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ABSTRACT ECG data are biosignals with unique characteristics that can be obtained regardless of time
and space constraints. Owing to these advantages, they have been widely used for not only diagnosing
diseases but also recognizing people. Numerous studies have been conducted and various feature vectors
from a large amount of data have been suggested to improve recognition performance. The key to extracting
feature vectors is to extract differences in one-dimensional ECG signals without loss in order to recognize
human identity. In this paper, we propose new feature vectors based on fiducial points. These feature
vectors have simple and clear shapes that combine temporal and amplitude information. The discriminator
operating in the proposed human identification system measures distance-based similarity. This method
alleviates computational burden and enables the human identification system to run in real time. Based on
the system, we conducted a number of recognition experiments. The experimental results proved that the
proposed feature vectors are valid information that represents significant differences between individuals.
In the experiments with 100 subjects, we obtained a recognition rate of over 94%when two or more than two
heartbeat signals were used, and confirmed that as the number of input heartbeats increased the performance
also improved proportionally.

INDEX TERMS Temporal-amplitude combined, feature vector, fiducial point, human identification.

I. INTRODUCTION
The biometric recognition technology, called biometrics, is a
technology [1]–[20] that identifies people through statistical
analyses by acquiring biometric information such as physio-
logical and behavioral characteristics of human body. There
are various types of biometric information available in body.
ECG is one of them. Several conditions must be met for the
information in body to have a meaning as biometric informa-
tion. First of all, it should be something that everyone has,
and it should have unique quality that does not change over
time. Next, this information should be able to be measured
externally and provided without any particular resistance.
Lastly, it should be robust to falsification. Depending on the
extent to which these conditions are met, the suitability of
biometric information is determined [11].
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Consequently, it is difficult to find biometric information
that everyone has, is hard to falsify, and is easy to obtain.
Since 2001 researchers [2], [8], [9], [60] who have inves-
tigated on system access control have confirmed that ECG
signals are a type of biometric information that satisfies the
conditions mentioned above. At the beginning, ECG infor-
mation aimed to diagnose diseases, but it has been widely
used in biometric recognition over the last decade. This is
because several features of ECG signals enable biometric
recognition. The ECG-based biometric recognition technol-
ogy started from the early studies mentioned in the work of
Nasri et al. [14], Odinaka et al. [15], Israel and Irvine [10]
and, since then, has been continuously developed [21]–[25].

Let us examine how ECG signal generated by heart move-
ment is used as information that can identify people. The heart
is a muscle (myocardium) that carries blood to all over the
body by contracting itself periodically. This contraction is
initiated by an electrical stimulation generated at the sinoa-
trial (SA) node of the atrium (Fig. 1), which serves as a
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FIGURE 1. Structure of the heart and a heartbeat signal [28].

pacemaker of the body. This electrical stimulation propaga-
tion causes electric signals to flow on the surface of the body
in a certain pattern. The record of such an electric signal
flowing on the body is Electrocardiography (ECG) [26]–[29].

Generally a heartbeat of every person seems to have a
similar shape, although there are clear differences [18] in its
specific details. This is because each person has a different
shape of the heart and its periphery. Such morphological
differences are reflected in ECG signals, through which we
are able to confirm the identity of a body.

In this paper, we propose new feature vectors that can
successfully perform biometric recognition and also demon-
strate a human identification system applying the proposed
feature vectors. The proposed feature vectors can be extracted
quickly from ECG data, and they are visually clear and dis-
criminative. Thanks to these features, a human identification
system based on the proposed feature vectors can reduce com-
putational complexity, and yet achieving significant recogni-
tion performance in real time.

II. RELATED WORKS
Various types of feature vectors [30]–[42] have been pro-
posed in relation to ECG signal. Feature vectors are generally
classified into three types [7], [58], as follows: 1) temporal
information, 2) amplitude information, and 3) morphological

information of ECG signals. The idea of using ECG infor-
mation as a means of recognizing human identity was first
proposed by Forsen et al. [43], although the first study
of a human identification system was actually conducted
by Biel et al. [2]. Researchers conducted experiments by
combining features obtained from subjects using 12 leads.
Oosterom et al. [41] found that the variations in ECG signals
between individuals were related to the morphological dif-
ference of the heart. Based on these early research results,
ECG-based biometrics (also known as heart biometrics) has
been advanced.

In general, features extracted to distinguish the identity
using ECG signalsmustmeet the requirements of the discrim-
inator and the real-time processing ability [19], [44]–[48] of
the system. However, in the field of biometrics, there are no
typical features [7] that can be extracted from ECG signals
and no typical technology that can process them. The reason
is that it is difficult to objectively compare the technologies
because each researcher has developed a technology suitable
for their own experimental conditions.

The conventional feature extraction methods [49]–[61] can
be classified into fiducial-based approaches and nonfiducial-
based approaches. Both approaches have pros and cons. The
fiducial-based approach has clear fiducial points from which
features can be extracted but the performance of the entire
system can be affected depending on the accuracy in finding
fiducial points. The nonfiducial-based approach eliminates
the negative effects of the fiducial point detector, but it
requires a more sophisticated algorithm because it utilizes
various features contained in the entire data.

The fiducial-based approach finds specific fiducial points
present in ECG signals, extracts numerous features based on
these points, and uses the features as input into the human
identification system. The peaks and valleys of a waveform
of ECG signal are typical fiducial points. Apart from them,
envelope and slope of the waveform can be also used as a
fiducial point. The fiducial point detector [24], [62] can be
implemented in several ways. The more fiducial points we
set, the further the ability of the detector to extract them is
degraded, which adversely affects the overall system per-
formance. For this reason, most researchers use the limited
number of fiducial points (P, Q, R, S, T).

Fiducial point-based features are represented by tempo-
ral, amplitude, and morphological information. The electrical
conduction system of the heart involves a process where
electrical stimulation occurs and is transmitted. The features
existing on the temporal axis are the information between
the key temporal points related to the stimulation propaga-
tion. As can be observed in Fig. 1, this stimulation begins
at the SA node, passing through the atrioventricular (AV)
node, the bundle of His (Fig. 1), and is transmitted to the
Purkinje fibers of the ventricles. The key temporal points
during this process are represented by the fiducial points
(P, Q, R, S, T). They can be bases of discriminative features
for biometrics. Fig. 2 shows several features [28] represented
by temporal information. Of them, the most frequently used
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FIGURE 2. Temporal features of ECG.

features are the periods of the waves (P, QRS complex, T)
and the temporal intervals [9], [12], [42] between them. The
interval [16], [37] between the R point of the current signal
and that of the next signal is also used as a feature.

The features present in signal strength (amplitude) use the
differences in height [9] between the peaks of P, R, T and
the valleys of Q, S. In general, given that R is the highest
point, the amplitude can be expressed by its relative ratio to R,
and the first and second derivatives [53] of the peaks are also
used as features. Finally, morphological-based features use
morphological information present in all or part of the ECG
signals. For example, the average value [3], [48] of samples
in a specific region can be used as a feature, and the slope of
R toward S or the slope of S toward T [67] can also be used
as a feature. Apart from them, many other features have been
proposed.

There are various types of feature vectors and the number
of feature vectors varies in each study. Furthermore, different
types of discriminators have been used and the number of
participants in the experiments ranged from as few as 20 to
as many as several hundreds. A recognition rate of approxi-
mately over 92% was obtained in these various experimental
environments [4], [19].

The nonfiducial-based approach has been reported since
2006 as a method that does not use a fiducial point detec-
tor. This method is based on the idea that ECG signals
are repetitive. An earlier paper by Plataniotis [56] pro-
posed a method for extracting normalized autocorrelation
(AC)-based features. Various studies have been attempted
using the wavelet distance [3], [48], template [31], spec-
trogram [38], MFCC [1], [61], autoregressive model [32],
polynomial [52], [57], and others.

The last aspect to take into account when designing an
ECG-based human identification system is the number of
leads used to extract ECG signals. ECG signals developed
for medical purposes basically obtain information using
12 leads [69]–[73]. However, when building a human iden-
tification system, we use only one lead [64]–[68] to obtain
information by considering usability of the system. In other
words, two electrodes, one for each hand, are used to extract
information. The ECG data extracted through the above pro-
cess go through preprocessing steps [30], [74]–[76] where
unnecessary noise is removed, and they are converted into
the signals from which the features for biometrics are to be
extracted. In the next section, we examine the preprocessing
technology applied to this study.

FIGURE 3. Preprocessing flowchart for ECG noise removal.

III. PREPROCESSING
With regard to the ECG data used in this study, we obtained
ECG lead-I data repeatedly from a healthy person for a
certain period of time using an in-house built device. The
device used for measurement [77] was Psoc-5LP (ARM
Cortex-M3 series). In the device, 128 samples were sampled
in a second and the signal to noise ratio was 60 dB. Pre-
processing goes through the three steps of noise removal,
baseline calibration, and segmentation, as shown in Fig. 3.

The noises present in ECG signals are removed by fre-
quency filtering, R point detection, and median filtering.
Of them, the frequency filtering removes noises above 60Hz
arising from a power line and noises below 0.5Hz arising
from the connection surface of electrodes by using a bandpass
filter. For signals passing through the bandpass filter, the QRS
complex waveforms containing important information are
separated by detecting the R point, and noises were removed
by applying a median filter to the rest of the area except for
the QRS complex part.

Even after the series of noise removal steps, the baseline
fluctuation noises caused by subjects’ breathing could not
be removed. Therefore, the variations in the baseline are
estimated and are mapped on the horizontal line, and then
the baseline fluctuation noises, in principle, are removed by
zero-point calibration. However, due to the characteristics
of the proposed features, the zero-point calibration is not
necessary, which is an advantage for reducing computational
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burden. The ECG baseline changed by subjects’ breathing
was estimated using a regression analysis, which only esti-
mates a partial baseline. The estimation of the partial base-
line is performed repeatedly to estimate the entire baseline.
Finally, the entire baseline is completed as a stable baseline
after the fluctuation noises are removed through projection
and correction. Such a baseline calibration process does not
affect the unique features of the individual present in ECG
signals.

Such noise-removed ECG lead-I signals undergo a seg-
mentation process in which the P wave, QRS complex,
and T wave are grouped in a unit and then separated. The
fiducial point-based segmentation method, which shows bet-
ter performance, was selected as a segmentation method,
thereby separating the lead-I signals into heartbeat signals
composed of P wave, QRS complex, and Twave. For detailed
information on the preprocessing steps, please refer to
Choi et al. [74].

A. DB CONFIGURATION
The in-house database used in this study stored ECG data
extracted from a total of 100 subjects, 89 of them males
and 11 females. They were healthy when the ECG data was
extracted, and individual medical history was not taken into
account. Their age ranged from 23 to 34, and an amount
of 2 min of ECG signals were extracted for each subject.
We extracted signals for 10 sec, paused for 10 sec, and then
measured again. We chose an amount of 10–50 sec of data
and used them as a training dataset, and then used the next
10–30 sec of data as an evaluation dataset. To measure the
recognition performance, the ECG signals were segmented
into heartbeat signals, each of which was used as a data unit
for training and evaluation. We used 50 data units (training
data) for training and 10 data units (evaluation data) for
evaluation per subject.

B. FIDUCIAL POINTS DETECTION
Various algorithms [62], [63] have been proposed for
the methods to detect fiducial points. However, although
their own performance could affect the final recogni-
tion performance, there were no significant differences
in performance between the techniques. Besides, standard
databases used for ECG research are provided in such
a way that they are already divided into heartbeat sig-
nals and contain fiducial point information. Therefore,
researchers have conducted their studies based on the given
fiducial point information without developing additional
detectors.

In this study, we built our own database by extracting
ECG data using the in-house built device. Since the database
did not have additional information unlike the standard
databases, we obtained fiducial point information by employ-
ing a fiducial point detector that we designed. The following
Algorithm 1 is the design steps of the fiducial point detector
of our own.

Algorithm 1
1. A smoothing filter is applied to a heartbeat signal.
2. Find candidates of fiducial points by applying a derivative
filter to the smoothed signal (Fig. 4(a)).

2.1 If a point with zero slope occurs consecutively, let
the median point be a valley or a peak.
2.2 If there are valleys and peaks within a certain dis-
tance from the candidates, they are regarded as noise and
removed.

3. Regard the two highest peaks as the R and T points. If the
first peak is selected, regard it as the P point, and find the next
two highest peaks for R and T points (Fig. 4(b)).

3.1. If the T point is not located at the end part of the
signal, find the T point again.

4. Let both adjacent valleys to the R point be the Q and S
points (Fig. 4(b)).

4.1 Revise the location of the Q and S points if they are
not the last two lowest valleys.

5. Determine the final locations in the original signal corre-
sponding to the P, Q, R, S, and T points of the smoothed signal
(Fig. 4(c)).

C. NORMALIZATION
The EGG signals are normalized properly after noise reduc-
tion. The purpose of normalization [21], [30] is to minimize
the effects of the noise reduction process and to maximize
the discrimination between feature vectors. When a heartbeat
signal of our database is displayed in an X-Y coordinates
as in Fig. 4, the variation of the amplitude components
(y axis) ranges from approximately 0.5 mV to 3.1 mV and the
temporal components (x-axis) consists of 95 samples which
corresponds to an amount of 0.7 seconds. Therefore, if the
numerical value in seconds is used as the digital value on the
horizontal axis, it becomes a graph with the vertical length
(0.5 ∼ 3.1) of the ECG signal longer than the horizontal
length (0.0 ∼ 0.7).
The feature vectors proposed in this paper (described in

detail in the next section) are composed of length and slope,
and the horizontal axis represents temporal information. This
temporal information indicates individual differences when
the electrical stimulation of the heart propagates, thus the
feature vectors can have better discrimination when the hori-
zontal direction has sufficient length compared to the vertical
direction. We found the ratio maximizing the discrimination
between feature vectors through experiments. As a result,
we normalized the variation on the x-axis ranges between
0 and 7 while the variation on the y-axis ranges between
0.5 and 3.1.

IV. METHODOLOGY
A. FEATURE EXTRACTION AND SELECTION
Heartbeat signals making up ECG signals have a specific
shape. A heartbeat signal, which is a one-dimensional signal,
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FIGURE 4. The results of the fiducial point detector in each step.

FIGURE 5. The proposed feature vectors in a heartbeat signal.

has peaks and valleys at certain locations, which are denoted
as the fiducial points P, Q, R, S, and T, as shown in Fig. 5 (a).
As described previously, one of the methods to extract feature
vectors is based on the fiducial points. In particular, features
are extracted from several fiducial points, which are the
strength or period of the P wave, T wave, and QRS complex,
in an ECG waveform. We tried to find the identity of ECG
data by operating a discriminator based on the differences
between these feature vectors. If discrimination can be max-
imized by transforming this morphological difference into a

feature vector with minimum loss, it will be the most effective
feature extraction method. It will also be very efficient if a
feature vector is visible enough to be confirmed by naked
eyes.

In this paper, we propose a new feature vector extrac-
tion method that has such advantages and demonstrate an
ECG-based human identification system applying the new
feature vectors. This method is based on the P, Q, R, S,
and T points that can be detected in the ECG signal of a
healthy person. The purpose of the proposed system is not
for medical diagnosis but for biometrics, and thus, it does
not require high precision when detecting fiducial points.
Therefore, computational burden is small and the effect of
fiducial point detection performance on the entire system is
not significant.

Now, let us examine the proposed feature vectors. A line
segment can be created by selecting two different points from
the peaks (P, R, T) and valleys (Q, S) present in a heartbeat
signal. This line is proposed as a new feature vector (Fig. 5).
There are 10 line segments (hereinafter referred to as 10 types
of feature vectors) that can be created in this way, which are,
P-R, R-T, S-T, P-S, P-T, P-Q, Q-R, Q-S, Q-T, and R-S. These
feature vectors change in length and slope depending on both
the location of the P, Q, R, S, and T points on the temporal axis
and the variation in amplitude. In other words, we propose
10 types of feature vectors that combine the temporal and
amplitude information of ECG signals. These feature vectors
reflect unique characteristics of individuals as will be seen in
the followings.

First of all, let us focus on the 4 types of feature vectors
(which is interchangeably used with the 4 feature vectors)
of the 10 types of feature vectors. The S-T and R-T feature
vectors contain information from the depolarization to the
repolarization of the ventricles. As observed in Fig. 5(b),
these two feature vectors contain information about the peri-
ods of QRS complex, ST segment, and P wave. The length
information of the R-T vector indicates the time difference
between the maximum depolarization and the repolarization
of the ventricles, and that of the S-T vector contains informa-
tion on the ventricular contraction and relaxation immediately
after the maximum depolarization. The variations in these
feature vectors occur due to the different size and structure
of the heart and its periphery. The S-T and R-T vectors could
be complementary to each other because they are feature
vectors representing similar phases in the electrical conduc-
tion system of the heart. In fact, the experimental results
in Table 1 for verifying the discrimination by a single feature
vector showed that they achieved the first and third highest
recognition performance.

The P-R feature vector is related to atrial depolarization.
Atrial depolarization begins at the sinoatrial node (SA), con-
tracts the right and left atrium, and propagates to the AV
node (Fig. 1) during the PR segment. Therefore, the length
information of the P-R feature vector represents the time
from atrial depolarization to the highest point of ventricular
depolarization, and the relative ratio of signal amplitude is
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TABLE 1. Performance by the accumulated feature vectors (%).

FIGURE 6. Distribution of the proposed feature vectors.

represented by the slope of the P-R feature vector. The P-S
vector is similar to the P-R vector and contains information
about the periods of P wave, PR segment, and QRS complex.
These two feature vectors are also complementary to each
other because they are the feature vectors representing similar
phases in the electrical conduction system of the heart. In fact,
in the experiment in Table 1 for confirming the discrimination
by a single feature vector, they showed the second and fourth
highest recognition performance.

The four feature vectors mentioned above can be seen as
the line segments (Fig. 5(b)) representing the outermost shape
of a heartbeat signal. In other words, they are regarded as the
feature vectors representing the most significant characteris-
tics of a heartbeat signal. We conducted experiments to verify
this, and the results using the 4 feature vectors are presented
in Table 1. The performance using the 4 feature vectors are not
significantly different from those using all of the 10 feature
vectors. Therefore, if we need to design a small-size human
identification system restricted to computational capacity,
we can build a system using only the 4 feature vectors out of
the 10 feature vectors. In other words, we can build a system
with 60% reduction in computation but with no significant
difference in performance.

Fig. 6 shows the distribution of the 10 types of feature
vectors extracted from the training and test data of 100 sub-
jects. The distribution of the 10 types of feature vectors in
the 2D space shows that there are not much overlapping

FIGURE 7. Distance-based similarity.

areas. Therefore, if the average value (average length, aver-
age angle) is calculated for each type of the feature vector
per person and is used as a representative vector, a simple
discriminator can be built.

B. SIMILARITY FUNCTION
A discriminator plays a critical role in a human identifi-
cation system. A discriminator determines the identity of
input biometric information by measuring similarity between
the representative feature vectors obtained from the training
process and unknown input feature vectors. The feature vec-
tors used in this study are the vectors connecting two points
between P, Q, R, S, and T, and these vectors are represented by
length and slope. Therefore, the role of the discriminator is to
determine how similar such feature vectors are. The similarity
measurement used in the study is distance-based as shown
in Fig. 7.

In order to find which vector is more similar to the vector
OA, the vector OB and OC are projected on the vector OA
respectively. And then the length difference between the pro-
jected vectors and the vector OA are measured. The vector
that makes the length difference smaller between the pro-
jected vector and the vector OA is more similar to the vector
OA. In this case, AC′ is smaller than AB′ so that the vector
OC is more similar to the vector OA. This method is available
because the angle between the vector OA and the vector OC
is the same as the one between the vector OA and the vector
OB.

In the case that the angle is not the same, the similarity
using only a projected vector is not sufficient. Considering
the vectors OB and OD in Fig. 7, these two vectors make
different angles against the vector OA. Thus the similarity
should consider not only the projected vectors OB′, OD′ but
also the height vectors BB′, DD′ as in Eq. (1) and (2).
Similar to vector subtraction, the similarity of two vectors

can be determined in such a way that the two vectors with the
smallest sum of length difference (AB′, AD′) and height (BB′,
DD′) are the most similar to each other as in Eq. (3) and (4).

OB′ = OB · cos θ1, AB′=OA− OB′, BB′=OB · sin θ1
(1)

OC′ = OC · cos θ1, AC′=OA− OC′, CC′=OC · sin θ1
OD′ = OD · cos θ2, AD′=OA− OD′, DD′=OD · sin θ2

(2)

42222 VOLUME 8, 2020



E. Bak et al.: ECG-Based Human Identification System by Temporal-Amplitude Combined Feature Vectors

FIGURE 8. Structure of the proposed human identification system.

Similarity(A, B)

=

(
OA− OB′

)
+ BB′

=
(
OA− OB · cos θ1

)
+ OB · sin θ1

= AB′ + BB′ (3)

Similarity(A, D)

=

(
OA− OD′

)
+ DD′

=
(
OA− OD · cos θ2

)
+ OD · sin θ2

= AD′ + DD′ (4)

C. DECISION-MAKING SYSTEM
When a feature vector is inputted through the discrimina-
tor, the human identification system proposed in this study
(Fig. 8) determines from whose heartbeat the feature vec-
tor was extracted. For this purpose, the decision-making
system must store (or register) the representative vectors
extracted through the training process. Therefore, it is essen-
tial to go through the training process before operating the
system.

The training process requires a certain quantity of ECG
data for people whose identities are already confirmed. Using
this data, we extract feature vectors and make representative
vectors by manipulating feature vectors according to the
purpose. Depending on how many representative vectors
are extracted from ECG data in the training step, the size
of the system storage is determined, and at the same
time, the processing speed is affected accordingly. Let
us have a closer look at the training process. In total,
50 heartbeat signals are used as the training data for each
one of the 100 subjects. These heartbeat signals have
already been preprocessed to remove unnecessary noise.
The location of the P, Q, R, S, T points has already been
detected by the fiducial point detector. Representative vec-
tors are determined from the feature vectors of such heart-
beat signals. In this study, we conducted experiments in
the following three ways for determining representative
vectors.

1) REGISTER THE AVERAGE VALUE OF FEATURE VECTORS
AS A REPRESENTATIVE VECTOR
From a single heartbeat signal, the 10 types of feature vec-
tors can be extracted. As 50 heartbeat signals per person
are used as training data, 50 training feature vectors (or
training vectors) are used for each type of feature vector.
Each training vector is expressed by length and slope. There-
fore, a representative vector can be obtained by calculating a
2-dimensional mean vector from 50 training vectors in length
and slope. As there are the 10 types of feature vectors, each
person obtains 10 mean vectors as representative vectors.
Thus, 1000 representative vectors of the 100 subjects are
registered in the human identification system.

The similarity of the stored representative vectors is calcu-
lated along with the feature vectors of input ECG data, and
the identity of input ECG data is considered to be the same
person as the one from which the representative vector with
the highest similarity is calculated.

2) REGISTER EVERY FEATURE VECTOR AS A
REPRESENTATIVE VECTOR
This method registers every feature vector extracted from
training data as a representative vector instead of mean vec-
tors. That is, as there are 50 training data per person, there
are 50 representative vectors for each type of the feature
vector. Therefore, 500 representative vectors are given to
each person. Given that there are 100 subjects, the number
of representative vectors registered in the system is 50,000.
Compared to the system using a mean vector as a representa-
tive vector, 50 times more storage space is required, and thus,
the processing time is increased proportionally.

We conducted experiments in two ways to compare the
similarity in the discriminator. The first one determines the
similarity by the highest value between an input feature vector
and the representative vectors. The other one determines the
similarity by a sum of K highest values (K-nearest neighbors)
between an input feature vector and the representative vec-
tors. A sum of K values can alleviate the problem of being
excessively biased toward particular data during the similarity
measurement process.

3) REGISTER THE CENTER POINT OF A CLUSTER AS A
REPRESENTATIVE VECTOR
Clustering is a method of partitioning data by assigning
individual data to the nearest cluster according to the data
distribution. One of the typical clustering methods is the
K-means clustering method, which is used in the experiment.
It creates N clusters by applying the K-means clustering
algorithm to each of the 10 types of feature vectors consisting
of 50 training data units and uses the center points of the N
clusters as representative vectors (X in blue in Fig. 9). This
method compromises between using a mean vector as a rep-
resentative vector and using every vector as a representative
vector. It keeps balance between recognition performance and
processing speed.
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FIGURE 9. The representative vectors of the 10 types of feature vectors
using 5 fixed clusters.

When applying the clustering method, we need to deter-
mine the number of clusters to which we assign the data.
Depending on the characteristics of the data, the number of
clusters may be determined in advance, and then clustering
can be executed (fixed clustering), or the number of clus-
ters can be changed during a clustering process (variable
clustering). In this study, we evaluated the performance by
applying both methods. Fig. 9 shows representative vectors
(X in blue) obtained through the fixed clustering (5 clusters
in total) method for each of the 10 feature vectors.

FIGURE 10. Examples of similarity measurement of the three systems.

If a representative vector is selected through the training
process mentioned above, the human identification system is
ready to recognize the identity of the input ECG data. The
feature vectors are extracted from the input ECG data in the
same way as in the training process, and the similarity is
compared with the representative vectors obtained through
the training process. Fig. 10 shows how the similarity is
measured in the above three systems.

V. EXPERIMENTAL RESULTS
Table 1 lists the results of the recognition experiments by
alternately selecting one of the 10 types feature vectors. The
feature vectors in the table are listed in order of highest recog-
nition performance. Tomeasure the recognition performance,
we used 10 data units (evaluation data) for each subject
and calculate the overall accuracy of choosing a subject out
of 100 subjects that corresponds to the input data. In the
experiment, the mean vector of feature vectors is extracted as
a representative vector during training. As for the evaluation
data, we conducted experiments using 10 evaluation data
units as a set per person. The feature vectors with the four
highest performances are S-T, P-R, R-T, and P-S. Of the
10 types of feature vectors, these 4 types of feature vectors
are the most discriminative feature vectors that determine the
outer shape of a heartbeat signal. The next discriminative
feature vector is the P-T vector, which represents the entire
process of the heartbeat period.

We observed how the performance changed when accu-
mulating the feature vectors by adding one feature vector
at a time. In the case where we accumulated two feature
vectors, we were able to achieve the performance with the
recognition rate of 96% when using (S-T + P-R), followed
by (S-T + R-T) and (S-T+ P-S) with 89% and 86%, respec-
tively. This result shows that an increase in the number of
feature vectors by adding feature vectors in descending order
of performance leads to the highest performance. In this way,
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we conducted experiments by continuously increasing the
number of feature vectors, such as three vectors (S-T+ P-R+
R-T), four vectors (S-T+ P-R+R-T+ P-S) up to ten vectors
(S-T + P-R + R-T + P-S . . . + P-Q). The experimental
results are listed in Table 1. When we accumulated feature
vectors up to 4, the performance is continuously improved,
whereas the performance remained when using more than
4 vectors.

The evaluation data sets used in the following experiments
were composed as follows. As each person can use 10 data
units for evaluation, we prepared the 10 data sets by randomly
selecting a data unit N (N = 1, 2, . . . , 9) times from 10 eval-
uation data units. That is, we prepared 10 evaluation sets
each of which consists of 1 evaluation data unit, and prepared
another 10 evaluation sets each of which consists of 2 evalu-
ation data units and repeated until the number of evaluation
data units becomes 9. Since we conducted experiments using
the 10 different sets, the average value of the 10 sets is
used as the overall recognition performance. This method
shows the recognition performance that gradually changes
according to the change in the number of input evaluation data
units. Now, let’s take a look at the performance of the three
systems that are configured differently depending on how the
representative vectors are selected.

First, let us consider the performance of the system
(denoted as System 1) using a mean vector as a representative
vector. Table 2 shows in detail the performance measured for
each set when the number of input data units changes from
1 to 9. System 1 has the fastest processing speed. However,
as a representative vector per a type of feature vector is just
a mean vector, there is a limit for effectively representing
various characteristics of the training data.

When two or more heartbeat signals are inputted, System
1 shows over 92.7% of recognition performance, which indi-
cates that the proposed feature vectors are suitable for biomet-
ric information. Since the discriminator has a simple structure
in this system, it has possibility to improve the performance.
In terms of real time processing, System 1 can achieve a
performance of 94.8% after approximately two seconds in
which three heartbeat signals are received.

If a human identification system uses a fiducial point detec-
tor, the performance of the entire system can be adversely
affected when the exact location of the fiducial points cannot
be found. For example, the P point appears to be normal when
the stimulus of the heart begins at the SA node. However,
in the case of the junctional rhythm [26] or the SA block that
occurs at the atrioventricular (AV) node rather than at the SA
node, the P point may not appear in ECG signals. In addition,
the P point might disappear [49] when the heart rate increases.
Therefore, Kim et al. [36] attempted to extract feature vectors
without the P point.

Let us see how the proposed method changes the perfor-
mance in the same situation, where the four feature vectors
(P-Q, P-R, P-S, P-T) associated with the P point are unavail-
able. Consequently, the system performance can only bemea-
sured using the rest of the six feature vectors. Table 3 com-

TABLE 2. System 1 performance (%).

TABLE 3. In cases where P, Q or S is excluded (%).

pares only the average values from the 10 evaluation sets
according to the change in the number of evaluation data
units, as in Table 2.

The results show that the performance without the P point
is approximately 98% of the performance obtained with the
P point, regardless of the number of input data units. This
proves that the overall system performance is not signifi-
cantly affected even though we could not find the P point by
a fiducial point detector. Likewise, we observed the effect on
the overall performance in cases where the Q or S points do
not appear just like the P point. As presented in Table 3, when
there are no feature vectors associated with the Q point, the
performance is almost similar to or even better than that of
P point case. In the absence of the S point, the performance
is relatively large decreased. However, when three or more
evaluation data units are inputted, the performance is close up
to 90 ∼ 95% compared to the performance when the S point
is present. In conclusion, the detection of fiducial points does
not significantly affect the proposed system, given that at least
the R and T points must be accurately detected by a fiducial
point detector, which could be a drawback of the proposed
method in a sense.

Second, let us consider the performance of the sys-
tem (denoted as System 2) registering every feature vector
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TABLE 4. System 2 performance according to the change in K
(average, %).

extracted from the training data as a representative vector.
Given that 50 heartbeat signals are used as the training data,
50 times more representative vectors are used compared to
the System 1. Considering the total number of subjects who
participated in the experiment is 100, a total of 50,000 rep-
resentative vectors were generated through the training pro-
cess. The discriminator compares the similarity between the
representative vectors generated in this way and input feature
vectors; then, the subject with the highest similarity is found
and is considered to be the same person that the input ECG
data was extracted from.

The similarity was measured in two ways. The first one
finds the highest similarity for each type of the feature vectors
and then adds them up to an accumulated value, which is the
similarity between the corresponding training data and the
input evaluation data. The other one calculates the similarity
using the sum of the K highest similarities instead of using
only the highest value when calculating the similarity of each
feature vector.

Table 4 presents the change in performance when all the
training data are used as representative vectors with K =
1, 5, 10, 20, and 50. The table only shows the average
value according to the change in the number of evaluation
data units. The experimental results show that there is no
significant difference in performance except for K = 50.
However, if we look at them in more detail, K = 10 shows
better performance than K = 5 when the number of input
data units is less than 3, and K= 5 shows better performance
than K = 10 when the number of input data units is 4 or
more. This indicates that the number of input data units and
the number of representative vectors are complementary to
each other. In other words, if the feature vectors that can
represent unique characteristics of the ECG are not sufficient
due to insufficient input data, this can be compensated by
increasing the number of representative vectors in the training
data. On the contrary, if the number of input data units is
large, the performance can be maintained by an appropriate
number of representative vectors. The performance improve-
ment according to the increase in K is saturated and when K is
more than 20, the performance of the discriminator becomes
degraded.

The third system (denoted as System 3) uses a clustering
method when extracting representative vectors in the training
process. System 1 and System 2 have difficulty in balanc-

TABLE 5. System 3 performance according to the number of the fixed
clusters (average, %).

ing an amount of computation and recognition performance.
Therefore, we generated clusters by grouping adjacent data
and designed the system using the center value of each of
the generated clusters as a representative vector. The number
of representative vectors affects not only the time of training
process but also the speed of the human identification system
that is expected to run in real time. Therefore, reducing
the number of representative vectors is a way to design an
effective system while maintaining proper performance.

We used the K-means algorithm for clustering. The algo-
rithm is widely used because it is intuitive and can group
adjacent data at high speed in a vector space. When we group
feature vectors with this method, we proceed in two ways.
The first one begins with a fixed number of clusters, which
is, before starting to group feature vectors, the number of
clusters is fixed. The other one is a variable number of clusters
that determines the number of clusters at the point where a
clustering error gets minimal while increasing the number
of clusters. In the experiment, we applied both methods and
observed the relationship between the number of clusters
and the performance. Because of the characteristics of the
K-means algorithm, we should determine the initial center
values of the clusters at the beginning and how to terminate
the iterations. In the experiment, we performed random sam-
pling to set the initial center values and the iterations were
terminated when there was no significant improvement in 5
consecutive iterations.

Let us examine the experimental results by the fixed cluster
method. Table 5 presents the results of comparing the aver-
age performance of the 10 sets according to the change in
the number of evaluation data, when the number of clusters
changes to N = 5, 10, 15, and 20. Table 5 reveals that the
overall improvement in performance is not significant when
the number of clusters increases. Given that System 2 main-
tained effective performance until K = 20, we conducted an
experiment increasing the number of clusters to 20 to com-
pare them in the same condition. System 3, which uses the
fixed cluster method, showed the most effective performance
when the number of clusters was 5 or 10.

The variable cluster method does not set the number of
clusters in advance. We obtained representative vectors by
applying the variable clustering method to the 10 types of
feature vectors. As the number of clusters is variable, different
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TABLE 6. System 3 performance according to the number of the variable
clusters (average value, %).

TABLE 7. Comparison of system 1, 2, 3 performance comparison (%).

numbers of representative vectors are generated for each of
the 10 types of feature vectors. Therefore, the overall num-
ber of representative vectors is obtained by calculating their
average value.

Table 6 lists the average number of clusters and the aver-
age recognition performance when the variable clustering is
performed with the maximum number of clusters set to 5,
10, and 20. The increasing input data leads to performance
improvement in a moderate rate. In addition, even when the
average number of clusters is as few as 4.8, the recognition
rate is similar to that of the other cases. This indicates that
an increase in the number of clusters does not necessar-
ily improve the system performance as in the case of the
experiment on the fixed cluster method. Consequently, this
proves that the quality of representative vectors affects the
performance more than their quantity.

Until now, we have examined the performance results of
the three different human identification systems (System 1,
System 2, System 3) with different structures of the discrim-
inator. Table 7 presents the comparison of the highest perfor-
mance of each system. The conclusion that can be drawn from
this table is that an effective extraction of representative vec-
tors can achieve effective performancewith a small number of
representative vectors. If we select System 3 (variable) as the
final system, we can achieve a recognition performance with
a rate of 94.4% ormorewhen there are two ormore evaluation
data units. In other words, assuming that the period of an input
heartbeat signal is approximately 0.7 sec, the identity of ECG
data can be confirmed after 1.5 sec in which two heartbeat
signals are received.

Let us compare the performance obtained in this study
with the conventional methods [77] obtained in the same

FIGURE 11. Performance graph of the conventional methods and the
proposed method. (conventional methods: method 1, method 2;
proposed method: 2–9 inputs).

TABLE 8. Comparison of performance of conventional and proposed
methods (%).

experimental environment. Table 8 presents the performance
comparison. When we conducted an experiment for 100 sub-
jects, the method using frequency properties [20] achieved
a recognition rate of 93% (Table 8, Method 1), and the
2D-resize method, which extracts features using the spec-
trogram, achieved a recognition rate of 93.3% (Table 8,
Method 2). The method 2 increases the discrimination of
feature vectors by increasing the amount of data to extract
effective features present in ECG signals.

In the proposed method, on the contrary, we selected a
method of minimizing the amount of computation when
extracting feature vectors and proposed the 10 types of feature
vectors. As a result, the human identification system using
the proposed feature vectors can process them in real time,
and the result shows better performance than the conven-
tional methods when two or more input data sets are inputted
(Fig. 11). It could be a drawback of the proposed method
that the recognition performance using a single heartbeat is
not as good as expected. However it is a rare situation in
which only a single heartbeat is available for human iden-
tification. In addition, given that the proposed method uses
the accumulated similarity obtained from the entire input
data, the recognition performance, unlike the conventional
methods, increases in proportion to the increase in the num-
ber of input data units. Such a structure enables the human
identification system to achieve an appropriate performance
by adjusting the number of input data units according to the
given conditions.

Table 9 is a modified confusion matrix of the pro-
posed method with 2 inputs for the 100 subjects. Due to
space restrictions, the original confusion matrix form has
been reconfigured in a more compact fashion. In the table,
the upper four rows show all the subjects which have been
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TABLE 9. Confusion matrix for the proposed method with 2 inputs.

classified without errors. For instance, the 10 test inputs from
the subject #1 were identified as ECG signals of the subject
#1. All the test inputs from 76 subjects, which are 760 test
inputs in total, were identified without decision errors.

On the other hand, the rest of the rows show the subjects
that have been identified with errors. For instance, 8 of 10 test
inputs from the subject #48 have been identified correctly and
2 test inputs were falsely identified into the subject #54, #67
respectively. Each of the 24 subjects contains at least one test
input that was identified incorrectly.

Therefore the red-highlighted cells (diagonal cells in an
original confusion matrix) show the TP (True Positive) or
TN (True Negative), which are 944 in total, and the other
cells (off-diagonal cells in an original confusionmatrix) show
prediction errors considered as FP (False Positive) or FN
(False Negative), which are 56 in total.

Since it is not a binary classification, the micro-averaged
recall (often called as micro-recall) and overall accuracy are

adopted for multi-class metrics.

micro− recall =
TP

TP+ FN
=

944
944+ 56

= 94.4%

overall accuracy =
TP+ TN

TP+ FN+ TN+ FP

=
944+ 944

944+ 56+ 944+ 56
= 94.4%

Since precision is the same as recall in the micro-averaging
case, the following always holds true:

micro− recall = micro-precision = overall accuracy

= 94.4%

Likewise FNR, FPR can be calculated in the form of micro-
averaged metric as follows:

micro− FNR =
FN

TP+ FN
=

56
944+ 56

= 5.6%

micro− FPR =
FP

TN+ FP
=

56
944+ 56

= 5.6%

Consequently, Statistical characteristics of the multi-class
classification in the proposed system can be summarized that
its overall accuracy is 94.4% and error rate is 5.6%.

VI. CONCLUSION AND FUTURE WORK
The ECG-based human identification system recognizes the
identity of a person using the uniqueness of ECG signals
caused by morphological differences of the heart. In this
study, we proposed new feature vectors based on fidu-
cial points which are clear and visible. The human iden-
tification system applying the new feature vectors was
designed considering the computational complexity. Accord-
ingly, we designed the structure of the discriminator in a
simple manner. Unlike the complex and overlapping informa-
tion represented by feature vectors in the previous research,
we proposed the 10 types of feature vectors that can be
represented by the combination of temporal and amplitude
information and verified the validity of these feature vectors.
Consequently, we were able to confirm that the proposed
feature vectors effectively represent the discriminative infor-
mation present in ECG signals.

The direction of future research aims to build the structure
of the proposed feature vectors hierarchically. As previously
mentioned, the proposed feature vectors containing the most
discriminative information were the four types of feature
vectors representing the outer shape of heartbeat signals.
Based on this concept, if we get the 10 types of the proposed
feature vectors into a hierarchical structure, which has outer,
middle, and inner layers, and then study the characteristics of
each layer and design a suitable discriminator for each layer,
we would be able to design an advanced ECG-based human
identification system with better performance.

It should be noted that in many studies, the unit for extract-
ing features is limited to a heartbeat signal itself, not taking
into account the unique characteristics between heartbeat
signals. Therefore, it is necessary to study a method that can
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express not only the features within a heartbeat signal but
those features between them. If we extend the concept in this
way, there is a possibility of extending feature vectors based
on fiducial points into feature vectors independent of fiducial
points. In other words, the adjacent areas around the proposed
feature vectors could contain highly discriminative informa-
tion, and it could be possible to extract new feature vectors
from them. Efforts to find these new methods should proceed
in the direction of real-time processing. Consequently, the key
to the development of new technology will be to extract fea-
ture vectors from the areas containing the most discriminative
information of ECG signals, including fiducial points.
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