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ABSTRACT To fulfill the tasks of human-robot interaction (HRI), how to detect the specific human (SH)
becomes paramount. In this paper, the deep learning approach by the integration of Single-Shot Detection,
FaceNet, and Kernelized Correlation Filter (SSD-FN-KCF) is developed. From the outset, the SSD is
employed to detect the human up to 8m using the RGB-D camera with 320× 240 resolution. Afterward the
omnidirectional mobile robot (ODMR) is driven to the neighborhood of 2.5∼3.0m such that the depth image
can accurately estimate the detected human’s pose. Subsequently, the ODMR is commanded to the vicinity
of 1.0m and the orientation inside−60∼60◦ with respect to the optical axis to identify whether he/she is the
SH by the FaceNet. To reduce the computation time of the FaceNet and extend the SH’s tracking, the KCF
is employed to achieve the task of HRI (e.g., human following). Based on the image processing result,
the required pose for searching or tracking (specific) human is accomplished by the image-based adaptive
finite-time hierarchical constraint control. Finally, the experiment with the SH, who is far from and on the
backside of the ODMR, validates the effectiveness and robustness of the proposed approach.

INDEX TERMS Deep learning, human detection, face recognition, visual tracking, omnidirectional mobile
robot, adaptive finite-time hierarchical constraint control, human following.

I. INTRODUCTION
Human-robot interaction (or collaboration) has received
increasing attention in the last decades, since robots may act
as both helpers and companions for the elderly and impaired
people, especially for an aging population [1], [2]. With the
great progresses in robotics and rapid evolutions on comput-
ing systems, many advanced social, service, and surveillance
mobile robots have been or are being developed around the
world. One of the key functionality for these advanced robots
is the ability to detect specific human in real time [3]–[8].
A service robot needs to be aware of human around and track
a target person to provide services. A social robot should
be able to pay attention to persons in the view and keep
tracking the engaged persons in the interaction. A surveil-
lance robot may be required to monitor persons in the scene
and approach a suspected person for a close observation of
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his/her appearance and behavior. For these tasks, the most
challenging scenarios are detecting and tracking multiple
persons in frequently crowded and cluttered scenes in public
environments. Real-time human detection and tracking has
become one of the research focuses for service, social and
surveillance robots in the literature due to its necessity for
human-robot interaction.

Recently, at least two approaches for the object detec-
tion [9]–[12]. The 1st approach connected with deep learn-
ing is two-stage process. The 1st stage so-called ‘‘Select
Search’’ finds the candidate region for the object. The con-
volution neural network (CNN) is employed to extract their
features for prediction. In the 2nd stage, the correspond-
ing features for different candidates are classified by sup-
port vector machine (SVM). Although the 1st approach is
accurate enough, it needs much computation time. In con-
trast, the 2nd approach aggregates the 1st stage into the 2nd

stage of the 1st approach such that the computation time is
much reduced. Nevertheless, the accuracy is slightly reduced
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but acceptable. The single shot detector (SSD) belongs to
the 2nd approach [11]–[16]. In this paper, the SSD is first
employed to detect the human(s), which is (are) not necessar-
ily static. If human is not detected, the ODMR will execute
the search of human by the image-based adaptive finite-
time hierarchical constraint control (IB-AFTHCC) [17], [18].
After the detection of human, the ODMR approaches the
detected human with an appropriate distance (e.g., 2.5∼3m).
Afterward the pose between them is estimated by a depth
image such that an accurate approach to a specific pose
(e.g., in the vicinity of 1m and 0◦ with respect to optical axis)
for face recognition is accomplished.

To judge whether the detected human is the specific human
(SH), his/her face is recognized by the FaceNet [19], which
is one kind of face recognition [20]–[23]. FaceNet directly
learns a mapping from face images to a compact Euclidean
space where distances directly correspond to a measure of
face similarity. Only 128 bytes per face are required to
achieve over 95% of robust recognition. For one SH, the cal-
culation of FaceNet can be reduced such that the on-line
searching of the SH using the IB-AFTHCC is feasible. After
the identification of the SH, he/she is tracked by kernelized
correlation filter (KCF) to avoid the repeated calculation of
the FaceNet, extend the tracking distance, and reduce the
computation time. The KCF utilizes the property of a circu-
lant matrix and kernel to achieve the fast target tracking, and
it can deal with the occlusion and scale changes in various
scenes [24]–[28]. Afterwards the interactions between the SH
and the ODMR (e.g., human following control) are imple-
mented by the IB-AFTHCC. In contrast, if the face of the
detected human is difficult to recognize, a searching strategy
to obtain suitable pose for face recognition is progressed.
If the SH is not detected, theODMRmoves forward a distance
(e.g., 2.5m) to repeat the above searching procedure. To accel-
erate the processing, the GPU is combined with the CPU such
that the on-line pose planning and control [29]–[32] and the
human robot interactions [33]–[36] are more practical.

The contributions of this study are summarized as follows:
(i) The learning of SSD can effectively detect the human
beyond the general recognized distance of RGB-D camera
system (e.g., 8m). (ii) The FaceNet is effectively learned
to recognize the different faces with the recognition rate
over 95% under suitable distance (0.75∼1.25m), different
view angle (−60∼60◦), different light angle (-80∼80◦), and
some occlusions. (iii) To avoid the repeated calculation of
the FaceNet, extend the tracking distance, and reduce the
computation time, the KCF is employed to track the SH such
that human-robot interactions (e.g., human following) are
achieved by the suggested IB-AFTHCC.

The outline of this study is as follows. In the next section,
related work is given and discussed. In section 3, experi-
mental setup and task description are described. In section
4, the deep learning using the integration of SSD, FaceNet,
and KCF is developed. In section 5, the image-based adap-
tive finite-time hierarchical constraint control is employed to
accomplish the required task of the human-robot interaction.

In section 6, the corresponding experiments are presented
to validate the effectiveness and robustness of the proposed
method. Finally, the conclusions are given in section 7.

II. RELTATED WORK
At the outset, some representative papers about the human
detection using the SSD are discussed. In [11], the local
similarity (encoded by local descriptors) with a global context
(i.e., a graph structure) of pairwise affinities among the local
descriptors, embedding the query descriptors are combined
into a low dimensional but discriminatory subspace. The
power of Fourier transform combined with integral image
to achieve superior runtime efficiency allows for testing
multiple hypotheses within a reasonably short time; it is a
training-free algorithm. The algorithm in [12] includes two
different components that are trained ‘‘in one shot’’ at the
first video frame: a detector that makes use of the generalized
Hough transform with color and gradient descriptors and a
probabilistic segmentation method based on global models
for foreground and background color distributions. In [13],
a framework integrating support vector machine based trail
detection with a trail tracker is proposed to accomplish trail
direction estimation and tracking at a low cost of computation
and in real time. In [14], a fine-CNN with nine-layer neural
network for the detailed pedestrian recognition is designed.
A pedestrian in a surveillance video is segmented and fine
recognized by the improved single-shot detector and sev-
eral fine-CNNs, and is supported by parallel mechanisms
provided by Apache Storm stream processing framework.
Without post-processing other than efficient non-maximum
suppression, an end-to-end trainable fast scene text detector,
which is called TextBoxes++ and detects arbitrary oriented
scene text with both high accuracy and efficiency in a single
network forward pass, is developed [15]. In [16], the deep
neural network with RGB-D image input predicts multiple
grasp candidates for a single object or multiple objects, in a
single shot with the real-time processing less than 0.25s.

Some representative papers for face (emotion) recognition
are addressed as follows. In [19], FaceNet directly learns a
mapping from face images to a compact Euclidean space
where distances directly correspond to a measure of face
similarity. Only 128 bytes per face are required to achieve
over 95% of robust performance. In [20], a 3D face recogni-
tion method based on the fusion of shape and texture local
binary patterns on a mesh is presented. It utilizes that the
mesh surface preserving the full geometry doesn’t require
normalization, can accommodate the partial matching, and
allows the early level fusion of texture and shape modalities.
In [21], the CNN based face recognition using the ORL
and Yale databases with gray scale images demonstrates
the similar performance of the paper [23]. Nevertheless, its
recognition rates are sensitive to the quantity of occlusion
or pepper and salt noise. In [22], the enhanced face recog-
nition method is proposed by utilizing local binary patterns
histogram descriptors, Multi-K-nearest-neighbor, and Back
Propagation Neural Network. Since the correlation method
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utilized requires substantial computation time and large stor-
age, features reduction and face representation are required.
In [23], a local binary pattern histogram for the face recogni-
tion from the RGB together with suitable feature dimension
of Depth images, which have a wide range of variations in
head pose, illumination, facial expression, and occlusion in
some cases, is developed to extract the facial features and
then improve the recognition rate. In [36], two-layer fuzzy
support vector regression-Takagi-Sugeno model is proposed
for the emotion understanding in human-robot interaction,
e.g., the scenario of drink in different emotions. However,
its maximum average video-based recognition rate for dif-
ferent genders, provinces, and ages is 77.62%, which is not
excellent.

Finally, the representative papers about the tracking of the
SH using kernelized correlation filter (KCF) are addressed.
In [24], both KCF and dual correlation filter outperform top-
ranking trackers such as structured output tracking with ker-
nels or tracking-learning detection on a 50 videos benchmark,
despite running at hundreds of frames-per-second, and being
implemented in a few lines of code. It indicates that KCF is
indeed a fast and effective tracker. A real-time RGB-D object
tracker based on the KCF, which utilizes the property of a
circulant matrix and kernel to achieve fast target tracking,
is proposed to deal with occlusion and scale changes in
various scenes [25]. In [26], tracking algorithm with reducing
feature dimensionality and interpolating correlation score are
employed to reduce the computational cost for fast track-
ing. Occlusion and fast motion problems can be effectively
solved by the expansion of the search area with the speed
of 69.5 frames per second, which is suitable for real-time
application. By integrating an adaptive obstacle detection
strategy within a KCF framework, a fast and robust approach
for obstacle detection and tracking is developed [27]. In [28],
an online learning method based on the KCF and assembles
different feature channels to kernelized experts is employed
to track vehicles at night. By estimating their reliabilities, the
appearance model to focus on the most discriminative visual
features achieves the classification.

Finally, the deep learning integrating the advantages from
SSD, FaceNet, and KCF is proposed to deal with the corre-
sponding human-robot interactions [33]–[36].

III. EXPERIMENTAL SETUP AND TASK DESCRIPTION
A. EXPERIMENTAL SETUP
The experimental setup of the proposed omnidirectional
mobile robot (ODMR) in Fig. 1(a) includes the following
four parts: (i) three dc servomotors, (ii) one motion con-
trol platform, (iii) a laptop for image processing, and (iv) a
RGB-D camera system. Three dc servomotors are the model
no. 578296 with gear ratio 66:1 fromMaxon Co.; in contrast,
the gear ratio between the motor and wheel is 1.2:1. The
driver is the model no. ESCON-422969 with the following
important specifications: (i) power: 700W , (ii) input voltage:
10∼70V , (iii) peak current: 30A, (iv) continuous current:
10A, (v) weight: 204g, (vi) dimension: 115× 75.5× 24mm.

FIGURE 1. The proposed ODMR.

The important specifications of the motion control
platform DE2i-150 are as follows: (i) microprocessor:
Intel R© AtomTM Dual Core Processor N2600 (1M Cache,
1.6GHz); 64-bit Integrated Graphics with Base Frequency
400MHz. (ii) FPGA (Field Programmable Gate Array):
49,760 Les; 6,480 Kbits embedded memory; 8 PLLs
(Phase Lock Loops); (iii) 40-pin Expansion Header (GPIO);
(iv) 4GB DDR3 SODIMM. The suggested adaptive finite-
time hierarchical constraint control (AFTHCC) algorithm is
computed in the Intel R© Atom N2600; the PWM for driving
the motor and the decoder for obtaining motor velocity are
executed in the FPGA (cf. Fig. 1(b)). On the other hand,
the laptop is the ASUS computer with the following impor-
tant specifications: (i) Intel Core i7 CPU, with six-core and
12 threads, (ii) GPU with GTX 960M, CUDA core 640.

The proposed RGB-D vision system is the model of ASUS
Xtion PRO version, which provides not only depth data but
also RGB colour image and audio (using amicrophone array).
It is installed at 145 cm and has the following important speci-
fications: (i) Dimensions: 177.8×48.2×38.1mm. (ii)Weight:
540g, (iii) USB connection: consumption< 2.5W, (iv) Detec-
tion range: 0.8m ∼3.5m, (v) FOV: horizontal 58◦, vertical
45◦, (vi) Depth image: VGA (640 × 480) 30fps, QVGA
(320×240) 60fps, (vii) Compatible with the OpenNi develop-
ment framework, (viii) Supported OS: Win 32/64: XP, Vista,
Win7, Win 10, Linux Ubuntu 10.10: X86, 32/64 bit, Android
(on demand), (ix) Programming languages: C++/C#
(Windows), C/C++ (Linux), JAVA.

B. TASK DESCRIPTION
The fundamental tool of deep learning is the Convolutional
Neural Network (CNN); CNN is made up by Convolution,
Pooling, and Full Connection layers. Their sizes and layers
are dependent on practical applications. The Convolution
layer can have different length, width and height such that
the dimension, complexity, and characteristics of input image
can be included into different dimension of convolution and
nonlinear transform. To avoid the losing features of input
image, the resolution of CNN will keep the same as that of
input image. In contrast, the Pooling layer is employed to
reduce the corresponding resolution. Suitable dimension also
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can increase the robustness [37]. Finally, multi-dimension
features are transformed into one dimension feature by the
full connection layer.

In this study, the SSD is first employed to detect the human,
which is not necessarily static. If human is not detected, the
robot will execute the search of human. After the detection
of human, the ODMR will approach the detected human
with an appropriate distance (e.g., 2.5∼3m). Then using a
depth image estimates the pose between them such that an
accurate approach to the detected human with specific pose
(e.g., 0.75∼1.25m and −60∼60◦) is achieved. To judge
whether the detected human is the specific human (SH),
his/her face is recognized by the FaceNet [19]. If the SH is
identified, the SH will be tracked by the KCF [24]–[28] to
avoid the repeated calculation of the FaceNet. Afterward, the
corresponding interactions between the SH and the ODMR
(e.g., human following control) are implemented by the
image-based adaptive finite-time hierarchical constraint con-
trol (IB-AFTHCC) [17], [18]. If the face of detected human
is difficult to recognize, the ODMR will be commanded to a
suitable pose to execute the FaceNet algorithm. If the detected
human is not the SH, the ODMR will continue the search-
ing (e.g., moving forward a distance of 2.5m, repeating the
above procedure) until the SH is detected. The corresponding
flowchart is depicted in Fig. 2.

FIGURE 2. Overall flow chart of this study.

To accelerate the processing, the GPU is combined with
the CPU to accomplish the processing time about 50 ms such
that the on-line pose planning and control [29]–[32] and the
human-robot interactions [33]–[36] are more practical. More-
over, the parameters of Fig. 2 are explained as follows: (i) S:
S = 1, 2, 3 respectivly determines the initation of the SSD,
FaceNet, and KCF functions, (ii) F: the index to determine
whether the human following is executed, (iii)C1: the counter
to determine whether which region is searched, (iv) C2: the
counter to determine whether the face searching is required,
(v) dv, ψ : the vertical and orientation between human and the
ODMR, (vi) df : the distance index to determine whether the
task of human following is implemented.

IV. DEEP LEARNING APPROACH: SSD-FN-KCF
The proposed deep learning technique for the human detec-
tion, the specific human’s recognition, and the tracking of
specific human are tackled by the integration of Single-Shot
Detection (SSD), FaceNet (FN), and Kernelized Correlation
Filter (KCF).

A. HUMAN DETECTION USING SSD
Recently, at least two deep learning approaches for the
object detection are developed. The 1st approach is two-
stage process. The 1st stage so-called ‘‘Select Search’’ finds
the candidate region for the object. The convolution neural
network (CNN) is employed to extract their features for
prediction. In the 2nd stage, the corresponding features for
different candidates are classified by support vector machine
(SVM). In this study, the single shot detector (SSD) belongs
to the 2nd approach [11]–[16]. The corresponding human
detection using the SSD is depicted in Fig. 3. Its red rectangle
is the VGG16 CNN in the blue rectangle with the replace-
ment of the original FC6 and FC7 by the Conv6 and Conv7,
the removal of all connection layers, and the extra addition of
CNNs.

FIGURE 3. Flowchart of human detection using SSD.

The proposed approach uses the trained CNN model to
predict each default box. It is also called the possibility of
each class as the ‘‘score.’’ Afterwards, non-maximum sup-
pression (NMS) is employed to screen the best prediction.
Together with the bounding box and score, the corresponding
feature vector is extracted.

FIGURE 4. Learning process of SSD.

Subsequently, the learning process of the SSD includ-
ing Preprocessing (i.e., steps 1 and 2) and Training
(i.e., steps 3∼5) is introduced as follows (cf. Fig. 4).

1) INPUT DATASET
Prepare the corresponding images with the same resolutions
including human and nonhuman.
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FIGURE 5. Default boxes.

2) LABELLING
The dataset are first classified with human and nonhuman.
Then the coordinates of their ground truth boxes are labelled
for later training.

3) PREDICTION
Since the detected humans possess different sizes caused by
different human or different distance, the height and width of
the CNN are different. Hence, the default boxes in Fig. 5 with
respect to the feature map center include different heights and
widths, which are determined by the scale and aspect ratio.
At the outset, the scale is expressed as follows:

Sk = Smin + {(k − 1)(Smax + Smin)}/(m− 1) (1)

where Sk is the scale of the k-th layer in the feature map, Smax
denotes the scale of the highest layer (e.g., Smax = 0.95), Smin
denotes the scale of the lowest layer (e. g., Smin = 0.2), and
m is the number of feature map, e.g., m = 6.

On the other hand, the aspect ratios are assumed to be ar =
{1, 2, 3, 1/2, 1/3}. Their relations with height and width are
as follows (cf. Fig. 5):

wak = Sk
√
ar , hak = Sk/

√
ar (2)

where wak and hak are the width and height of the k-th layer.
Moreover, the scale of the default box for ar = 1 is described
as follows:

Sk =
√
S2k + 1 (3)

It is assumed that each feature map cell contains nd default
boxes (default: nd = 6), each cell possesses 4 offsets,
the number of classification is P (e.g., P = 1), the dimension
of feature map is k × l. Then the total number of the default
box is (P+ 4)× nd × k × l.

4) HARD NEGATIVE MINING
Using Jaccard Overlap estimates the similarity between the
ground truth box Bg and the default box Bd :

J (Bg,Bd ) =
∣∣Bg ∩ Bd ∣∣/∣∣Bg ∪ Bd ∣∣. (4)

If max
{
J (Bg,Bd )

}
> 0.5, then they are positive boxes;

otherwise, they are negative boxes. To maintain the stability
of training and loss value, hard negative mining only chooses
the higher score of negative boxes (i.e., far away from 0.5)
such that the ratio between the positive boxes and the negative
boxes is 1:3 (cf. Fig. 7(e) and 7(f)).

5) LOSS FUNCTION
The objective loss function is defined by the weighted com-
bination of classification loss (subscript cla) and localization
loss (subscript loc):

LSSD(x, c, l, g) = {Lcla(x, c)+ αLloc(x, l, g)}/N (5)

where N is the total matching number between the ground
truth box and the default box, in general α = 1, and the classi-
fication loss is calculated by softmax loss [11], which purpose
makes the confidence of positive and negative samples with
enough robustness to recognize the ground truth box of each
class. Here x is a parameter, c denotes the confidence for the
detection. The classification loss is defined as follows:

Lcla(x, c)=−
∑Ng

j=1

[∑Np

i∈Pos
xpij log(ĉ

p
i )+

∑Nn

i∈Neg
log(ĉni )

]
(6)

where ĉpi = ec
p
i /
∑Np

i∈Pos e
cpi ∈ [0, 1] , cpi is the confidence

of class p (positive sample) of the i-th default box, ĉni is the
confidence of class n (negative sample) not belonging to any
class, xpij is the matching index between the i-th default box
and the j-th ground truth box in class p, and Ng,Np,Nn are
the numbers of ground truth, class p and class n, respectively.
If it is matched, xpij = 1; otherwise, xpij = 0. In this paper,
Ng = 1.
Before introducing the localization loss, a box in image

processing is described by 4-dimensional space (cx, cy,w, h):
the center in 2D, the width and height of box. Hence, gmj =
[gcxj , g

cy
j , g

w
j , g

h
j ] and dmi = [dcxi , d

cy
i , d

w
i , d

h
i ] denote the

j-th ground truth box and the i-th default box, respectively.
Then the ground truth box regressing to offsets are defined as
follows:

ĝcxj = (gcxj − d
cx
i )/dwi , ĝcyj = (gcyj − d

cy
i )/dhi (7)

ĝwj = log (gwj /d
w
i ), ĝhj = log (ghj /d

h
i ). (8)

Similarly, the localization loss is defined as follows:

Lloc(x, l, g) =
∑Ng

j=1

[∑Np

i∈Pos

∑4

m=1
xpijSL1(l

m
i − ĝ

m
j )
]
(9)

where m = 1, 2, 3, 4 = cx, cy,w, h, l1∼4i =[
lcxi , l

cy
i , l

w
i , l

h
i

]T
denotes the i-th prediction box, and

SL1(x) =

{
0.5x2, if |x| < 1
|x| − 0.5, otherwise

(10)

The purpose of the computed loss function in (10) is to reduce
the differences between prediction box and default box and
between default box and ground truth box, such that the
iterative prediction of the difference between prediction box
and ground truth box becomes smaller. After the achievement
of steady-state matching error, the predicted bounding box
for the target human is satisfactorily obtained. At the outset,
the resolution of RGB image is set as 320 × 240, and the
total number of trained images is 512. Some representative
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FIGURE 6. Some samples for human detection: (a) positive boxes,
(b) negative boxes (ground truth box in green color).

FIGURE 7. Processing of SSD for human detection: (a) Classification loss,
(b) Localization loss, (c) Total loss, (d) Positive samples, (e) Negative
samples.

positive and negative samples for human detection are shown
in Fig. 6.

The corresponding loss function responses are presented
in Fig. 7 (a), (b). After 23,000 time step to train, the total loss
function converges in the neighborhood of 1.8 (Fig. 7(c)).
The numbers of positive and negative samples are shown
in Fig. 7(d), (e), in which the number ratio is about 1:3.
Since each frame is different, the corresponding responses
in Fig. 7 are fluctuated. Even though, the average responses
in the solid lines are also presented.

TABLE 1. Human detection rate (HDR) using ssd uder different distances.

TABLE 2. HDR for different view angles at 2m.

TABLE 3. HDR for different view angles at 4m.

6) PERFORMANCE EVALUATION
To validate the effectiveness and robustness of SSD,
the (walking) human with different distances and view angles
are investigated. The results are shown in Tables 1-3.

In summary, irrespective of the distance (<8m) and view
angle (<=180◦) between human and camera, the human
detection rate above 98.6% and the frame rate above 30 fps
are achieved by the resolution of 320×240. The performance
evaluation can refer to URL: https://youtu.be/gUJd0ATnlXI.

B. SPECIFIC HUMAN DETECTION USING FACENET
In the previous studies about face recognition (e.g., LBP
with SVM [23]), they need build the feature descriptor with
suitable dimension, and then a (multiclass) support vec-
tor machine is trained to obtain a model for classification.
In contrast, the approach of FaceNet directly learns Euclidean
mapping transformed from the face pattern mapping. The
similarity of face pattern is expressed as the Euclidean dis-
tance in the Embedding layer using 128 dimensionalities [19].
After the learned model, the compared Euclidean distance
error below a specific threshold is set as a classification
standard. The flowchart (or procedure) of FaceNet includes
Batch (input frame), Deep Architecture, L2 Normalization,
Embedding, and Triplet Loss. Since the classifier is not
required, the training procedure is more fast and effective.
Finally, the comparison between the trained model and the
on-line calculated ‘‘Embedding values’’ for an image at spe-
cific time interval determines whether the detected human is
the SH or not.

1) DEEP ARCHITECTURE
The CNN of FaceNet is chosen from Inception ResNet-v2 of
Google. The details are described as follows [19]: (i) The 1st

layer NN1 is made up by ZF-Net with 22 CNN and extra
CNN, (ii) The 2nd layer NN2 is made up by many Inceptions,
(iii) NN3, NN4, NNS1, and NNS2 are employed to reduce
the resolution or scale.
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2) NORMALIZATION
To map the image x ∈ <n into hypersphere, L2 (or Euclidean
distance) normalization x ′ ∈ <n is considered.

x ′i = xi/‖x‖2, i = 1, 2, . . . , n (11)

In general, the feature vector in practical image is dis-
continuous or discrete. Hence, one-shot encoding (i.e., one
feature uses one code) can transform this discrete feature
into another feature in Euclidean space. The advantages of
one-shot encoding are less computation and strong feature
description.

3) EMBEDDING
Even though the advantages of one-shot encoding, the stor-
age will be largely increasing as the number of feature
increases. To improve this drawback, the Embedding layer
in the FaceNet is reduced to a 128 dimensional byte vector,
satisfying the requirement of face recognition.

4) TRIPLET LOSS
The loss function of the FaceNet is triplet loss [19]. There
have three features for the modeling: (i) the desired feature
is denoted as ‘‘Anchor’’, (ii) the feature slightly deviating
from Anchor is denoted as ‘‘Positive’’, and (iii) the features
dominantly deviating from Anchor is called as ‘‘Negative.’’
The purpose of triplet loss is to minimize the Euclidean
distance between Anchor and Positive, and simultaneously
maximize the Euclidean distance between Anchor and Nega-
tive (cf. Fig. 8).

FIGURE 8. Triplet loss after training.

It is assumed that Anchor and all Positives are similar,
and that Anchor and all Negatives are dissimilar. In brief,
the following loss function is defined to be minimized.

LTr =
∑N

i=1

∥∥f (xai )−f (xpi )∥∥22−∥∥f (xai )−f (xni )∥∥22 + β (12)

where β > 0, xai , x
p
i and xni are Anchor, Positive and Neg-

ative, respectively. Moreover, f (xai ), f (x
p
i ),f (x

n
i ) ∈ <

d , and∥∥∥f (x ji )∥∥∥ = 1, for j = a, p, n.

Based on the distances among Anchor, Positive and Nega-
tive, triplets are categorized as (i) Easy triplets with LTr < 0,
(ii) Hard triplets with LTr > β,(iii) Semi-hard triplets with
0 ≤ LTr ≤ β. If Negative belongs to Easy triplets, the Triple
loss equals zero. If Negative belongs to Hard triplets, the

similarity between them is large such that it is difficult to rec-
ognize. In contrast, if Negative belongs to Semi-hard triplets,
these datasets are learned to maximize the face recognition
rate.

5) COMPARISON
After the effective training model of the FaceNet, the output
of Embedding layer for the real-time image will be compared
with that of the trained model. If the Euclidean distance
between them is smaller than a specific threshold, then the
recognition of the specific human (SH) is achieved. Other-
wise, it is not the SH. In summary, the end-to-end training
both simplifies the setup and shows that directly optimizing a
loss relevant to the task at hand improves performance [19].

6) PERFORMANCE EVALUATION
Two important factors to affect the face recognition rate
(FRR): one is the parameter setting in the FaceNet (e.g., β,
the resolution of camera, the number of training samples),
the other is the environmental change (e.g., the distance
or view angle between camera and robot, the occlusion
of human, the lighting condition).The SH in this paper is
shown in Fig. 9(a). On the other hand, non-SH is presented
in Fig. 9(b).

FIGURE 9. Training samples for the SH and Non-SH.

At the outset, β = 0.6, the resolution 320×240, 300 train-
ing samples, and the height of camera at 145 cm are assigned.
The face recognition rate (FRR) for different distances, view
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TABLE 4. FRR for different distances.

TABLE 5. FRR for different view angles at 1m.

TABLE 6. FRR for different view angles at 1.25m.

TABLE 7. FRR for different half face at 1m.

TABLE 8. FRR for different lighting angles at 1m.

FIGURE 10. Effective recognition regions of the FaceNet using RGB-D
camera.

angles at 1m and 1.5m, half faces, and lighting angles are
investigated and listed in Table 4, 5, 6, 7, and 8 respectively.

Based on the results of Tables 4-8 and the FOV of camera
with the horizontal 58◦ and vertical 45◦ view angles, the
important observations are concluded as follows: (i) The red-
cross region in Fig. 10 (i.e., between 0.75m and 1.25m with
the orientation less than 60◦) at the height of 1.45m is called
as the effective face recognition with the FRR over 95%
using the FaceNet with RGB-D camera. (ii) Human in the
front of camera with one meter, without the occlusion of
two eyes and the occlusion not over 50% possesses the FRR
over 95%. (iii) Light orientation not over 90◦ in the dark
environment also has the FRR over 95%. (iv) The occlusion
of the upper half (i.e., two eyes and nose) only has FRR 17.3.
It is reasonable since two eyes are one of key sub-region for
the face recognition. (v) The processing frequency is about

20 fps, which is 50% smaller than that of the SSD. (vi) The
performance evaluation can refer to the attached URL.

C. SPECIFIC HUMAN TRACKING USING KCF
Since the SSD and FaceNet are only for a specific frame
to judge whether the specific human (SH) is recognized,
the corresponding result will disappear in the next frame.
Hence, if the SH is detected, then the Kernelized Correlation
Filter (KCF) can maintain to track the SH. The KCF is
identified as a tracking approach, i.e., the simultaneous SH
tracking and training prediction.

1) PRELIMINARIES
To consider the practical situation, a nonlinear mapping
for sample xi around the (blue) rectangle detected by the
FaceNet is denoted as ϕ(xi). Its kernelizing regression func-
tion becomes yi = f (xi) = wTϕ(xi). Define the following
circulant matrix [24]:

X = C(x) =



x1 x2 · · · xn−1 xn
xn x1 x2 · · · xn−1
... xn

. . .
. . .

...

x3
...

. . . x1 x2
x2 x3 · · · xn x1

 (13)

where the 1st row of C(x) is x =
[
x1 x2 · · · xn

]T . The
regularized least square weight estimation is to minimize the
following cost function:

ε(w) =
{∥∥∥f (x)− wTφ(x)∥∥∥2 + λ ‖w‖2} (14)

where φ(x) ∈ <n,w = αTφ(x), f (x) = αTφT (x)φ(x). Then
the minimization of (14) yields

α = [K + λIn]−1 y (15)

where Kij = φT (xi)φ(xj) = k(xi, xj) is the row i and column j
of K .

2) DIAGONALIZATION OF CIRCULANT MATRIX USING DFT

X = F diag
{
x̂
}
FH , XH = F diag

{
x̂∗
}
FH (16)

where x̂ is the DFT of x,XH = (X∗)T , and

F =


1 1 · · · 1
1 ω · · · ωn−1

...
...

1 ωn−1 · · · ω2n+1


/
√
n, ω = e−2π i/n.

From (15), (16), and FFH = In, the following result is
achieved.

α =
[
C(kxx)+ λIn

]−1 y = [F diag(k̂xx)FH + λIn
]−1

y

= F
[
diag(k̂xx + λ)

]−1
FHy. (17a)

Or, equivalently,

FHα =
[
diag(k̂xx + λ)

]−1
FHy. (17b)
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Using ẑ∗ = FH z yields

α̂∗ =
[
diag(k̂xx + λ)

]−1
ŷ∗ = ŷ∗/(k̂xx + λ). (18)

The regression function or all candidate patches with z is
computed as follows:

f (z) =
(
C(kxz)

)T
α =

(
F diag(k̂xz)FH

)T
α

= FH diag(k̂xz)Fα. (19)

Here f (z) is a vector, containing the output for all cyclic shifts
of z, i.e., the full detection response. From (19),

Ff (z) = diag(k̂xz)Fα.

Similarly,

f̂ (z) = k̂xz � α̂. (20)

Here � denotes the pointwise operator. It indicates that the
output of each input vector is the pointwise multiplication of
k̂xz and α̂. The maximum output is the maximum likelihood
of the next position of target.

FIGURE 11. Performance evaluation of KCF with simultaneous FaceNet
and SSD operations. (i) SH is respectively detected, recognized and
tracked by SSD, FaceNet and KCF, (ii) FaceNet does not work,
(iii)–(vi) different orientations of human are still successfully detected
and tracked by SSD and KCF, (vii)–(ix) different distances of human are
still successfully detected and tracked by SSD and KCF, (x)–(xii) different
orientations at 8m between them are still successfully detected and
tracked by SSD and KCF.

3) PERFOMANCE EVALUATION
The representative experimental result is shown in Fig. 11.
The green, blue and red rectangles in Fig. 11 are the human
detected by the SSD, the SH recognized by the FaceNet,
and tracked by the KCF, respectively. After the Fig. 11 (v),

TABLE 9. Relation between the width of the green rectangle and the
vertical distance between robot and human.

the FaceNet fails to recognize the SH but the KCF still
continues to track the SH. The reasons for the failure are
that Fig. 11 (iv), 11(v) and 11(vi) have too large viewing
angle (cf. Tables 5 and 6), that Fig. 11(vii)-11(xii) have too
large distance between them (cf. Table 4). It confirms the
effectiveness of the KCF.

V. IMAGE-BASED POSE TRACKING USING ADAPTIVE
FINITE-TIME HIERARCHICAL CONSTRAINT CONTROL
A. IMAGE-BASED DESIRED POSE
The width of the green rectangle for the human detection
using the SSD is employed to estimate the vertical and hori-
zontal distances between the ODMR and the detected human.
As distance is smaller than 3.5m, the depth image can be
accurately estimated. Hence, only 3 ∼ 8m between them are
presented in Table 9.

Since the detected human is too near the vision system,
e.g., 4m, the whole ROI for the human is infeasible. Only
the green rectangle’s width is used to estimate the 2D pose
between ODMR and detected human. Based on the result of
Table 9, the estimated vertical distance between the ODMR
and the rectangle’s width is achieved as follows:

dv = 0.0079w2
− 0.83w+ 24.725. (21)

Moreover, the horizontal distance dh,j at distance j meter is
computed by the central pixel cp at dv = 3, 4, 5, 6, 7m:

dh,3 = 0.01173cp − 1.8502, dh,4 = 0.01486cp − 2.3721

dh,5 = 0.01867cp − 2.9233, dh,6 = 0.02199cp − 3.5463

dh,7 = 0.02613cp − 4.0813. (22)

The dh between dv = 3 and 7m is achieved as follows:

dh = dh,i + (dh,i+1 − dh,i)(dv − dv,i)/(dv,i+1 − dv,i) (23)

where dh,i < dh < dh,i+1, dv,i < dv < dv,i+1, i = 3, 4, 5, 6.
The desired 2D pose for the AFTHCC in the next subsection
becomes

xd = dh, yd = dv, φd = ψ = tan−1(dh/dv). (24)

B. AFTHCC
From the outset, the system variables and parameters of
ODMR are listed in Table 10 and Table 11, respectively.
These values in Table 11 are obtained from the manual of
motor, the dimension of ODMR, the knowledge of friction.

Based on the information of image processing, the required
pose tracking for searching or tracking (specific) human is
achieved by the ODMR with AFTHCC [17], [18]. At first,
the kinematic relation of the ODMR is depicted in Fig. 12.

Its dynamics using the states z1(t) = x(t), z2(t) =
y(t), z3(t) = φ(t), z4(t) = vx(t), z5(t) = vy(t), z6(t) =
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TABLE 10. Variables of ODMR.

TABLE 11. Parameters of ODMR.

ω(t), z7(t) = i1(t), z8(t) = i2(t), z9(t) = i3(t), and constraint
input is as follows:

Ż1(t) = A1(Z , t), Ż2(t) = A2(Z , t)+ B(Z , t)C(U ) (25)

Y1(t) = C1 [Z1(t)+1Z1(t)] , Y2(t) = C2 [Z2(t)+1Z2(t)]

(26)

FIGURE 12. Schematic description of the ODMR.

where ZT1 (t) =
[
z1(t) z2(t) z3(t) z4(t) z5(t) z6(t)

]
and

ZT2 (t) =
[
z7(t) z8(t) z9(t)

]
are the indirect and direct states,

respectively; Y1(t) and Y2(t) ∈ <3 are the indirect and direct
outputs, respectively; C(U ) denotes the constraint of the
control input U (t) =

[
u1(t) u2(t) u3(t)

]T
∈ <

3
;Ai(Z , t),

i = 1, 2 and B(Z , t) are the true system vector functions;
C1 =

[
I3 03×3

]
and C2 = I3 are the output gain matri-

ces; 1ZT1 (t) =
[
1z1(t) 1z2(t) · · · 1z6(t)

]
,1ZT2 (t) =[

1z7(t) 1z8(t) 1z9(t)
]
are the output disturbances. The

components of the nominal system vector functions in (25)
are expressed as follows:

a11(Z1) = z4(t)cz3 − z5(t)sz3
a12(Z1) = z4(t)sz3 + z5(t)cz3 , a13(Z1) = z6(t)

a14(Z ) =
[
fx(Z2)− f fx (Z1)

]
/Mr

a15(Z ) =
[
fy(Z2)− f fy (Z1)

]
/Mr

a16(Z ) =
[
τ (Z2)− τ f (Z1)

]
/Ir

a2j(Z ) =
[
−Rjz6+j(t)− KbjN

∗
j ωj(t)

]
/Lj

B = diag
{
1/Lj

}
, j = 1, 2, 3. (27)

Furthermore, the constraint input is defined as follows:

C(U ) =
[
c(u1) c(u2) c(u3)

]T (28)

where c(ui) = ui(t), if |ui(t)| ≤ uc; c(ui) = ucsign(ui),
otherwise. In contrast, the nominal friction force and friction
torque of wheel j, integrating viscous, Coulomb, and Stribeck
frictions, are modeled as follows:

f fj (vj) = fsl(vj)λf (vj)+ fst (fj)
[
1− λf (vj)

]
(29)

τ fj (ωj) = τsl(ωj)λτ (ωj)+ τst (τj)
[
1− λτ (ωj)

]
(30)

where λf (vj) = 1 as
∣∣vj(t)∣∣ > δf and λf (vj) = 0, otherwise;

λτ (ωj) = 1 as
∣∣ωj(t)∣∣ > δτ and λτ (ωj) = 0, otherwise. Here,

fst (fj) =


f +s , as fj(t) > f +s > 0
fj(t), as f −s ≤ fj(t) ≤ f

+
s

f −s , as fj(t) < f −s < 0,
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FIGURE 13. Overall control diagram of AFTHCC.

τst (τj) =


τ+s , as τj(t) > τ+s > 0
τj(t), as τ−s ≤ τj(t) ≤ τ

+
s

τ−s , as τj(t) < τ−s < 0

fsl(vj) =


f +s − δf

+

[
1− e−|vj(t)/v

+|
]

+C+f vj(t), as vj(t) > 0,

f −s − δf
−

[
1− e−|vj(t)/v

−|
]

+C−f vj(t), as vj(t) ≤ 0,

τsl(ωj) =


τ+s − δτ

+

[
1− e−|ωj(t)/ω

+|
]

+C+τ ωj(t), as ωj(t) > 0,

τ−s − δτ
−

[
1− e−|ωj(t)/ω

−|
]

+C−τ ωj(t), as ωj(t) ≤ 0.

The overall control block diagram of the proposed
AFTHCC is shown in Fig. 13 including adaptive finite-
time virtual desired pose (AFTVDP) and adaptive finite-time
tracking control (AFTTC).

The uncertainties of the indirect mode are given as
follows:

P1(Z1,Yd2,eq, t) = −
[
Dp+α1Dnsign(E1)α1−1

]
1A123(Z1, t)

−Dd [1G(Z1, t) +H (Z1)1Yd2,eq(t)
]

+Dn ‖E1(t)‖α1 Ė1,0(t) (31a)

where Ė1,0(t) = dt[sign(E1)]/dt|E1=0 is the uncertainty
caused by the time-derivative of the sign function at zero;
1Yd2,eq(t) is the uncertainty of the Yd2,eq(t) in (38b);
1A123(Z1, t) is the uncertainty of the A123(Z1);1G(Z1, t) is
the uncertainty of theG(Z1) in (39a);H (Z1) is given in (39b);
and 0 < β1< 1. Since

∥∥Ė1,0(t)∥∥ ≤ 2/1t, where 1t is
the sampling time, is bounded, ‖E1(t)‖α1 Ė1,0(t) becomes
smaller as ‖E1(t)‖ ≈ 0. Hence, the upper bound of (31a) is
assumed as follows:∥∥P1(Z1,Yd2,eq, t)∥∥ ≤ ρ11 ‖61(t)‖β1 + ρ12 ‖61(t)‖ , ∀t

(31b)

where 0 ≤ ρ11, ρ12 are bounded but unknown and learned
by the adaptive law (37). Similarly, the uncertainties of the

direct mode and their upper bound are described as follows:

P2(Z ,U , t) = −Hp
[
1A2(Z , t)+1B(Z2, t)Ueq(t )

+B(Z2, t) (C(U )− U (t))+1Ż2(t)
]
(32a)

‖P2(Z ,U , t)‖ ≤ ρ21 ‖62(t)‖β2 + ρ22 ‖62(t)‖ , ∀t.

(32b)

Here 0 < β2< 1,0 ≤ ρ21, ρ22 are bounded but unknown, and
learned by the adaptive law (37). In addition, the uncertain
switching gain of the AFTVDP satisfies the inequality:∥∥∥Y †

d2,sw(t)1Yd2,sw(t)
∥∥∥ < µ1 < 1, ∀t. (33)

Here Y †
d2,sw(t) =

[
Y Td2,sw(t)Yd2,sw(t)

]−1
Y Td2,sw(t) is the

pseudo-inverse of the Yd2,sw(t) in (38c). Similarly, the uncer-
tain gain of AFTTC satisfies the following inequality:∥∥∥Hp1B(Z , t) (HpB)−1∥∥∥ ≤ µ2 < 1, ∀t. (34)

The first switching surface for the indirect mode is as

61(t) = Dd Ė1(t)+ DpE1(t)+ Dnsign(E1)α1 . (35)

Here Ė1(t) = Ẏd1(t)−A123(Z1),A123(Z1) = [a11(Z1) a12(Z1)
a13(Z1)]T , 61(t) ∈ <3,Dd ,Dp,Dn > 0 ∈ <3×3 are constant
diagonal matrices, Dd is nonsingular, and 0 < α1 < 1.
Similarly, the second switching surface for direct mode is as
follows:

62(t) = HpE2(t)+ Hi

∫ t

t0
E2(τ )dτ + Hn

∫ t

t0
sign(E2)α2dτ .

(36)

Here 62(t) ∈ <3,Hp,Hi,Hn > 0 ∈ <3×3 are constant
diagonal matrices, Hp is nonsingular, and 0 < α2 < 1.
The adaptive laws for two unknown coefficients of the

upper bounds of the uncertainties in indirect and direct modes
(i.e., ρij, i, j = 1, 2 in (31b) and (32b)) are designed as
follows:

ρ̇ij(t) =


ρ̂ij(t)+ ρij,l(t), if ρij(t) < 0,
ρ̂ij(t), if 0 ≤ ρij(t) ≤ ρij,M ,
ρ̂ij(t)+ ρij,u(t), if ρij,M < ρij(t).

(37)

Here ρ̂ij(t) = λij ‖6i(t)‖j+(2−j)βi
[
1− δijρij(t)

]
, ρij,M =

max{ρij}, i, j = 1, 2 are assumed to be known; λij, δij >
0 are denoted as the learning rate and e-modification rate,
respectively; ρij,l(t) = λij ‖6i(t)‖j+(2−j)βi ρij(t), ρij,u(t) =
λij ‖6i(t)‖j+(2−j)βi

(
ρij(t)− ρij,M

)
; and 6i(t) denotes the

i-th switching surface.
Then the AFTVDP is designed as follows:

Yd2(t) = Yd2,eq(t)+ Yd2,sw(t) (38a)

Yd2,eq(t) =
[
DdH (Z1)

]−1 {
Dd

[
Ÿd1(t)− G(Z1)

]
+

[
Dp + α1Dnsign(E1)α1−1

]
Ė1(t)

+

[
ρ11(t) ‖61(t)‖β1−1 + ρ12(t)

]
61(t)

}
(38b)
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Yd2,sw(t) =
[
DdH (Z1)

]−1
{K11(‖61‖)61(t)+ K12(‖61‖)

·61(t)‖61(t)‖β1−1/
(
‖61(t)‖1+β1+ε1

)}
/(1−µ1)

(38c)

where ε1 is a small positive constant, the components of
G(Z1) =

[
gi(Z1)

]∣∣
i=1,2,3 , and H (Z1) =

[
hij(Z1)

]∣∣
i,j=1,2,3

are given as follows:

g1(Z1) = −z4(t)z6(t)sz3 − z5(t)z6(t)cz3

−

[
cz3 f fx (Z1)− sz3 f fy (Z1)

]
/Mr

g2(Z1) = z4(t)z6(t)cz3 − z5(t)z6(t)sz3

−

[
sz3 f fx (Z1)+ cz3 f fy (Z1)

]
/Mr

g3(Z1) = −τ f (Z1)/Ir (39a)

h1j = NjKtj
(
cz3sj − sz3cj

)
/(Mrrw),

h2j = NjKtj
(
sz3sj + cz3cj

)
/(Mrrw),

h3j = lwNjKtj/(Irrw), j = 1, 2, 3. (39b)

To achieve the finite-time to zero switching surface and then
tracking error, the nonlinear switching gains [38], [39] are
designed as follows:

K11(‖61‖) =
[
κ111 + κ112 ‖61(t)‖β1−1

]
F11 > 0 (40a)

K12(‖61‖) =
[
κ121 + κ122 ‖61(t)‖2β1

]
F12 > 0 (40b)

where F1j ≥ I3, κ1ij > 0, i, j = 1, 2. In addition,
sign(E1)α1−1 is a diagonal matrix. The AFTTC for the sys-
tem (25)-(26) is designed as follows:

U (t) = Ueq(t)+ Usw(t) (41a)

Ueq(t) =
(
HpB

)−1 {
HpẎd2(t)+ HiE2(t) + Hnsign(E2)α2

+

[
ρ21(t) ‖62(t)‖β2−1 + ρ22(t)

]
62(t)

}
(41b)

Usw(t) =
(
HpB

)−1
{K21(‖62‖)62(t) + K22(‖62‖)

·62(t)‖62(t)‖β2−1/
(
‖62(t)‖1+β2+ε2

)}
/(1−µ2) .

(41c)

Similarly, ε2 is a small positive constant and the diagonal
nonlinear switching gains are designed as follows:

K21(‖62‖) =
[
κ211 + κ212 ‖62(t)‖β2−1

]
F21 > 0 (42a)

K22(‖62‖) =
[
κ221 + κ222 ‖62(t)‖2β2

]
F22 > 0 (42b)

where F2j ≥ I3, κ2ij > 0, i, j = 1, 2. The stability analysis
can refer to [38], [39].

VI. INTERACTIONS BETWEEN SPECIFIC
HUAMN AND ODMR
At the outset, the specific human is at the pose
(7m, 1m, 180◦), i.e., the human face is back to the ODMR.
The corresponding human robot interactions with the control
parameters in Table 12 are depicted by the important snap-
shots from the ODMR as shown in Fig. 14.

TABLE 12. Control parametrs of the AFTHCC.

FIGURE 14. Important snapshots from the ODMR. (i) no human is
detected; ODMR turns 90◦, (ii) human is detected by SSD, (iii) the human’s
pose is computed, (iv) ODMR is controlled to the desired orientation φd ,
(v) ODMR is controlled to the 2.5∼3m between them, (vi) ODMR is
controlled to the desired orientation φd , (vii) ODMR is controlled the pose
of 1m and 0◦; he is not SH, (viii) ODMR turns to another pose 1m and 90◦;
the SH raises his right hand to occlude the recognition, (ix) he is the SH;
the KCF tracker initiates, (x) the KCF works to track the SH; the FaceNet
does not work, (xi) the SH turns 180◦ to execute the human following,
(xii) the ODMR tacks the SH until less than 1.5m and then stops.

Furthermore, the control response using the proposed
AFTHCC is presented in Fig. 15, including (a) trajec-
tory tracking in XY plane, (b) 2D pose, (c) control input,
(d) switching surfaces of the indirect and direct mode,
(e) tracking errors of the indirect and direct modes, (f) the
estimated coefficients for the upper bounds of the indirect and
direct modes’ uncertainties [18].

The responses are illustrative as follows: (i) At the very
inception, the SSD detects the human in the first field
of view (FOV). Since no human is detected, the ODMR
turns 90◦. (ii) Even the background lighting is not uniform,
the human over 7m is detected by the SSD. Then the 2D
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FIGURE 15. Response of the motion control signals. (a) XY position, (b) 2D pose, (c) control
input, (d) switching surface norm, (e) tracking error norm, (f) learning coefficient.

pose between them (i.e., (24)) is computed. (iii) Based on the
IB-AFTHCC, the ODMR is controlled to the desired orienta-
tion φd (t). Human is at the central position of FOV. (iv) The
2D pose (xd , yd , φd ) between them is computed. (v) The
ODMR is controlled to the desired position (xd , yd ) i.e.,
2.5∼3m between them, by the IB-AFTHCC. (vi) The 2D pose
between them is computed by the depth image. The ODMR is
controlled to the desired orientationφd (t) by the IB-AFTHCC
such that human is at the central position of FOV. (vii) The
vertical position of the ODMR (about 1m and 0◦ between
them) is also controlled by the IB-AFTHCC. Since the SH

is not recognized, the ODMR is controlled to another desired
pose (about 1m and 90◦ between them). (viii) The FaceNet is
applied to recognize the SH with his right hand to occlude
the recognition because the SH is probably recognized at
90◦ orientation (cf. Table 5). Since the SH is not recognized,
the ODMR is controlled to another desired pose (about 1m
and 180◦ between them). (ix) Since he is the SH, the KCF
tracker initiates (i.e., the red rectangle denotes the tracking of
the SH). (x) Since theKCFworks to track the SH, the FaceNet
doesn’t work; hence, the blue rectangle in the snapshot (ix) of
Fig. 14 disappears. (xi) The SH turns 180◦ to execute the task
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of human following; the green and red rectangles still remain
unchanged. (xii) As the distance larger than 1.5m, the ODMR
tacks the SH until less than 1.5m, and then stops.

The maximum position and orientation errors are respec-
tively about 4 cm and 5◦ which are excellent for the
motion control task. Finally, the planned human-robot inter-
actions are successfully accomplished. The corresponding
experimental video can refer to the URL: https://youtu.be/
FF-cf7nv5Uo.

VII. CONCLUSION
The deep learning approach using the SSD-FN-KCF is
developed such that a specific human (SH) is identified
and tracked to execute the required interactions. The green,
blue, and red rectangles are the outputs of the SSD, FN,
and KCF, respectively. Besides the image-based adaptive
finite-time hierarchical constraint control (IB-AFTHCC) exe-
cutes the planned poses, three techniques are integrated to
enhance each method’s advantages and avoid their draw-
backs. The SSD using the RGB-D camera with the reso-
lution of 320× 240 can detect humans up to 8m. It is a
favorable result as compared to other state-of-the-art methods
[3]–[8]. Due to the low resolution of RGB for FaceNet, only
up to 1.25m can successfully recognize the specific face
(or human). Even though, the larger pose variations including
the occlusion of human and the large change of lighting
orientation still confirm the robustness of face recognition.
To reduce the repeated face recognition, the KCF not only
accelerates the processing time but also extends the tracking
distance of the detected SH to achieve the satisfactory task
of HRI. Furthermore, the advantages of ODMR (i.e., simul-
taneous translation and rotation) and the IB-AFTHCC fulfill
the HRIs, e.g., search, detect, track the (specific) human, and
human following. One of our future studies is to extended
dynamic face emotion recognition result up to 3.5m using
stereo camera and very deep CNN method [40], [41].
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