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ABSTRACT User data has been used by many companies to understand user behaviors and finding new
business strategies. However, common techniques cannot be used when it comes to new products that
have not yet been released due to the fact that there are no prior data available. In this work, we propose
a framework for generating realistic user data on new products which can then be analyzed for insights.
Our model uses Conditional Generative Adversarial Network (CGAN) with the Straight-Through Gumbel
estimator which can also handle discrete-valued outputs. The CGAN is conditioned on product features
learned using a recommendation system which can better capture the relationship between products.
Experiments using a dataset consisting of view logs from a real estate listing website shows that our model
outperforms other baselines on four performance metrics, and can effectively predict the finer characteristics
of new products.

INDEX TERMS Generative adversarial networks, deep learning, generative model, data generation,
Gumbel-softmax trick, product embedding.

I. INTRODUCTION
With the rapid growth of online service, websites become
one of the main channels where people access their favorite
content. The data from these websites, often collected in web
logs become a source for mining insights about the users,
which can be very valuable for business. Techniques such as
association mining [1], sequential pattern mining [2], or clus-
tering [3] can be used onweb log data to improve profitability.
For e-commerce websites, recommendation engines [4] can
be trained on the logs to improve conversion rate and thus
increase revenue.

Another business use case for the study of web log is
for product development. Based on the web log data, if the
business can identify the characteristics of target users who
are likely to be interested in the new product before its
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release, they will have more useful insights for user targeting,
marketing channel strategy and the best time to launch new
campaigns without conducting a market survey. The goal of
this work is to forecast users’ responses to new products by
learning from web log data.

Generative Adversarial Network (GAN) [9] is a generative
model for learning from such distribution and generating new
realistic samples. It has been successfully applied to computer
vision [15], [16], [20], [21] and natural language processing
[26], [27] domains. The model consists of two neural net-
works: a generator and a discriminator. The generator learns
to generate new (fake) samples that look similar to the real
sample. The discriminator learns to discriminate between real
data and fake generated sample and send the feedback to the
generator so that it can generate better fake samples.

Moreover, GAN can be trained to control the mode of gen-
erated output by adding some kind of conditional signal, such
as class label, to both the generator and the discriminator.

41384 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-8668-1614
https://orcid.org/0000-0002-8187-3342
https://orcid.org/0000-0003-0262-7678


P. Chonwiharnphan et al.: Generating Realistic Users Using GAN With Recommendation-Based Embedding

This model is called a Conditional Generative Adversar-
ial Network [11]. A relevant work [22] was proposed to
apply CGAN for generating new plausible orders on the
e-commerce website in order to forecast the demand, the sea-
sonality, the characteristic of the customer, etc. The input
of the model used for conditioning the order is the product
name, so the model can be used to estimate the orders of
new products on the platform. However, the orders gener-
ated by GAN are embeddings that are used as inputs to a
separate set of models which will convert the embedding
into meaningful information. This is due to the limitation of
GAN that it cannot handle discrete value generation well.
As a result, classifiers are also needed to be trained to extract
the characteristics from generated order representation which
makes the training process sophisticated and hard to
maintain.

Similarly, our work also tries to generate realistic logs of
user for new products. However, the data on the real estate
domain comes from Home.co.th, a real estate listing website
in Thailand, which has more than one million views per
month. Given characteristics of a new real estate, such as
the location, the price, the size, the facilities, etc. we can
generate web logs which can be then aggregated to predicted
the characteristics of target users for the real estate. Our key
technical contributions are enumerated below:
• Recommendation based product embedding: prior
works used product descriptions for conditioning sig-
nal. The product description was converted into word
embeddings which mean only explicitly written product
characteristic would be captured. It cannot capture other
associations such as a person that likes condominiums
that are closer to the public transportation system might
prefer a condominium with a gym. In order to capture
these kinds of relationship, we propose the use of rec-
ommender based embedding which is learned via a deep
recommender system.

• A generative approach for generating web log data
with discrete outputs: prior works used a two-step pro-
cess in order to summarize user characteristics. On the
other hand, we handle the limitation of discrete outputs
for GAN by using Straight-Through Gumbel Estimator
[23], [24] which help simplifying the pipeline and reduc-
ing error propagation of the models.

For evaluation, to subjectively evaluate outputs, we use
four metrics to evaluate the results: Relative Similarity
Measure (RSM) [22], Correlation Coefficient (CORR),
Earth-Mover Distance (EMD) and Root Mean Squared Error
(RMSE). We compare our model with two baseline genera-
tion approaches: the nearest neighborhood and a Conditional
Variational Autoencoder (CVAE) [7]. The results show that
our generator generates the realistic users that are indistin-
guishable and outperforms the baseline approaches in these
metrics.

In the rest of this paper, the background and related works
are described in section II. Section III explains the detail of

our methodology and the experiment results are shown in
section IV. The last section is the conclusion of this work.

II. BACKGROUND AND RELATED WORK
In this section, we review the related theories and existing
works related to product embedding, Variational Autoen-
coder (VAE), Generative Adversarial Network (GAN) and
Gumbel-Softmax distribution.

A. PRODUCT EMBEDDING
An embedding can be considered as a dense and compact
representation of feature vectors. Good embedding should
have the property that if the features are similar in some
sense, their embedding vectors are closer. Word2Vec, which
was proposed in [28], is a popular embedding technique for
textual data. Two words are considered similar semantically
by their surrounding words and co-occurrence. The authors
proposed two methods to learn Word2Vec embedding: the
Continuous Bag ofWords (CBOW), which predict the current
word based on surrounding words, and the Skip-gram, which
predict context words given the current word.

For recommendation system, item embedding is a con-
tinuous vector which represents item and tries to capture
the relationship of items. In [29], the authors proposed
Item2Vec by using the Word2Vec framework. They assumed
that the items which share the same basket are similar in
some sense regardless of the order that user generates. They
predicted a item based on other items in the same basket.
The authors in [4] applied item embedding to improve the
session-based recommendation task in an e-commerce web-
site. They embedded an item description to its embedding by
Word2Vec. In [30], the authors want to represent the relation
between users and content for news recommendation. They
generated user representation by using a recurrent neural
network (RNN), whereas the content embedding was learned
via denoising autoencoder. They shown that the click-through
rate improved by 23% and the total duration improved by
10% over not using embeddings.

B. VARIATIONAL AUTOENCODER
Variational Autoencoder (VAE) [6] is a kind of Autoencoder
that can learn the distribution of the data. VAE can be used
to generate new data samples by sampling from the learned
distribution. The model consists of an encoder and a decoder.
The encoder embeds the input into a Gaussian distribution,
which will be sampled and decoded into the original input by
decoder. Unlike the Autoencoder, decoder of the VAE learns
not only from a single point in the latent space but also from
the nearby points in the latent space.

In application domains, the authors in [8] applied VAE to
generate new items which maximally satisfy the preference
of a group of user. They learned the shared latent represen-
tation between user and item features from user-item ratings.
Embedding for product recommendations can be generated
through weighted maximum coverage in a greedy manner.
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The item decoder maps these latent representations to item
features of new items.

However, VAE usually fails to capture multimodal distri-
butions and usually generate lower quality outputs due to
the gap between the lower bound of approximate posterior
distribution and true data distribution [10]. Therefore, GAN is
used as a variant of VAE since no variational bound is needed,
which often leads to better generated results.

C. GENERATIVE ADVERSARIAL NETWORK
Generative Adversarial Network (GAN) [9] is a deep gen-
erative model which can generate realistic samples that are
similar to the training data. The model is composed of a
generator (G) and a discriminator (D). The generator takes
a random noise input and learns to generate new realistic
samples. The discriminator decides whether a sample is real
or generated. GANworks as aminimax gamewhereD tries to
maximize the likelihood to recognize real samples as real and
generated samples as fake, whereasGwould like to minimize
it. GAN aims to achieve an equilibrium between the generator
and the discriminator so, the objective function of the original
GAN for discriminator is defined as:

J (D)=−
1
2
Ex∼pdata

[
logD(x)

]
−
1
2
Ez∼pz

[
log(1−D(G(z)))

]
(1)

where z is a random normal distribution (0, 1) or uniform dis-
tribution (0, 1). On the generator side, the objective function
is defined as:

J (G) = −J (D) (2)

The authors in [11] proposed conditional GAN to control the
output of the generator by incorporating some information
(c) such as class labels and other modalities into both the
generator and the discriminator. InfoGAN [12] is another
work which conditioned the generation by adding the mutual
information between the latent code and the generator output
as a regularization term in the loss function.

GANs often suffer from various problems such as non-
convergence, mode collapse, diminished gradients, etc.
Wasserstein GAN was proposed in [13] to improve GAN
by changing the loss function to Earth-Mover distance or
Wasserstein distance. The output of the discriminator is a
scalar which gives a score on how real the input sample is,
so the authors renamed the discriminator to critic. To satisfy
the constraint of Lipschitz continuity which is required to
compute the distance, they added the weight clipping bound
the weight of the critic. The difficulty in WGAN is tuning the
bounds in weight clipping. If the bound is large, it can take a
long time for the weights to converge. If the bound is small,
it can lead to vanishing gradients when the network has many
layers. To alleviate this issue, WGAN-GP [14] was subse-
quently proposed. Instead of the weight clipping, the authors
added a gradient penalty term into the loss function to enforce
the Lipschitz constraint during the training phase. The loss

function of both the discriminator (J (D)W ) and the generator
(J (G)W ) are defined as:

J (D)W = −Ex∼pg
[
D(x)

]
+Ex∼pr

[
D(x)

]
− λEx∼px′

[
‖ ∇xD(x) ‖2 −1

]2 (3)

J (G)W = −J (D)W (4)

where the last term is gradient penalty. px ′ is a uniform distri-
bution along the straight lines between pairs of points which
are sampled from the data distribution pr and the generated
data distribution pg.
GAN has been successfully applied in many application

domains such as computer vision and natural language pro-
cessing. In [15], the authors proposed CycleGAN to trans-
form images from one domain to another domain. The authors
in [16], [17] applied VAE and GAN to repair and fill the
missing parts of images, a tasked is called image inpainting.
To improve the quality of generated samples, there are many
works that combine VAE [6] and GAN, especially for images
[18]–[21]. VAE is an excellent generative model for learning
representations but generates blurry outputs, whereas GAN
generates sharp outputs but cannot explicitly learn the embed-
dings like VAEs. In [21], the authors used two generative
models to capture the latent spaces of hand poses and depth
images for 3D hand pose estimation. VAE embedded features
to the share latent representation and GAN’s generator gen-
erated the 3D hand pose by latent representation.

For NLP, the limitation of GAN is in generating discrete
outputs such as text because the gradient cannot be back
propagated through the argmax function used to generate
a discrete output. REINFORCE, a technique used in the
reinforcement learning literature, can be used to circum-
vent this issue [26]. However, it can lead to slow conver-
gence and training instability. In [27], the authors applied
Gumbel-Softmax trick which was proposed in [23] for text
generation to handle discrete outputs. For business appli-
cations, [22] was recently proposed to apply GAN with
e-commerce data to generate the plausible orders related to
a particular product in order to understand the characteristics
of future orders.

D. GUMBEL-SOFTMAX DISTRIBUTION
Because of the difficulty of training stochastic networks
with discrete variables, the authors in [23], [24] proposed
Gumbel-softmax trick which can be used to backpropagate
through the softmax. A multinomial distribution can be effi-
ciently sampled by the following function which was pro-
posed in [25]:

z = onehot(argmaxi[gi + logπi]) (5)

where πi is class probability. gi is a noise which is drawn
fromGumbel (0,1). Onehot is a function to encode categorical
variable into binary column for each category and returns a
sparse matrix.
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FIGURE 1. Gradient estimation in the Straight-Through Gumbel Estimator.
Black arrows indicate the forward pass, and red arrows indicate the
backward pass.

Because argmax is non-differentiable function, the
Gumbel-Softmax estimator [23], [24] was proposed by using
the softmax function to approximate the argmax as:

yi =
exp((log(πi)+ gi)/τ∑k
j=1 exp((log(πi)+ gi)/τ

(6)

where τ is the softmax temperature parameter. When τ

approaches zero, the expected value of the Gumbel-Softmax
distribution is identical to a discrete distribution. At higher τ ,
the expected value converses to a uniform distribution. The
Gumbel-Softmax function yields a smooth gradient at high
τ , but can become unstable at low τ . At high τ can be used
at the start of the training and anneal to a small but non-zero
value.

For scenarios that requires sampling of discrete values such
as ones in GAN, the authors proposed the Straight-Through
(ST) Gumbel Estimator. The forward pass is done by normal
sampling, but the backward pass is done by backpropagating
the Gumbel-softmax to approximate the gradient which is
shown in Figure 1.

III. METHODOLOGY
In this section, we describe the details of the dataset and our
system for generating user logs. Figure 2 shows an overview
of our system. First, we embed the product features with some
embedding model. Then, we feed the product embedding to
the generation model which will output user logs. The logs
can be analyzed to extract insight about the product used as
the input.

A. DATASET
Our web log data are from a real-estate search engine web-
site1 from January 2018 to February 2018. There are around

1https://www.home.co.th

FIGURE 2. The overview of our system.

TABLE 1. Example web logs in our dataset.

TABLE 2. Examples of user features extracted.

1.5 million records and 5,400 property projects. An example
of the web log data is given in Table 1. It consists of the user
ID, the project that the user visited, the device that the user
used to access the website, the agent or operation system,
the referring page that the user was referred from, and the
time of visit.

The user features (Ui) are created from the web log which
contain the follow features:
• Customer characteristics: device (mobile, desktop),
agent or operation system (Android, iPhone, iPad, Mac-
intosh,Windows, others), customer segmentation (based
on k-mean clustering)

• Channel: referring pages (Google, Facebook, direct,
others)

• Visit period: day of the week, period (morning, after-
noon, evening, night)

An example of features constructed from each log entry is
shown in Table 2.
To give a sense of our data, we show the histogram of each

features in Figure 3. The users mostly use mobile devices to
access the website (60.6%).Most sessions were referred from
Google and the peak time period is during 13:00-18:59.

We also use product features (Cj) which capture the char-
acteristics of the each property products. The product fea-
tures include: the starting price, the location, the nearest
train station, the latitude, the longitude, the area, the district,
the product type, and the facilities. The product feature is used
to condition the generation algorithm.We grouped features to
their category as follow:
• Start period of project
• Location such as latitude, longitude, and district
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FIGURE 3. The distribution of each feature.

FIGURE 4. The distribution of number of property products per user who
visited more than a single property product.

• Transportation and landmark such as train station,
express way, and supermarket

• Facility such as swimming pool, parking lots, and gym
• Project type and style such as condominium, detached
house, and home office

• Others such as starting price, and area
To reduce spurious information, we filtered out some
projects that were visited less than 50 users which result
in 4,876 projects remaining.

B. PRODUCT EMBEDDING
One of the key components of our model is the product
embedding. It aims to encapsulate each product’s peculiarity
so that the generator can have an easier time generating new
visit logs. We compare two kinds of model for learning our
embeddings: Autoencoder and Recommendation system.

1) AUTOENCODER (AE)
the objective of the AE is to compress the original input and
learn the best embedding that can be used to reconstruct the
original input. The embedding is usually lower dimension
than the original input features so that the mapping is not
trivial. We use a six-layer autoencoder with (256, 128, 96, 96,
128, 256) neurons at each layer, resulting in an embedding of
size 64.

FIGURE 5. The recommendation system used to produce product
embeddings.

2) RECOMMENDATION SYSTEM (REC)
We can also extract the embedding via a trained recommen-
dation system. The goal is to capture additional properties of
the product that are not captured in the pattern of how users
explore the products. Our system is similar to the recurrent
neural network-based recommender. Our model consists of
two parts: the encoder and the predictor as shown in Figure 5.
The recommendation model takes the sequence of products
visited by each user as input and tries to predict the next
product that the same user would visit. The sequence of
product is represented by their product features. The product
features are embedded into an embedding via a three fully
connected layers. After that, the embeddings are fed to a
Gated Recurrent Unit (GRU) which is used to predict the next
product.

After training the model, the embedding vector from the
encoder is the embedding for each product. This product
embedding vector should capture the relationship between
products which is not only the similar characteristics but also
the similar user preference.

C. GENERATIVE MODEL
The key of our system is the generative model which takes in
a product embedding and outputs user logs. Our GAN-based
generator is shown in Figure 6. The model is similar to [22]
which generates the orders of new product in e-commerce
website. However, their generated orders are in a form of
embedding due to the limitation of GAN to handle discrete
output generation, they need to train classifiers to extract the
characteristics from the generated representation. Our work
uses the Straight-Through Gumbel Estimator [23], [24] in
order to deal with discrete generation.
• The generator (G) generates fake user features con-
ditioned on the product embedding. In other words,
the generator will try to generate users that are likely
to interact with the particular product. The generator is
a fully-connected network with three hidden layers and
uses LeakyRelu as an activation function at each layer.
For the last layer, we use the Straight-Through Gumbel
estimator to generate the discrete outputs and the tanh
function to generate the continuous outputs which were
normalized to the range of [-1, 1].

41388 VOLUME 8, 2020



P. Chonwiharnphan et al.: Generating Realistic Users Using GAN With Recommendation-Based Embedding

FIGURE 6. The GAN model for web log generation.

• The discriminator (D) takes the concatenation of real or
generated user features and the real product embedding
and then decides whether the user feature is real or fake.
This model is a fully-connected network with two hid-
den layers and uses LeakyRelu as an activation function
of each layer. The last layer use a linear activation func-
tion to output the score indicating how real the users are
based on the real product embedding. This information
can be used to guide the generator to generate better
fake users via backpropagation. If this value is small,
the generated users are close to the real data.

• To ensure that the model learns to generate users based
on the product used for conditioning, we also forced the
model to learn about the product by adding a reconstruc-
tion loss (L(p)). The generator not only generates the
users, but also the product embedding. The reconstruc-
tion loss is the cosine distance between the input product
embedding and the product embedding at the output. For
the generated users, the loss function is the WGAN-GP
loss. Thus, the overall loss function for the generator
is the weighted sum of reconstruction loss and user
generator loss that is defined as αL(u)+(1−α)L(p) where
α is a hyperparameter that we need to tune.

For hyperparameter tuning, we used grid-search to obtain
the optimal configurations or hyperparameters of the models
which provide the highest performance score for this dataset.
• For the generator noise, we tried different vector sizes{

36, 64, 96, 128
}
and found that 64-dimension noise

gives the highest performance for this model.
• The generator configuration uses a structure 64 −→
128 −→ 256 as the hidden units. The last layer outputs
a vector of length 52 + 70 = 122 which is the number
of user and product features.

• The discriminator has two hidden layers 128 −→ 64
and the last layer is linear with size 1 to measure how
real the input users are.

• τ in ST Gumbel Estimator, we used 0.9 to be the initial
value with anneal rate of 0.005. The final value is 0.35.

• The optimizers, we tried
{
Adam, SGD, RMSprop

}
and

found that Adam with β = 0.7 gave the best result.
• The ratio of number of times the generator is trained to
the discriminator is 1:5.

IV. EXPERIMENT
We performed experiments to verify the effectiveness of our
generation system. In this section we will talk about the
experimental setups and the results of each experiment.

A. EXPERIMENTAL SETUP
We construct the training and test set by randomly select
50 products from the total products to be treated as new
products. The training set contains all of the products that
are not selected for testing, meaning the test are com-
pletely unseen by the model. We repeat the selection 10 times
to construct model 10 independent training and test
sets.

B. EVALUATION METRICS
Our goal is to have the model predict the distribution of
web logs given unseen products. Thus, we cannot mea-
sure the performance of the web log individually. We have
the model generate 10, 000 web log per test products and
then measure the statistically properties of the log gen-
erated with respect to the ground truth. Prior work used
Relative Similarity Measure (RSM) which captures the char-
acteristic of each attribute of the generated product rela-
tive to other products [22]. However, this measure does not
capture higher order statistics. Moreover, some use cases
might require precise knowledge of the distribution rather
than relative difference. Thus, we also propose three other
metrics that can be used to measure the quality of the
generated logs. The four metrics can be summarized as
follow:

1) RELATIVE SIMILARITY MEASURE (RSM)
this measure is used to measure the relative similarity
between real and generated samples by comparing between
two products. The concept of computing this measure is
shown in Algorithm IV-B.1.

An example in Figure 7, the first low level of referring
page feature is Facebook. The portion of real users that
were referred from Facebook is 30% (srA(facebook)) and 20%
(srB(facebook)) for product A and product B respectively. The
srA(facebook) is 10% higher than srB(facebook). In the same way,
the product A’s generated users were referred from Face-
book 50% (sgA(facebook)) and is also higher than sgB(facebook).
Thus, we count this as an relative similarity between real
users and generated users. Similarly, the portion of real
users that were referred from Google is 20% for product A
(srA(google)) and 50% for product B (srB(google)). The s

r
A(google)

is lower than the srB(google). In comparison with generated
users, sgA(google) is also lower than srB(google). The last one
is directing visitors. The real direct users is 50% (srA(direct))
and 30% (srB(direct)) for product A and product B respec-
tively. The srA(direct) is higher than s

r
B(direct). This is the same

direction as the comparison between sgA(direct) and s
g
B(direct).

Thus, we count the generated users as high relative sim-
ilarity with the real users on all three low-level referred
features.
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Algorithm 1 RSM Metric Calculation
Require: the list of testing products (p), the number of testing
products (np), the real users statistics (U r ), the generated
users statistics (Ug)
1: n = 0
2: ncount = 0
3: for f in referring feature do
4: select ur == f and ug == f from U r and Ug respec-

tively
5: for each product pair (i, j) do
6: select the sri and s

r
j from ur

7: select the sgi and s
g
j from ug

8: if (sri > srj ∧ s
g
i > sgj )∨ (s

r
i < srj ∧ s

g
i < sgj )∨ (s

r
i =

srj ∧ s
g
i = sgj ) then

9: ncount = ncount + 1
10: end if
11: n = n+ 1
12: end for
13: rsm = ncount ÷ n
14: return rsm
15: end for

2) CORRELATION COEFFICIENT (CORR)
this metric measures the strength of the relationship between
real and generated samples as the formula:

ρpr ,pg =
cov(pr , pg)
σprσpg

(7)

where cov(pr , pg) is the covariance of pr and pg, σpr is the
standard deviation of pr and σpg is the standard deviation of
pg. The value is between -1 and 1 where -1 means negative
correlation and 1 means positive correlation. An example
in Figure 7, the real users were referred from Google 20%,
Facebook 30% and direct 50%. Meanwhile, the generated
users were fromGoogle 10%, Facebook 50% and direct 40%.
The correlation between [0.2, 0.3, 0.5] and [0.1, 0.5, 0.4] is
0.58. If the correlation coefficient ≥ 0.85, we count that as a
high correlation between real and generated users.

3) WASSERSTEIN DISTANCE OR EARTH MOVER’S
DISTANCE (EMD)
this metric measures the distance between two probability
distributions as the formula:

W (Pr ,Pg) = inf
γ∈5(Pr ,Pg)

E(x,y)∼γ
[
‖ x-y ‖

]
(8)

where Pr is the probability distribution of real users, Pg is
the probability distribution of generated users and5(Pr ,Pg)
is the set of all distributions. We use this metric to calculate
the minimum cost of transforming the generated user distri-
bution into the real user distribution. As Figure 7, the distance
between real user distribution and generated user distribution
is 0.2. The advantage of EMD is that even when two distribu-
tions are not overlaps, this measure can provide the distance
value between two distributions, whereas Kullback-Leibler

Algorithm 2 Correlation Coefficient Calculation
Require: the list of testing products (p), the number of test-

ing products (np), the real users statistic (U r ), the gener-
ated users statistic (Ug).

1: n = 0
2: ncount = 0
3: for each product i do
4: select sri from U r

i
5: select sgi from Ug

i
6: if ρsri ,s

g
i
>= 0.85 then

7: ncount = ncount + 1
8: end if
9: end for
10: corr = ncount ÷ np
11: return corr

FIGURE 7. Example of our metrics.

divergence (DKL) provides the infinity when two distributions
are disjoint.

4) ROOT MEAN SQUARE ERROR (RMSE)
this metric is the average of difference between proportion of
real and generated users of each feature as the formula:

RMSE =

√∑n
i=1(pr − pg)

2

n
(9)

where pr is the proportion of real users, pg is the proportion of
generated users and n is the number of testing projects. RMSE
measures how accurately the generated users are in the same
unit as the data. Thus, this measure is easy for interpretation.
The lower score is better. As Figure 7, the RMSE between
[0.5, 0.3, 0.2] and [0.4, 0.5, 0.1] is 0.141 or 14.1%. It means
that the difference between real and generated users is 14.1%.
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FIGURE 8. An example of the distribution comparison of each user features between the ground-truth users and generated users.

To summarize the evaluation metrics as Figure 7, this
is an example based on referring page feature. RSM score
measures the relative similarity of real and generated users
by comparing between two products. This example shows
that the generated users are counted as high relative similarity
with the real data. The correlation coefficient (CORR) is
used to measure the correlation of real and generated users
within the same product. The correlation of this example is
0.58, we do not count as high correlation with the real data.
The next one is Earth-Mover distance (EMD) that measure
the minimum cost to transform one distribution into the
other. This shows that the cost of converting the generated
distribution to the real distribution is 0.2. The last one is
RMSE that shows the precision of the generator. This metric
measures how close the proportion of generated users on each
characteristic is to the real users.

The metrics are measured on each feature and average.
However, we can also measure the metrics in a multivariate
manner (2 features). For example, RSM will be measure the
relative similarity between a tuple of two features instead
such as (referring page, weekday), (device, operation sys-
tem), etc.

C. BASELINE GENERATION APPROACH
We compare our approach with two baseline approaches:
nearest neighborhood approach and Conditional Variational
Autoencoder (CVAE).
• We apply the nearest neighbor (NN) concept to sum-
marize the characteristics of users who are likely to be
interested in new product. We select the user log of
top 5 existing products that their characteristics are simi-
lar to the characteristics of new product. Thus, we know
the list of possible values of each user feature for new
product and sample based on that distribution.

TABLE 3. The overall performance for 1 feature based on 4 metrics.

• The conditional variational autoencoder (CVAE), which
was proposed in [7], is an extension of Variational
Autoencoder [6]. This model can control on the data
generation process to generate some specific output by
adding the additional information to both encoder and
decoder. We use this model and add the product embed-
ding to generate the user logs of new product.

D. RESULT ANALYSIS
The overall performance of ourmethodology (C-WGAN-GP)
that is compared against several baseline approaches as
shown in Table 3 and 4 for 1 feature and 2 features
respectively. Our proposed approach which used conditional
GAN with embedding learned from recommendation system
performed the best on everymetrics. This shows the effective-
ness of our approach in learning the distribution of new prod-
ucts. The effectiveness of the learned embedding is shown
whenwe compare different embeddings. For embedding from
autoencoder, the original product features only improve the
performance slightly on several metrics, but using recommen-
dation embedding shows significant gain on all metrics.

Our simplest baseline is a nearest neighbor model (NN).
The nearest products in the training set are used as the statis-
tics of the new product. This model uses cosine distance on
the recommendation embedding to select the top 5 nearest
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TABLE 4. The overall performance for 2 features based on 4 metrics.

TABLE 5. The performance of our approach for each feature.

products. Unsurprisingly, this method performs the worst,
since for real estate there are rarely two products that are
similar to each other.

We also trained another baseline based on CVAE with
recommendation embedding. The CVAE baseline performed
worse than all other GAN models, showing the effectiveness
of GANs in learning the distribution of the customers.

We also show the performance of models for each feature
as shown in Table 5. The most interest is in the customer
segmentation which has 36 possibilities. The proposed model
can get 75% CORR meaning that it can be used to give some
guidance on what kind of customer would prefer the product.
On the other hands, a NN approach which is something a
human might have done based on his limited experience,
would yield abysmal results.

We show one example of the generated distribution
in Figure 8. Note how our model yields an estimate for cus-
tomer segment number 15 as 1.2%, which is very close to the
actual distribution of 1.7%. In a highly imbalance case such as
this one, it is very hard for models besides GANs to uncover
the long tail of the distribution. This shows the effectiveness
of our model.

V. CONCLUSION
We have proposed an approach for generating realistic users
that would be interested in a new product on a real-estate
search engine website. Our method consists mainly of two
parts: a product embedding model and a generation model.
Each product is embedded into its low-dimensional repre-
sentation by using a recommendation system that can help
capturing the relationship between similar products. The gen-
erationmodel is a CGANwithWGAN-GP loss.We evaluated

the quality of the distributions learned based on four metrics:
the relative similarity measure (RSM), the correlation coeffi-
cient (CORR), the earth-mover distance (EMD) and the root
mean square error (RMSE). The result demonstrates that our
approach outperforms the baselines, and can generate users
which are similar to the real data even for highly imbalanced
cases. In the future we plan to add a demand forecasting
component, since the demand could not be inferred from just
the generated logs.
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