∣∣ > 1, i = 1, 2, 3, the follow-

ing form of the observer can be obtained
˙̃e2=Fω+G1δ+D̃+r1

[
e2−ẽ2
µ1
+
r3 (µ1−µ2)

µ2
sgn (e2−ẽ2)

]

˙̃D = r2

[
1

µ2
1

(e2 − ẽ2)+
r3
(
µ2
1 − µ

2
2

)
µ1µ

2
2

sgn (e2 − ẽ2)

]
(39)

It can be found that the observer operates within a smaller
linear region due to the parameter µ2 during the transient
phase. Similarly, a sliding mode-like term is employed to
improve the performances of the observer [35].

B. FAULT TOLERANT CONTROL SCHEME DESIGN
Utilizing the proposed ESO (9), we have obtained the estima-
tion vector D̃ for compound disturbances, including external
disturbances and fault informations. Next, the main aim is
to design a fault tolerant controller to maintain the system
tracking performance.

For system (8) with actuator faults, the following integral
terminal sliding mode surface is designed

s = e2 +
∫ t

0

(
l1e1 ‖e1‖a−1 + l2e2 ‖e2‖b−1

)
dt (40)

where l1 and l2 are positive constants, 0 < b < 1 and a =
2b
2−b . With the help of the proposed ESO (9), the sliding mode
fault tolerant control law is proposed as follows

δ = −G−11

(
Fω + D̃− ξ̈ c + l1e1 ‖e1‖

a−1
+ l2e2 ‖e2‖b−1

+ ζ1s +ζ2s ‖s‖c−1
)

(41)

where the ζi, (i = 1, 2) and c are controller parameters, which
would be determined later.
Theorem 2: Consider the attitude tracking error systems (8)

subject to actuator faults (5), if the fault tolerant control law
designed as the (34), the control parameters ζi > 0, (i = 1, 2)
and 0 < c < 1, then the stability of the closed-loop system
would be guaranteed even existing the system uncertainties
and actuator malfunctions.

Proof: The derivative of sliding mode surface (33) with
respect to time yields that

ṡ = ė2 + l1e1 ‖e1‖a−1 + l2e2 ‖e2‖b−1 (42)
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According to the (8) and (34), it follows that

ṡ = Fω + G1δ + D− ξ̈ c + l1e1 ‖e1‖
a−1
+ l2e2 ‖e2‖b−1

= D− D̃− ζ1s− ζ2s ‖s‖c−1

= yD − ζ1s− ζ2s ‖s‖
c−1 (43)

Choose the Lyapunov function candidate as

W1 =
1
2
sTs+

1
2
eT1 e1 +

1
2
eT2 e2 (44)

Besides, we can conclude that ‖e1‖a ≤ 1 + ‖e1‖ for
0 < a < 1. Similarly, the inequalities ‖e2‖b ≤ 1 + ‖e2‖
and ‖s‖c ≤ 1+‖s‖ are true. Thus, the derivative ofW1 along
the trajectories of (8) can be obtained as follows

Ẇ1 = sTṡ+ eT1 ė1 + e
T
2 ė2

= sTṡ+ eT1 e2 + e
T
2

(̇
s− l1 ‖e1‖a

e1
‖e1‖

− l2 ‖e2‖b
e2
‖e2‖

)
≤

∥∥∥sTyD∥∥∥+ ∥∥∥eT1 e2∥∥∥+ ‖e2‖ ∥∥yD∥∥
+ ζ1 ‖e2‖ ‖s‖ + ζ2 ‖e2‖ (1+ ‖s‖)

+ l1 ‖e2‖ (1+ ‖e1‖)+ l2 ‖e2‖ (1+ ‖e2‖)

≤
1
2

(
‖s‖2 +

∥∥yD∥∥2)+ 1
2

(
‖e1‖2 + ‖e2‖2

)
+

1
2

(
‖e2‖2 +

∥∥yD∥∥2)
+

1
2
(ζ1 + ζ2)

(
‖e2‖2 + ‖s‖2

)
+

1
2

(
ζ 22 + ‖s‖

2
)
+

1
2

(
l21 + ‖e2‖

2
)

+
l1
2

(
‖e1‖2 + ‖e2‖2

)
+

1
2

(
l22 + ‖e2‖

2
)
+ l2 ‖e2‖2

=
1+ ζ1 + ζ2

2
‖s‖2 +

1+ l1
2
‖e1‖2

+
4+ ζ1 + ζ2 + l1 + 2l2

2
‖e2‖2

+
∥∥yD∥∥2 + ζ 222 + l21 + l

2
2

2
≤ rW1 + l (45)

where r , 4 + ζ1 + ζ2 + l1 + 2l2 and l ,
max

{∥∥yD∥∥2 + ζ 22/2 (l21 + l22)/2}. According to the Theo-
rem 1, the estimation error yD would converge to some small
residual set of zero, i.e., the l is bounded. Thus, the derivative
of sliding mode s can be rewritten as

ṡ = −ζ1s− ζ2s ‖s‖c−1 (46)

It is obvious that (38) is finite time stable. Once the sliding
mode surface is reached, i.e., ṡ = 0, we have

ė2 + l1e1 ‖e1‖a−1 + l2e2 ‖e2‖b−1 = 0 (47)

Then, (8) can be converted to{
ė1 = e2
ė2 = −l1e1 ‖e1‖a−1 − l2e2 ‖e2‖b−1

(48)

Selecting the Lyapunov function as

W2 = l1
‖e1‖a+1

a+ 1
+

1
2
‖e2‖2 (49)

The derivative ofW2 is given as follows

Ẇ2 = l1 ‖e1‖a−1 eT1 ė1 + e
T
2 ė2

= l1 ‖e1‖a−1 eT1 e2 − e
T
2

(
l1e1 ‖e1‖a−1 + l2e2 ‖e2‖b−1

)
= −l2 ‖e2‖b+1 ≤ 0 (50)

Therefore, the system (8) is asymptotic stable. In addition,
for the vector space (48), one has(

ei1, e
j
2

)
→

(
ηei1, η

1/(2−b)ej2
)

(51)

where η is a positive constant, ei1, (i = 1, 2, 3) is the
i-th element of vector e1 and ej2, (j = 1, 2, 3) is the j-th
element of vector e2, respectively. Thus, the vector space (48)
is homogeneous to (b− 1)

/
(2− b) < 0. On basis of [36],

the finite time stability of closed-loop system (39) is ensured,
i.e., the tracking error e1 and e2 would converge to zero in
finite time. �
Remark 3: According to the (38) and (48), the finite-time

convergence of the reaching and sliding phase can be guaran-
teed by the proposed control law. Therefore, the finite-time
stability is achieved successfully by the proposed fault tol-
erant control scheme, which accords with practical demands
that the time of accommodation malfunctions for LLV is
limited [37].

C. ADP-BASED SUPPLEMENTARY CONTROL DESIGN
In order to improve the tracking performance for LLV and
further decrease the tracking errors even existing actuator
faults, a supplementary controller is introduced based on
the adaptive dynamic programming (ADP) with actor-critic
structures [33].
Frist, define the new state as x(k) =

[
eT1 (k − 1), eT2 (k − 1),

eT1 (k), e
T
2 (k)

]T
, where e1(k − 1) and e2(k − 1) denote the

values of e1 and e2 at previous moment, respectively. k is the
discretization step, and Thus, the utility function is given as
follows

r(x(k),u(k)) = [xT(k),uT(k)]K r [xT(k),uT(k)]T (52)

where u(k) = δ(k) is control input generated by the
ADP algorithm, and K r is a positive-definite diagonal
matrix.

Then, the cost function can be formulated as follows

J (x(k),u(k)) =
∞∑
i=k

εi−kr(x(i),u(i)) (53)

where ε ∈ (0, 1) is the discount factor.
In conclusion, the aim of ADP is to find an appropri-

ate input u(k) which would minimize the cost function
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FIGURE 2. The structure of actor networks.

J (x(t),u(t)), it follows that

J∗(x(k),u(k)) = min
u(k)

∞∑
i=k

εi−kr(x(i),u(i)) (54)

where J∗(x(t),u(t)) is the optimal cost function.
According to the optimization theory, we can obtain the

following the Bellman equation

J∗(x(k),u(k))=min
u(k)
{r(x(k),u(k))+εJ∗(x(k+1),u(k+1))}

(55)

Furthermore, the action-critic neural network structure is
utilized to get an approximately solution J̃ (k) during the
design of supplementary control, and only one hidden layer
is employed in the ADP.

Let N a
input and N a

output denote the number of inputs and
outputs for action networks, respectively. The input ainput and
output aoutput of action networks are described as

ainput = x(k), and aoutput = u(k) (56)

And the input cinput and output coutput of the critic networks
can be expressed as

cinput =
[
ainput , aoutput

]T
, and coutput = J̃ (k) (57)

Then, the number of inputs for critic network is N c
input =

N a
input + N a

output , and the number of the output is one.
The structures of action and critic networks are presented
in Figs. 2 and Fig. 3.

For the action networks, the input maj (k) and output naj (k)
of the j− th node are given as follows

maj (k) =

N a
input∑
i=1

waj,i(k)xi(k), j = 1, 2, · · · ,N a
h (58)

naj (k) = S(maj (k)) =
1− e−m

a
j (k)

1+ e−m
j
a(k)

(59)

where waj,i is the weight, the S(t) is a hyperbolic tangent

transfer function, i.e. S(t) = 1−e−t
1+e−t , and N a

h denotes the

FIGURE 3. The structure of critic networks.

number of hidden nodes for action networks. The out-
put up(k) of the p − th output node can be expressed
by

up(k) =
N a
h∑

j=1

w̄ap,j(k)n
a
j (k), p = 1, 2, · · · ,N a

o (60)

where w̄ap,j stands for the weights. Define prediction errors
as ea(k) = J̃ (k) − Uc, where Uc is the desired ulti-
mate objective function. Then, the prediction error would be
back-propagated to train the action networks. Because the
objective for the ADP is to make e1 and e2 converge to zero,
which implies the J̃ (k) would also be zero. Without loss of
generality, let Uc = 0, it can be obtained that the error
function is Ea(t) =

eTa ea
2 .

Similarly, for the critic networks, the input mcj (k) and

output ncj (k) of the j − th hidden node can be described
as

mcj (k) =

N a
input∑
i=1

wcj,i(k)xi(k)+
Nao∑
i=1

wcj,i+N a
input

(k)ui(k) (61)

ncj (k)= S
(
mcj (k)

)
=

1−e−m
c
j (k)

1+e−m
c
j (k)
, j=1, 2, · · · ,Nch (62)

where wcj,i represents the weight. And the J̃ (k) is

J̃ (k) =

N c
output∑
j=1

w̄cj (k)n
c
j (k) (63)

where w̄cj (k) is the weight. Define the prediction error as
ec(k) = εJ̃ (k) + r(x(k),u(k)) − J̃ (k − 1), which would be
back-propagated to train the critic networks. Thus, the mini-
mum of the error function is Ec(t) = 1

2e
2
c(t).

On basis of the gradient descent algorithm, the weight
updating policy for action and critic networks are given
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as follows:

1waj,i (k)

= λa
∂Ea(k)
∂waj,i(k)

= −
λa

2
J̃ (k)

N a
output∑
p=1

 N c
h∑

l=1

1
2
w̄cl (k)

(
1−

(
ncl (k)

)2)wcl,(Nai+p)


· w̄ap,j(k)
(
1−

(
naj (k)

)2)
xi(k) (64)

1w̄ap,j(k)

= −λa
∂Ea(k)
∂w̄ap,j(k)

= −
λa

2
J̃ (k)

 N c
h∑

l=1

w̄cl (k)
(
1−

(
ncl (k)

)2)wcl,(Nai+p)
 naj (k)

(65)

1wcj,i(k)

= −λc
∂Ec(k)
∂wcj,i(k)

= −ελcec(k)wcj (k)
1
2

(
1−

(
ncj (k)

)2)
xi(k) (66)

1w̄cj (k)

= −λc
∂Ec(k)
∂w̄cj (k)

= −ελcec(k)ncj (k) (67)

where λa and λc are learning rates such that λa > 0, λc > 0.
Until here, the design of supplementary control scheme based
on ADP is completed.

IV. SIMULATION RESULTS
In this section, the numerical simulations are presented to
declare the effectiveness of the proposed self-healing control
method for the LLV with actuator faults.

The parameters for the LLV on this example are given as:
R = 3.00 m, r = 1.00 m, and L = 52.00 m, xm = 35.00
m, T = 1.2 × 106 N, Jxx = 2.9 × 106kg · m2, and Jyy =
Jzz = 5.9 × 107kg · m2. More information about the launch
vehicle can be found in [2] and [21]. The initial states of the
attitude system for the LLV are ξ = [φ,ψ, θ ]T = [0, 0, 90◦]T

and ωx = ωy = ωz = 0 deg/s. In addition, the desirable
attitude command ξ c is selected as ξ c = [15◦,−10◦, 80◦]T.
Consider that a desirable attitude constant command ξ c may
bring excessive initial errors, which would produce the huge
control input and the peaking value. Thus, a seconded order
filter is adopted to smooth the desirable attitude command ξ c,
instead of giving the attitude system a constant command
directly. The form of the second order filter is given as
G(s) = 0.04

s2+0.4s+0.04
, and the same approach is adopted

in [32]. Furthermore, because the measurement noise is an
important factor affecting the performance of the control sys-
tem, the simulation scenario with the measurement noise of
angular velocity is also consider in the part. Themeasurement

FIGURE 4. The tracking curve of the roll angle.

noise is assumed to beGauss white noise withmean value of 0
and standard deviation of 0.01.

Considering the energy consumption and the effects of
flex-mode and fuel sloshing, the moment of inertia and aero-
dynamic force/moment coefficients are assumed with 10%
uncertainties. The external disturbances d used in this simu-
lation are d = 103 [sin(t), cos(t), sin(t)]T [9]. Furthermore,
the following time-varying actuator faults are considered,

eCRE2 =

{
1 0 ≤ t < 20
0.65 20 ≤ t,

eSRE2 =

{
1 0 ≤ t < 20
0.7, 20 ≤ t

ρCRE3 =

{
0 0 ≤ t < 20
100sin

(
π
4 t
)

20 ≤ t

The parameters for the proposed ESO and self-healing
control strategy are selected as: r1 = 2.5, r2 = 1, r3 = 8,
µ1 = 0.1, µ2 = 0.03, l1 = l2 = 0.75, ζ1 = 1.25, ζ2 = 0.5,
K r = 0.1 ∗ I , µ = 0.85. The numbers of the hidden nodes
for actor and critic networks are both 12. The initial values
of the learning rates are λa = λc = 0.4, and values of λa
and λc would decrease by 0.05 every ten seconds until λa ≤
0.005 and λc ≤ 0.005. In addition, all the initial weights are
in [−0.35, 0.35] randomly, which means that the supplemen-
tary magnitude is within a certain degree, and the similar
measures are applied in [32] and [33].

By employed the proposed self-healing control strategy to
the system (8) for the LLV, the simulation results are given
in Figs. 4∼16, from which it can be found that the attitude
tracking missions for the LLV are successfully achieved even
existing the external disturbances and underside actuator mal-
functions. Furthermore, the fault tolerant control methods
in [2] are applied in this simulation scenarios as a comparison,
and the corresponding results are shown in Figs. 4∼13.

For the bias and part loss of effectiveness malfunctions
for the propulsion system, the attitude tracking performances
for the LLV with different control schemes are presented
in Figs. 4-6. It can be seen that both two control methods
could achieve the attitude tracking missions and ensure the
stability of the closed-loop system despite actuator failures.
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FIGURE 5. The tracking curve of yaw angle.

FIGURE 6. The tracking curve of pitch angle.

FIGURE 7. The tracking errors of the attitude angle.

However, a good tracking performance can be guaranteed
by the proposed self-healing control in the case of actuator
failures. Fig 7 shows the tracking errors of the attitude angle.
As we can see from the Fig. 7, a smaller tracking error and
shorter convergence time can be obtained by the proposed
methods, and the tracking error is less than 0.01 deg. when

FIGURE 8. The time responses of the attitude velocity.

FIGURE 9. The time responses of observer errors.

FIGURE 10. Deflection angles of the SRE by proposed methods.

the undesired malfunctions occur at 20 s, the proposed meth-
ods can accommodate the faults faster than the controller
in [2]. The time responses of the attitude velocity are depicted
in Fig. 8. It is worth mentioning that the closed-loop is stable
even in presence of the measurement noise for the angular
velocity. an Applying the proposed ESO, the observer error
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FIGURE 11. Deflection angles of the CRE by proposed methods.

FIGURE 12. Deflection angles of the SRE by methods in [2].

FIGURE 13. Deflection angles of the CRE by methods in [2].

of the compound disturbanceD is shown in Fig. 9, fromwhich
it can be found that the estimation error would converge
to a small region rapidly and the observation error is less
than 0.01. It should be pointed that this quality is also guar-
anteed in the situation with undesired failures.

The deflection angles of the SRE and CRE with
two different control methods are given in Figs. 10-13,

FIGURE 14. The time responses of utility function r (x,u).

FIGURE 15. The time responses of cost function.

and not larger than ±12 deg, which satisfy the engineering
demand, i.e. the limit of control ability. It can be seen from the
Figs. 10-13 that the deflection angles of the SRE by proposed
methods change between +5 and −5, and the deflection
angles of the SRE by [2] change between +10 and −10,
i.e., there is a smaller region for the control input of the
proposed method that [2]. The similar conclusion can be
obtained of the deflection angles of the CRE. In addition,
the proposed ADP-based supplementary control has a good
adaptation and generalization ability for the measurement
noise. When the system is stable, the deflection angles of
actuators caused by the measurement noise and other external
disturbances are in a narrower range than [2].

The utility function r(x,u) is represented in Fig 14. It is
obvious from Fig. 14 that the utility function would quickly
converge to zerowhen the actuator faults happen at 20 s by the
proposed weight updating algorithm, which implies that the
attitude tracking error decreases to zero. Fig. 15 shows
the curve of cost function, which would converge to zero
quickly. Based on proposed supplementary control strategy,
the cost function rapidly decreases to zero when the system
encounters the malfunctions at 20 s, which further proves the
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FIGURE 16. The weight updating of wa
3 .

correctness of the proposed methods. Fig. 16 shows weight
updating ofwa3, where thew

a
3 denotes the weights from inputs

to the third hidden node. As shown in Fig. 16, the weights wa3
would be adjusted in the simulation process, and converge
to certain values. From the above discussions, the simulation
results demonstrate the effectiveness and advantage of the
control scheme.

V. CONCLUSION
In this note, the self-healing control strategy based on ESO
and adaptive dynamic programming is proposed for the atti-
tude system of the LLV. The ESO is first designed to estimate
the compound disturbances, including system uncertainties,
disturbances, and actuator faults. Specially, the nonlinear
gains are applied to reduce the observation errors. Based
on the estimations, an integral terminal sliding mode fault
tolerant scheme is proposed to ensure the finite-time sta-
bility of the closed-loop system even existing malfunctions.
Besides, an ADP-based supplementary controller is intro-
duced to further improve the system performance. Finally,
the simulations illustrate the effectiveness of the proposed
control methods. It should be mentioned that the form of the
actuator faults/failures is affine in this paper, and a non-affine
form may be considered in the future papers. Furthermore,
the fault tolerant control under the actuator saturation is also
a significant issue for the LLV, which may be our future
research work.
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