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ABSTRACT Under severe weather conditions, outdoor images or videos captured by cameras can be
affected by heavy rain and fog. For example, on a rainy day, autonomous vehicles have difficulty determining
how to navigate due to the degraded visual quality of images. In this paper, we address a single-image
rain removal problem (de-raining). As compared to video-based methods, single-image based methods
are challenging because of the lack of temporal information. Although many existing methods have
tackled these challenges, they suffer from overfitting, over-smoothing, and unnatural hue change. To solve
these problems, we propose a GAN-based de-raining method. The optimal generator is determined by
experimental comparisons. To train the generator, we learn the mapping between rainy and residual images
from the training dataset. Besides, we synthesize a variety of rainy images to train our network. In particular,
we focus on not only the orientations and scales of rain streaks but also the rainy image composite models.
Our experimental results show that our method is suitable for a wide range of rainy images. Our method also
achieves better performance on both synthetic and real-world images than state-of-the-art methods in terms
of quantitative and visual performances.

INDEX TERMS Generative adversarial network, single-image de-raining, deep learning, image restoration,
residual learning.

I. INTRODUCTION
Image restoration and enhancement are of considerable prac-
tical concern. The number of outdoor vision systems, such
as surveillance cameras and dashboard cameras, has been
increasing in the past years. One major issue for autonomous
navigation systems is to drive under bad-weather conditions.
The presence of rain streaks and fog degrades the qual-
ity and clearness of images as shown in Fig. 1a. Effective
rain removal (de-raining) methods are required in multiple
types of practical situations. Different from common image
de-noising tasks, the de-raining task is more challenging
because rain have no fixed shapes and orientations. This
paper is an extension of work originally presented in [1].

For the last few decades, several investigations have been
conducted on removing rain noises from a rainy observa-
tion. De-raining methods can be categorized into two types:
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FIGURE 1. A sample result of our proposed method for single image
de-raining.

one is video-based methods and the other is single-image
based methods. Video-based methods [2]–[4] utilize multi-
ple frames to decompose an image into a rain layer and a
background layer. As compared to the video-based methods,
the single-image based methods are more ill-pose and diffi-
cult problem for the sake of lack of temporal data.

In this paper, we only address the single-image de-raining
such as [5]–[15]. To our knowledge, Kang et al. [5] first tackle
single-image de-raining based on morphological component
analysis (MCA). To give other examples of conventional

40892 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-9896-7882
https://orcid.org/0000-0003-3461-1507
https://orcid.org/0000-0003-1869-2116


T. Matsui, M. Ikehara: GAN-Based Rain Noise Removal From Single-Image Considering Rain Composite Models

methods, Luo et al. [6] introduce a discriminative sparse cod-
ing approach. Zhu et al. [7] propose three new priors defined
by exploring local gradients. However, when the input image
has structures similar with the rain streaks, this method tends
to leave rain noises (under de-rain). Although Huang et al. [8]
propose an image decomposition method based-on self-
learning, it results in over-smoothing some regions (over
de-rain). Recently, deep learning-based approaches have been
proposed. In [11] by Fu et al., it is observed that deep learning
based methods are effective for de-raining. The authors train
a three-layer convolutional neural network (CNN) on the
detail (high-frequency) layer and combine the de-rained out-
put with the enhanced base (low-frequency) layer. Although
this approach is valid for de-raining, color of the output
prones to be shifted due to the low-frequency layer. The
rain structure in low-frequency component causes blur and
haziness. Furthermore, because pixel values vary signifi-
cantly throughout an image, learning the network is affected
by the image background. Fu et al. extended the network
structure using Res-block [16] in [12]. Yang et al. proposed
a CNN structure that can jointly detect and remove rain
streaks. Although their single CNN-basedmethods success in
de-raining, they suffer from over de-rain and under de-rain.
That is because simple CNN-based networks trained with
MSE loss tend to generate blurry and unnatural results.
To solve these problems, Zhang and Patel [13] propose a
density aware GAN (Generative Adversarial Network) based
method. Their method can clearly remove even heavy rain
streaks. However, they tend to over smooth and lose important
details. Thus, the trade-off between removing rain streaks and
preserving textures is one of the most challenging problems.

In order to address these problems, we propose a
GAN-based residual deep network. One example of our
results is shown in Fig. 1. Residual learning can save the
computational cost and success in several image tasks, such
as an image recognition task [16] and an image de-noising
task [17]. Our results show that residual learning achieves
better performance than the image decomposition approach.

In addition, we focus on rainy image models. Our pro-
posed method assumes two rainy image models as training
dataset to make the network suitable to many real-world data.
In [5], [18], the authors use a linear additive composite model
(Fig. 2c) for synthesizing. Some recent studies, such as those
conducted in [6], [11], [13], do not adopt the additive model
but use a non-linear screen blend model (Fig. 2d). Because
each model has both advantages and disadvantages, either
is not always applicable to real-world images. Accordingly,
we prepare training dataset which consists of images made
by both the additive model and the screen blend model. Our
experimental results demonstrate that this two-composite-
model dataset is applicable to various real rainy images.

In summary, this paper makes the following contributions:
1) We explore an optimal deep learning structure for de-

raining. Inspired by the success of GANs in other image
processing tasks, we introduce a GAN for de-raining.
Moreover, we compare the performance with several

FIGURE 2. Comparison of two composite models.

generator structures. Since a rain detection task need to
capture global features and local features, we conclude
that the UNet [19] structure is suitable for de-raining.

2) We introduce residual learning to remove rain streaks
without losing the textures and edges. We learn the
relationship between rainy images and residual images.
Compared to a plane network structure which trains
the mapping relationship between rainy images and
clean images, clearer images are outputted. Also,
This speeds up the training process and improves the
de-raining performance. For real-world images, we do
post-processing to remove haze.

3) To create synthetic rainy images, we introduce an auto-
matic rain streaks generator. Almost all rain removal
methods use Photoshop to create rain noises. As rain
streaks have many parameters, automatically adjust-
ing these parameters is quite difficult. Our proposed
method can easily change parameters on Python, which
results in saving time and effort to obtain natural rain
streaks.

4) We propose combination of two composite models for
creating synthetic rainy images. Although most exist-
ing methods use only one rain composite model, it is
not enough for real-world images. Our experimental
results demonstrate that a combination of these models
achieves better performance than using either of them.

This paper is organized as follows. Section II describes
a brief review of de-raining and a few supporting methods
related to our work. The details of our method are given in
Section III. In Section IV, we present experimental results
on both synthetic test data and real-world test data. Finally,
Section V concludes the paper with a concise summary.

II. BACKGROUND AND RELATED WORKS
A. SINGLE-IMAGE RAIN REMOVAL
Unlike video-based de-raining [2]–[4], single-image
de-raining is an extremely challenging task. That is because
of its ill-posed nature and the unavailability of temporal infor-
mation. In single-image rain removal, prior-based methods
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FIGURE 3. The proposed framework.

have been proposed. These include sparsity-based meth-
ods [5]–[7], low-rank representation-based methods [9] and
Gaussian Mixture Model-based methods [10]. These prior-
based methods tend to leave many rain streaks and over-
smooth the details.

Recent studies introduce deep learning for single-
image de-raining. These include simple CNN-based
approaches [11], [12] and GAN based approaches [13]–[15],
[20]. To train the network, synthetic rainy image dataset and
corresponding clean image dataset are used.

B. GENERATIVE ADVERSARIAL NETWORK
In 2014, Goodfellow et al. [21] proposed a novel deep learn-
ing network called Generative Adversarial Network (GAN).
Inspired by game theory, two neural networks contest with
each other. One network called ‘‘generator’’ plays a role
to generate new images from some input using the learned
parameters. The other network called ‘‘discriminator’’ distin-
guishes whether the an input image is true of fake. GANs tend
to be unstable during training and often produce unnatural
artifacts. To solve these problems, many researchers have
explored how to optimize GANs. In CGAN [22], condi-
tional variables are introduced. Salimans et al. [23] pro-
pose mini batch discrimination to improve training. Creswell
and Bharath [24] introduce a task specific cost function.
In EBGAN [25], the discriminator is viewed as an energy
function.

Now that GANs are attracting many researchers’ interest,
they use GANs to quite a few image processing tasks. For
example, text-to-image synthesis [26], single image super-
resolution [27], and image inpainting [28].

C. RAINY IMAGE COMPOSITE MODELS
In order to make synthetic rain images, several models have
been proposed. The linear additive composite model in (1) is

the simplest one. This is based on the hypothesis that rainy
image yadd is broken down into background part x and rain
streaks part v:

yadd = x+ v. (1)

As calculated values of yadd is clipped between 0 and 1 in the
image processing, we can rewrite (1) as:

yadd = min (x+ v,1), (2)

where 1 represents an array filled with ones and min (X,Y )
denotes the operation in which the smallest elements from
X or Y are taken. This model tends to generate unnatural
results when the original image contains bright region such as
clouds or white objects (Fig. 2c). Otherwise, it is an optimal
composite method for real-world extremely heavy rain.

On the other hand, a screen blend model is also adopted to
synthesize images. In that model, to avoid unnatural appear-
ance of the additive model, multiplied x and v are subtracted
from the sum of them as:

yblend = x+ v− x ◦ v, (3)

where ◦ indicates an element-wise multiplication operator.
The images synthesized by the screen blend model look
natural when an image contains shining part or dark part
(Fig. 2d).

III. PROPOSED METHOD
We propose a GAN-based model in which the generator
detects rain streaks and the discriminator judges whether
the input clean image is a de-rained output (fake) or a
clean image (true). The overall framework is illustrated
in Fig. 3.While commonCNN-basedmethods directly output
de-rained images, the output of our generator is the rain
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streaks. This residual learning enhances the de-raining per-
formance. In the training process, several number of rainy
images are required. Since we do not have ground truth of
real-world rainy images, we create pairs of synthetic rainy
and clean image datasets. To be robust against many rain
conditions, our synthetic rainy images are generated by two
composite models.

A. THE NETWORK STRUCTURE OF PROPOSED GAN
During a test phase, in the input of our proposed network,
the input is a rainy image y and the final output is a de-rained
image x̃ in Fig.3. Whereas, during the training phase, there
are mainly four differences with the conventional methods

First, we do not use an image decompositionmethod.Many
conventional methods divide the image into high frequency
domain and low frequency domain, and each domain is pro-
cessed independently. The problem is that they leave the rain
noise in low frequency domain, which makes the restored
image whitish.

Second, we use residual learning. In most CNN-based con-
ventional methods, they directly output the de-rained image.
The problem is that a tremendous amount of training dataset
and training time are required to optimize the network. This
is because it is difficult to recognize edges of the image and
the rain streaks. Besides, the restoration of the contaminated
image needs high computational cost. To solve these prob-
lems, we do not directly output a de-rained image x̃ but output
a residual image y− x̃ [1].

Third, we introduce UNet structure [19] to detect rain
streaks. In order to distinguish rain streaks and background,
both global features and local features have to be considered.
Inspired by the success of UNet for image segmentation
tasks [19], we adopt UNet architecture. In Table 1, we com-
pare the quantitative results with the other deep learning
networks: ResNet [16] andUNet++ [29]. The results demon-
strate that UNet structure is optimal for de-raining.

Fourth, we propose a GAN structure. The discriminator
identifies whether the input is a real clean image or a gen-
erated clean image. As can be seen in Fig. 4, the GAN-based
network can suppress the artifacts (the upper image) and
under de-rain (the lower image). Furthermore, to enhance the
performance of the discriminator, we combine rainy image
y with the de-rained image x̃ as a fake data. Similarly,
the real image is the rainy image y and the ground truth clean
image x.

B. LOSS FUNCTION
Our goal is to optimize parameters of the generator that
minimize the following loss function:

LG = µ1LMSE + µ2Ladv, (4)

where µ1 and µ2 are the coefficients which are empiri-
cally determined. The first term, LMSE is a mean square
error between residual images yn − xn and output images

TABLE 1. Quantitative results for five test datasets using three different
network structures. The number of epoch is 40 in each network. The
upper part is PSNR (dB) and the lower part is SSIM. Red-letter and
blue-letter values indicate the highest and the second highest values in
each row, respectively.

FIGURE 4. Comparison of two different networks. Top: Synthetic image.
Bottom: Real-world image. (a) rainy image, (b) de-rained output of UNet
without discriminator, (c) de-rained output of UNet with discriminator
(proposed GAN-based network).

G(yn;2G). The loss function is expressed as:

LMSE =
1
2N

N∑
n=1

‖(yn − xn)− G(yn;2G)‖22, (5)

where n and N indicate an image index and the total number
of images, respectively.2G denotes the learned parameters of
the generator. The second term of the Eq. 4, Ladv is an adver-
sarial loss. The loss function is to optimize the discriminator
to evaluate whether the input is a true clean image or a fake
clean image. The following equation is the adversarial loss.

Ladv =
1
2N

N∑
n=1

‖1− D(xn, yn;2D)‖22. (6)

On the other hand, the discriminator parameters are opti-
mized by minimizing the following loss function:

LD =
1
2N

N∑
n=1

(
‖D(x̃, y;2D)‖22 + ‖V − D(x, y;2D)‖22

)
,

(7)

VOLUME 8, 2020 40895



T. Matsui, M. Ikehara: GAN-Based Rain Noise Removal From Single-Image Considering Rain Composite Models

FIGURE 5. The flowchart of generating rain noises.

where V indicates a random value matrix which follows
Gaussian distribution with an average of 1. To enable the dis-
criminator trained effectively, we use random values instead
of constant values.

C. GENERATING RAIN STREAKS
To train the mapping between rainy and clean images, we are
required to create many natural rainy images from clean
images. However, we cannot simultaneously get the same
location images on a rainy day and a sunny day. Instead,
we composite a clean image x and rain streaks v for training.
Unlike the previous method as [11], [13] in which the authors
synthesize rain streaks using Photoshop, we can easily gen-
erate rain noise v and control the densities and angles of rain
on Python. As shown in Fig. 5, generating rain noise process
follows three steps.

First, uniformly distributed random numbers u ∈ U(0, 1)
are generated with the same size as the clean image. To shift
the average value and normalize the number, we adjust the
noise amount σa and clip them between 0 and 1. One element
of the random noise vi ∈ v is calculated as:

vi← max (min (σa(ui − λ)+ λ, 1) , 0) , (8)

where λ = 0.5. Generated random noise is show in Fig. 5 (a).
Next, the generated noise needs to be blurred by a Gaussian
filter Fg. Filtered output is normalized using values of σTmin

and σTmax . These two thresholds are used to reduce the amount
of noise and boost its contrast. The calculated values are
clipped between 0 and 1 as follows:

vi← max
(
min

(
v̂i − σTmin

σTmax − σTmin

, 1
)
, 0
)
, (9)

where v̂ = Fgv. The medium rain noise looks like Fig. 5 (b).
Lastly, natural rain streaks are reproduced by giving the
movement with a certain direction. After applying a motion
filterFm(σl, σϕ), we adjust the rain scale σs. The filterFm is
a function of the length σl and angle σϕ .

v← σsFm(σl, σϕ)v. (10)

The final rain noise is show in Fig. 5 (c). To simplify the noise
model, we fix some parameters except for v as a function of
σTmin , σl and σϕ . In the above procedure, we can obtain natural

FIGURE 6. Clean images and synthetic rainy images (Rain4).

TABLE 2. Examples of rain streaks parameters.

rain noise v(σTmin , σl, σϕ). Fig. 6 shows the four sample syn-
thetic rainy images. Each parameter is illustrated in Table 2.

D. DISCUSSION ABOUT COMPOSITE MODELS
As discussed in Section II-C, two main composite models
are used when creating rainy images. One is linear additive
composite model (2), which is adequate to create heavy rain
images and inadequate to images with white part. The other
is non-linear screen blend model (3). That model generates
natural rainy images but unnatural heavy rain. Although both
models have advantages and disadvantages, general state-of-
the-arts use only one of them. This hypothesis might not be
able to deal with a wide range of real-world images due to
the effect of internal reflections [30]. Therefore, we adopt
these two models to prepare a rainy image dataset. Supposing
several rainy patterns enables our proposed network robust
enough to handle a variety of actual rain.

IV. EXPERIMENTAL RESULTS
We evaluate the performance of our de-raining method by
conducting experiments on both synthetic rainy images and
real-world images. We compare the de-raining performance
with three state-of-the-art methods. We select the prior-based
method (DSC [6]), the simple CNN-based method (Derain-
Net [11]) and the GAN-based method (DID-MDN [13]). All
of these methods are implemented with the source codes the
authors distribute.

A. TRAINING DATASET
Since real rainy images and the corresponding sunny images
are not available simultaneously, we have to create synthetic
many rainy images. According to the procedure as discussed
in Section III-D, we combine clean images and generated
rain streaks to prepare training dataset. Our dataset includes
a total of 4900 images including 900 images used in [11] and
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TABLE 3. Quantitative comparisons with state-of-the-art using PSNR (dB) on synthetic test images. In the upper part, results of images from Rain4 are
shown. The lower part represents an average of each dataset. Red-letter and blue-letter values indicate the highest and the second highest PSNR,
respectively.

TABLE 4. Quantitative comparisons with state-of-the-art using SSIM on synthetic test images. In the upper part, results of images from Rain4 are shown.
The lower part represents an average of each dataset. Red-letter and blue-letter values indicate the highest and the second highest SSIM, respectively.

4000 images used in [13]. During a training phase, we ran-
domly crop 384×384×3 patches. In addition, these patches
are randomly flipped horizontally or vertically for data aug-
mentation. Unlike several conventional methods, we create
completely random rain noise pattern with different angles,
scales and densities. Specifically, we set rain noise parameters
v(σTmin , σl, σϕ, σs, σa) to σTmin ∈ [0.54, 0.62], σl ∈ [5, 15],
σϕ ∈ [50, 130], σs ∈ [1.1, 1.5],and σa ∈ [0, 2]. Note that
σ ∈ [σ a, σ b] represents σ is taken the value within a range of
σ a to σ b. A clean image and the rain noise are synthesized by
either an additional model or a screen blend model for each
patch. We directly pad zeros before convolution to keep an
output image same as the input one.

B. LEARNING PARAMETER
We start the training with a base learning rate of 0.0002 and
use Adam solver to optimize training parameters. In Adam,
we set two learning rates as β1 = 0.5 and β2 = 0.999. The
Pytorch framework is used to train our entire network. The
models are trained for up to 4900×40 iterations with a batch
size of four. During training we set the adversarial loss ratio
in 6 to µ1 = 1, µ2 = 0.001.

C. RESULTS ON SYNTHETIC IMAGES
We compare the performance of three previous methods both
qualitatively and quantitatively on several synthetic rainy
image datasets. We test on commonly used test datasets
‘‘Rain12’’ [11] and ‘‘Rain100’’ [13]. Furthermore, we newly
create synthetic rainy images using clean outdoor image
datasets from ‘‘Rain4 ’’ [11], ‘‘BSD100’’, and ‘‘Urban100’’.
In the dataset Rain4, rain noise parameters are set as Table 2.

As a subjective evaluation, Fig. 7 shows the visual com-
parison for two synthetic rainy images. The second row and
the fourth one are the histogram of the first row and the
third one respectively. As can be seen in the third column,
method [6] leaves a considerable amount of rain streaks.
For method [11] in the forth column, rain is almost entirely
removed but the overall image turns whitish, specifically
feathers of the bird. This color shift is caused by combin-
ing low frequency componets with de-rained high frequency
components. Method [13] results in over de-raining and los-
ing important details. The histogram shows that the color of
their de-rained images are changed. We can see that the peak
of the histogram are shifted from the ground truth histogram.
In contrast, our proposed model can remove rain streaks well
with the contrast of the images remained. The combination
of residual learning and UNet structure leads to these great
performance.

On the other hand, as an objective evaluation, we com-
pare the de-raining performance using PSNR and SSIM [32]
in Table 3 and 4. PSNR results in Table 3 demonstrate that
the whiteness throughout an image in method [11] causes a
lower PSNR. Also, SSIM results in Table 4 reveal that under
de-raining in [6] and over de-raining in [13] lead to lower
SSIM. Meanwhile, since our proposed method can remove
rain streaks without losing the important details, we achieve
higher PSNR and SSIM than other conventional methods.

D. RESULTS ON REAL-WORLD IMAGES
In this section, we make sure whether our proposed method is
also applicable to real-world rainy images. We collect many
real-world rainy images from the Internet and the test dataset
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FIGURE 7. Results on two synthetic test images from Rain4, (first row) ‘‘Umbrella’’ and (third row) ‘‘Bird’’. The second row and the forth one
are histogram of the first row and the third one respectively.

FIGURE 8. Three results on real-world rainy images, ‘‘Street’’ (top), ‘‘Soccer’’ (middle) and ‘‘Buddha’’ (bottom). All algorithms use image
de-hazing [31] as a post-processing.

used in [11]. While synthetic images have only rain streaks,
real-world images include haze as well as rain streaks. For
clear appearance, we apply de-hazing method [31] as a post-
processing. We compare visually de-raining performance
with state-of-the-art methods. Fig. 8 shows the visual compar-
ison. As can be seen, method [6] suffer from under de-raining
for all images. Althoughmethod [11] can remove rain streaks,
they blur textures and edges. Results of method [13] are over

de-rained and they lose important details. In contrast, our
proposed method can remove rains with the detail textures
preserved. One can see that our model works well not only
for synthetic images but also for real-world ones.

E. COMPARISON WITH OTHER COMPOSITE MODELS
As discussed in section III-D, we demonstrate that our
proposed composite models are effective for a real-world
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FIGURE 9. Comparison of three different training data. Top: Synthetic
image. Bottom: Real-world image. (a) input image, (b) additive composite
model, (c) screen blend model and (d) proposed model.

rain removal task. We prepare the following three train-
ing datasets. The first one and the second one are synthe-
sized with additive composite model (2) and screen blend
model (3), respectively. The third dataset includes synthe-
sized images produced by either of them. As can be seen
in Fig. 9, a combination of two composite models is effective
for de-raining. Compared with the other models, the network
trained with the mixture of two composite models does not
leave rain streaks or artifacts very much.

V. CONCLUSION
We have proposed a GAN-based de-raining network trained
with mixture of two rain image composite models. To capture
global features and local features of rain streaks, we use
UNet structure as the generator. In addition, residual learning
improves the performance of training and testing process.
Moreover, to generate synthetic rain noise for training,
we introduce a completely automatic rain noise generator.
We compare the de-raining performancewith several state-of-
the-art methods for synthetic images and real-world images.
The results on synthetic data demonstrate that our proposed
model noticeably outperforms other conventional methods
both quantitatively and qualitatively. For real-world data, our
diverse rainy dataset can remove rain streaks and enhance the
hazy images without losing important details. Thus, our pro-
posed method overcomes under de-raining, over de-raining
and hue change problems.
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