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ABSTRACT Machine learning has been widely studied in the security analysis of Industrial Control
Systems (ICSs). However, in industrial scenarios, the amount of data as well as the speed of data generation
are very different from standard machine learning data sets. Using these heterogeneous data and finding
meaningful insights for practical security applications in ICSs is a big challenge. In addition, ICSs have
been built for quite a long time. Security has not been seriously taken into account when ICSs were built.
Security assessment or attack prevention cannot always be done in real time, as an ICS requires to be
online all the time, especially when it comes to systems that affect critical infrastructure. In this work,
we are motivated to a provide a clear and comprehensive survey of the state-of-the-art work that employs
machine learning in security applications in ICSs, including vulnerability analysis, vulnerability detection
and exploitation, anomaly detection and security assessment. Based on our in-depth survey, we highlight the
issues of industrial protocol analysis with machine learning methods, provide the security applications with
machine learning in ICSs and indicate the future directions.

INDEX TERMS Protocol vulnerability, vulnerability analysis, machine learning, exploitation, ICS security.

I. INTRODUCTION
Industrial control systems have been widely used in various
control domains, such as energy, municipal, water conser-
vancy, railway, petroleum and petrochemical, etc., which are
indispensable for the stable operation of the current industry.
ICS protocols are the channels for the control system to
transmit information, whose security are closely related to the
safe and stable operation of the entire system. Therefore, this
paper analyzes the security vulnerabilities of the ICS protocol
and gives examples of exploits, aiming to attract the attention
of industrial security researchers and take appropriate secu-
rity measures in a timely manner before it is too late.

There are currently various ICS protocols in indus-
trial control systems, while specific industries typically
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use only one or several specific protocols. Of course, for
industries with complex processes, such as manufactur-
ing, multiple protocols may be used, which makes the
matter complicated. SCADA protocols include a series of
fieldbus protocols that use serial link communication and
several Ethernet protocols based Ethernet communication,
including some application layer protocols over the TCP/IP
protocol.

At the beginning of the development of industrial control
systems, the protocols used were basically fieldbus protocols
based on serial links, which mainly solved the digital com-
munication between field devices such as intelligent instru-
mentation, controllers and actuators in industrial fields and
information transmission issues between these field control
devices and advanced control systems. Due to the outstanding
advantages of fieldbus, such as easy-to-use, reliable, and eco-
nomical, it has been highly valued by many standards bodies
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and computer manufacturers, which lead to a prosperous
development era.

Due to the wide variety of fieldbus and different standards,
many people hope that Ethernet technology can intervene
in the lower layers of the device and widely replace the
existing fieldbus technology. Schneider is an active advo-
cate and practitioner of this idea. A number of industrial
products and practical applications have been available.
With the advent and development of Ethernet technology
and the advancement of Internet technology, early serial
link-based fieldbus protocols gradually evolved to Ethernet-
based. For example, Modbus protocol cluster has serial
link based MODBUS RTU, MODBUS ASCII, MODBUS
PLUS and Ethernet based MODBUS TCP; Profibus protocol
cluster has serial link based PROFIBUS FMS, PROFIBUS
DP, PROFIBUS PA and Ethernet based PROFINET CBA,
PROFINET 10; IEC60870 protocol cluster has serial link
based DNP3 and Ethernet based DNP3/UDP, DNP/TCP; IEC
60870-5-101 based on serial link and IEC60870-5-104 based
on Ethernet. In addition to the above-mentioned several tradi-
tional general protocols, protocols widely used by ICS in the
power industry include protocols such as ICCP (IEC 60870-6,
TASE.2) and IEC 61850.

Due to the limitations of technology and the interests
of various manufacturers, such a variety of industrial bus
technologies coexist. The status of Ethernet technology will
continue to penetrate for a while, but in any case, the Ethernet-
based ICS protocol is still the trend of future development.

Enhancing the security of the ICS protocols is one of the
important ways to enhance the overall security of the indus-
trial control system. A basic analysis of the protocol will help
expose the security issues that exist in the protocol, which in
turn will guide the development of the security mechanism
and eventually be incorporated into the protocol description.
Due to the diversity of industrial control protocols and the
existence of a large number of proprietary protocols, the secu-
rity analysis of industrial protocols is relatively difficult
task. Therefore, the traditional methods cannot be adopted
directly. Fortunately, there is a large amount of research
work using machine learning algorithms for security analysis,
exploitation detection and security assessment of industrial
protocols.

‘We make the following contributions:

« We demonstrate the reasons for the formation of vulner-
abilities and combines experiments to achieve exploits
for a number of protocols. It aims to provide a guide
to the security enhancement of existing protocols or the
design of new high security protocols by analyzing the
security of the protocol and fully exposing the existing
security risks.

« We provide the applications of machine learning algo-
rithms on industrial protocols for security analysis,
vulnerability exploitation detection, and security assess-
ment. We also provide four methods to perform the
assessment of the ICS protocols and make a comparative
analysis of these methods.
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o Based on our in-depth analysis of machine learn-
ing methods for industrial protocol security analysis,
we summarize their issues and taxonomy, and provide
a comprehensive perspective for future research work.

The structure of this paper is as follows. Section II sorts
and categorizes relevant research work, Section III analyzes
the causes of two types of vulnerabilities in ICS protocols
and machine learning algorithms respectively, and Section IV
analyzes possible attacks of ICS protocols, giving the attack
implementation examples, and classifies the exploitation
detection algorithms. Section V introduces some methods on
how to make risk assessment on ICS protocols and gives
a comparative analysis of different machine learning algo-
rithms. Section VI concludes this paper.

Il. RELATED WORK

Many researchers have conducted research on the security
of ICS protocols, mainly focused on the following aspects:
ICS protocols security analysis, ICS protocols vulnerability
mining and protocols security hardening.

A. ICS PROTCOLS SECURITY ANALYSIS

Luswata et al. [1] conducted a penetration test on Modbus
TCP and tested existing security countermeasures unique to
ICS systems, giving some recommendations for improving
ICS security. Grandgenett et al. [2] conducted exploit experi-
ments on the CIP protocol, including exploits for authentica-
tion and privileged I/O in a CIP implementation, where CIP
is an application-level protocol used by ICS components for
communicating with each other. ANSI C12.22 specifies the
communication interfaces for data communication networks
in smart grids. Rrushi ez al. [3] have identified several design
vulnerabilities in the ANSI C12.22 protocol specification that
can be exploited to cause denial of service attacks and service
interruptions. They presented some revisions to the ANSI
C12.22 protocol specification to mitigate the effects of these
vulnerabilities. Yoo and Shon [4] developed a grammar-based
fuzzing tool for extracting dynamic information from target
program execution and experimenting it with two applica-
tions using the Modbus protocol, which is widely used in
ICS systems. Samtani et al. [5] applied Shodan to search for
ICS devices and evaluated their vulnerability by using Nes-
sus tools against the National Vulnerability Database(NVD).
Singh et al. [6] believed that DNP3 has exhaustive specifica-
tion and is complex to implement, so they have specifically
studied the attack on function code to help detect the security
of protocol implementation.

Kim [7] discussed various forms of threats and vul-
nerabilities faced by IP-based wireless sensor networks
and proposed a proper security management approach.
Pidikiti er al. [8] analyzed the vulnerabilities of the
IEC60870-5-101 & 104 communication protocols, which are
widely used in power utilities sector, and conducted exper-
iments on the vulnerability exploitation. They proposed an
experimental model by using standard IEC62351 to mitigate
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attacks. By analyzing the Modbus packets, Carcano et al. [9]
inferred the correct behaviors of the ICS and discovered
the critical state of the ICS, thus designing a state-based
network intrusion detection system (NIDS). Liu et al. [10]
pointed out that there are a large number of IP-based commu-
nication networks in substations, which are geographically
dispersed, resulting in large attack surface for substations.
They evaluated the threats facing ICS and gave some mit-
igation measures. Formby et al. [11] analyzed the security
of TCP protocol, which used by many devices in the power
grid as the transport layer of its application, and conducted
experiments of TCP sequence number prediction attacks in
the power grid. Cardenas et al. [12] conducted an attack on
the process control system and discussed the risk assess-
ment, detection and response of the industrial control sys-
tem. Kalluri ef al. [13] explained the possible vulnerabilities
in the power grid, implemented a denial-of-service attack
against the power grid, and gave an analysis of the impact
of this attack. Bellettini and Rrushi [14] represented memory
access taintedness as a decision tree to perform vulnerability
analysis of ICS protocol binaries, aiming to mining mem-
ory corruption vulnerabilities in implementations. Cagalaban
and Kim [15] employed the attack tree to model ICS and
performed vulnerability analysis, and proposed a security
framework to improve the security of ICS.

B. ICS PROTOCOLS VULNERABILITY MINING

Bratus et al. [16] designed an inline fuzzing test tool named
LZFuzz, through the man-in-the-middle attack method,
the two-way fuzzing test of ICS protocols was performed
and achieved good results on ICS protocols that are pro-
prietary or poorly documented. In our previous work [17],
we designed a fuzzing tool called EUFuzz, aiming to solve
the dilemma of poorly documented private protocols and low
efficiency of fuzzing. EUFuzz can quickly identify the packet
structure and guide the fuzzing process, which has achieved
good performance. Choi et al. [18] proposed a multivariate
static method to extract the protocol specification from the
binary protocols used in ICS systems, thus using the protocol
specification to guide fuzz testing.

C. ICS PROTOCOLS SECURITY HARDENING

Bagaria et al. [19] pointed out that the ICS legacy systems are
inherently insecure, which utilize a large number of propri-
etary protocols, making the entire system extremely vulnera-
ble to attacks. Therefore, they proposed a security-enhanced
protocol version for DNP3, called Flexi-DNP3 (short for
Flexible Distributed Network Protocol), which exchanges
keys for data encryption during communication. By ana-
lyzing the DNP3 protocol, Graham and Patel [20] iden-
tified the threats and effective mitigation measures faced
by ICS, and proposed the implementation of cost-effective
countermeasures, including SSL/TLS, IPsec, encryption, and
message authentication. Zhang et al. [21] proposed a series
of lightweight anonymous mutual authentication with key
agreement protocol on ECC and ARM Cortex-MO.
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FIGURE 1. Differences between ICS and traditional IT systems.

There were also other research work related to ICS proto-
cols. Lin et al. [22] applies Bro to the ICS system, constructs
an intrusion detection system based on the DNP3 proto-
col, and defines the network events related to the protocol
semantics. Xu et al. [23] provided a overview of recent
advances in PLC attacks and protection technology, detailing
some attacks scenarios. Zhou et al. [24] summarized the ICS
security strategies of different countries from the perspective
of ICS security standards. Related to software or system
security, their exist work on the detection or analysis of
anomalies or malware with static [25]-[33] or dynamic anal-
ysis [34]-[39] or with network traffic [40]-[51]. There also
exist work on privacy analysis in smart devices [52], on secure
protocols [53], [54] for authentication, or on IoT [55].
However, none of these work focuses on vulnerability
analysis.

IIl. ICS PROTOCOL VULNERABILITY ANALYSIS
Identifying the causes of the protocol vulnerability is a pre-
requisite for our analysis of the vulnerability. After reviewing
considerable literature, we have concluded that the indus-
trial protocol vulnerabilities mainly due to two factors. First,
the defects caused by the protocol designer [3], such as not
considering the security dimension problem at the beginning
of the design, or the logic flaw of the protocol specification
itself, etc. Second, vulnerabilities introduced in the develop-
ment process [2], [6], such as cross-border checks on some
boundaries due to the skill level of the programmer.

A. VULNERABILITIES IN DESIGN

There exist big differences between industrial control sys-
tems and traditional IT systems shown in Fig. 1. ICS pays
more attention to system availability and business continuity.
Moreover, the early ICS is generally in a physical isola-
tion situation, and the production environment is relatively
closed, and people lacking professional knowledge gener-
ally cannot obtain the corresponding ICS attack and defense
research environment and related system information.
Therefore, at the beginning of the design of the ICS protocols,
more consideration was given to the real-time, efficiency and
convenience of the protocol, and designers did not consider
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FIGURE 2. Security attributes ignored by early ICS protocol designers.

the related network security risks. They believed that all
network communication and communication subjects within
the ICS were legal, thus ignoring the basic security attributes
of network communication(as shown in Fig. 2). However,
as ICS heavily used IP-based control protocols, or migrated
legacy serial-based protocols to the application layer of
TCP/IP, ICS began to be exposed to the Internet. The outbreak
of the 2010 Stuxnet [56] attack marked the beginning of
hackers’ interest in ICS.

In terms of machine learning in protocol design vul-
nerabilities analysis, Comparetti et al. [57] used a variety
of machine learning algorithms, including sequence align-
ment algorithm(the NeedlemanWunsch algorithm precisely),
partitioning around medoids (PAM) clustering algorithm,
Exbar algorithm, sk-strings algorithm, beams algorithm etc.,
to automatically infer the state machine of a protocol,
which is a major improvement on the protocol reverse engi-
neering. Furthermore, the authors themselves designed a
state machine extraction algorithm, can extract messages of
different types and generate a protocol specification contain-
ing a protocol state machine. Finally, the extracted protocol
specification can be used as an input to a stateful fuzzing tool
to discover security vulnerabilities of the specific protocol.
Rrushi et al. [3]studied the design vulnerabilities of the ANSI
C12.22 protocol used in smart grid, analyzed the architecture
of the protocol, providing details of the vulnerabilities they
identified, and conducted a series of exploit experiments
to verify those vulnerabilities, and finally provided mitiga-
tion measures for these vulnerabilities. Caselli et al. [58]
employed machine learning algorithms to automatically
extract the BACnet protocol specification documents and
convert them into intrusion detection rules to monitor net-
work traffic, which can identify process control errors and
potentially dangerous misconfigurations. Zhang et al. [59]
carried out in-depth mining of the precise state machine of the
protocol, and designed a protocol state machine space mining
algorithm based on data packet queries. Through interactive
syntax inference technology, it automatically learned to gen-
erate the protocol state machine. Shim et al. [60] studied
the specification extraction of unknown protocols, using the
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Apriori-based CSP(Contiguous Sequence Pattern) machine
learning algorithm to extract the protocol common strings,
and using the tree structure-based CSP algorithm to extract
the static fields of the protocol. It can extract all the static
fields that are not used often but are possible. Lin et al. [22]
designed and implemented an intrusion detection framework
based on protocol specification, developed a new parser that
supported the DNP3 protocol, analyzed the industrial control
system traffic at runtime, extracted data from network pack-
ets, and verified compliance with the protocol specification.

B. VULNERABILITY IN IMPLEMENTATION

According to the vulnerability information reported by
VLUHUB [61], the number of vulnerabilities in the ICS
system is on the rise(Fig.3). Among them, according to the
type of vulnerability, it is obvious that vulnerability in the
design takes up only a small part, while the vulnerability
introduced by the protocol implementation accounts for a
large proportion(Fig.4).

Below we list some common insecure function calls and
their solutions in C language, so that programmers can take
proper checks on protocol implementation according to the
protocol specification, so as to avoid making the same mis-
takes(Table 4).

Since the implementation of a specific protocol contains
a lot of engineering details, which may not be completely
consistent with the protocol specifications. It may lead to
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TABLE 1. Insecure function calls and solutions in C Language.

Function Severity Solution

gets highest risk use
fgts(buf,size,stdin)
instead

strepy high rish use strncpy instead

strcat high risk use strncat instead

sprintf high risk use snprintf instead,
or use precision spec-
ifier

scanf high risk use precision spec-
ifier, or parsing by
yourself

getchar/fgetc/  intermediate if used in a loop,

getc/read risk be sure to check the
buffer boundaries

fgetc low rish make sure the buffer

size is as big as it is
declared
use strncpy instead

fgets/memcpy/ high risk
snprintf/srccpy

the occurrence of vulnerabilities. Shu and Lee [62] tested
the security of the protocol implementation using supervised
machine learning methods, using Symbolic Parameterized
Extended Finite State Machine (SP-EFSM) model to extract
specific protocol, and then investigated the message confi-
dentiality of the protocol implementation under the general
Dolev-Yao attacker model [63]. Kim et al. [64] proposed a
new fuzzing test case generation algorithm for the security
test of protocol implementation in smart grid . According
to the characteristics of the fuzzing test, the protocol fields
were divided into three types, which can realize cross-domain
and cross-layers test case generation. Zhao et al. [65] pro-
posed a fuzzing test framework called SeqFuzzer, which used
a deep learning model to automatically learn the protocol
frame structure from communication traffic, processing the
temporal features of the stateful protocol, and generating
manipulated but seemingly reasonable messages as test cases.
The EtherCAT protocol was tested and several vulnerabilities
were detected. Niedermaier et al. [66] employed machine
learning algorithms to learn the structure of proprietary pro-
tocols in industrial control system, and proposed a PropFuzz
fuzzing test framework specifically for proprietary protocols.
Huang et al. [67] used the improved differential evolution
algorithm to improve the efficiency of fuzzing test of proto-
cols in industrial control systems.

This Section analyzes the causes of vulnerabilities in the
ICS protocol, including two main factors—vulnerability in
design and vulnerability in implementation. A large number
of machine learning algorithms are used to analyze these
two types of problems, which have been introduced in the
previous article. Table 3 provides the summary of this section.
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TABLE 2. Machine learning based approaches for ICS protocol
vulnerabilities analysis.

Literature Algorithms Protocol Design or
Implementation

[57] NeedlemanWunsch Protocol Design
Algorithm,
Partitioning
Around Medoids
(PAM)  Clustering
Algorithm,  Exbar
Algorithm, Sk-
strings  Algorithm,
Beams  Algorithm
etc.

[3] Author-designed Al- Protocol Design
gorithm

[58] Author-designed Al-  Protocol Design
gorithm

[59] Protocol State Ma- Protocol Design
chine Space Mining
Algorithm

[60] Apriori-based Protocol Design
CSP(Contiguous
Sequence  Pattern)
Machine  Learning
Algorithm

[22] Author-designed Al- Protocol Design
gorithm

[62] Supervised Machine Protocol Implemen-
Learning Methods tation

[64] Author-designed Al- Protocol Implemen-
gorithm tation

[65] Supervised Machine Protocol Implemen-
Learning deep learn- tation
ing model

[66] Author-designed Al- Protocol Implemen-
gorithm tation

[67] Improved Protocol Implemen-
Differential tation
Evolution Algorithm

This table provides a concise overview of what the focus of
the available literature is. The next section is an experiment
on the exploitation of some typical vulnerabilities.

IV. VULNERABILITY EXPLOITATION AND

ANOMALY DETECTION

Rrushi [68] analyzed the vulnerabilities of the IEC61850 and
Modbus protocols and showed how to exploit these vulner-
abilities and maximize physical damage. Our work has big
difference from his experiments. First, we enumerate the
attack surface due to the ICS protocol vulnerability, that
is, the possible attack entries and attack scenarios; then we
exploit some of the typical vulnerabilities.
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A. POTENTIAL ATTACK SCENARIOS
Agostin [69] gave a detailed description of potential points of
entry, which is shown in Fig.5

The potential attack scenarios include external networks,
infected remote support, modems, diagnostic networks,
infected laptops/PCs, unauthorized connections, infected
office network, denial of service, print/copy/fax machines,
package vendors and 3rd party networks. All of these poten-
tial attack scenarios have a lot to do with the protocols’
vulnerabilities. As long as attackers can communicate with
the ICS network, they can easily implement an attack.

B. PROOF OF CONCEPT

Now, let’s conduct exploitation on ICS protocol vulnerabili-
ties. Green ef al. [70] employed the testbed environment to
conduct man-in-the-middle attack experiments against ICS
systems, showing the importance of understanding the pro-
cess when conducting targeted ICS attacks. However, what if
we have little knowledge of the operating mechanism of ICS,
and we just employ the ICS protocol vulnerabilities, can we
successfully implement a attack? The answer is "yes’. Now
we take Modbus as an example.

1) EXPERIMENT ENVIRONMENT

In order to minimize the destructiveness caused by actual
attacks, we use Modbus simulation software [71] instead of
real equipment, to conduct attack experiments to explain the
existence and severity of vulnerabilities. The simulation suite
includes two software-Modbus Poll and Modbus Slave. The
experimental framework is shown in Fig.6.
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We use two desktop computers to run Modbus Poll and
Modbus Slave respectively, and one laptop to run the attack
code. The basic configuration information of the desktop
computer is as follows:

- Processor:Intel(R)Core(TM)i7-6700 CPU@3.4GHz

- Memory(RAM):16GB

- Operating System:64-bit Win7 Operating System Pro-

fessional Service Packl

The basic configuration information of the laptop is as
follows:

- Processor:Intel(R)Core(TM)i7-7820HQ CPU @2.9GHz

- Memory(RAM):16GB

- Operating System:64-bit Winl0 Operating System

Home Version

In normal operation, Modbus Slave acts as a server for
network communication, listening to port 502 and responding
to data requests of Modbus Poll. Modbus Poll’s port is ran-
domly assigned by the operating system, in this experiment it
is 24547. The initial status is Modbus Poll sending command
to read the coil state, and Modbus Slave responding to it.
As shown in Fig.7 & Fig.8, the polling cycle is 1000ms.

2) ATTACK PRACTICES

In this section, we launch four attack experiments in order to
provide a detail information of communication information
exposure, data tampering, illegal function code, and denial of
service attack.

No. 1. Communication Information Exposure:

Since the protocol does not have an encryption mechanism,
all data communication processes can be monitored by a third
party to infer some key information of the ICS system com-
munication, such as the port used by the Master, the requested
function code, the content of the response, and each coil’s
actual control state.
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In this experiment, Wireshark [72] is used to capture net-
work traffic. We can easily find out through the intercepted
hands-shake packets(1578-1580)(Fig.9) that the port used by
Modbus Master is 24547, whose ip address is 10.10.28.176,
and the ip address of Modbus Slave is 10.10.258.122.
Through the response packet(No.2333)(10) we can find that
the function requested by Modbus Master is Read Coils’,
whose function code is O1H, and the base address of the
request is 0, the requested number of the coils is 10, and
the unit identifier of the peer Modbus Slave is 1. According to
the response packet (No0.2334)(11), we can find that the value
of bitl, bit3, bit5, bit7, bit9 are all 1, and the rest coils’ value
is 0. Attackers can use these information to perform targeted
strikes in a relatively precise manner, resulting in maximum
physical damage.

No.2. Data Tampering Attack:

Since the Modbus protocol does not encrypt and authorize
the function codes, we use the laptop to hijack the communi-
cation process and send *Write Multi Coils’ command, whose
function code is OFH, causing multi coils’ states to change
from O to 1. If it is in an actual ICS environment, this will
cause a couple of switches to be in a closed state and even
cause the entire ICS system to crash(Fig. 12).

No.3. lllegal Function Code:

Since the Mdbus protocol does not authorize the function
code, we can easily forge the data requests. When the master
and the Slave are communicating normally, we can use the
laptop to send fake data packets containing illegal function
code, causing the real Modbus Master to receive an erroneous
response(Fig. 13).

No.4. DoS Attack:

Because Modbus lacks authentication, any machine can
communicate with Modubs Slave via port 502. We use the
laptop to continuously send data requests to 502 with a shorter
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polling time, 50ms for example, causing normal Modbus
Master service interruption and receive nothing from the
Slave(Fig. 14).

C. EXPLOITATION DETECTION

A lot of research has utilized machine learning algorithms
to detect the vulnerability exploitation of ICS protocols.
Schuster et al. [73] combined protocol-related knowledge and
two unsupervised learning algorithms to complete attacks and
fault detection in process control communication, to achieve
self-learning anomaly detection. Beaver et al. [74] stud-
ied the application of multiple machine learning algorithms
in detecting command and data injection attack scenarios,
detected commands and controls in critical infrastructure
facilities, and built models of benign and malicious command
traffic to identify potential attack events. Anton et al. [75]
employed anomaly detection algorithms based on machine
learning and time series, and analyzed the traffic of indus-
trial control networks using two different data sets to find
the attack events, and compared the performance of SVM
and random forest algorithms. Anton et al. [76] designed a
time series-based anomaly detection method, i.e. the Matrix
Profiles, to detect attacks in process data in an industrial
environment, and compared the performance of the Matrix
Profiles and one-class classifiers One-Class Support Vector
Machines and Isolation Forest. Bernieri et al. [77] com-
pared and evaluated the performance of anomaly detection
machine learning algorithms in industrial control networks,
and analyzed the advantages and limitations of two machine
learning industrial network anomaly detection methods.
Anton et al. [78] used machine learning-based anomaly
detection algorithms to detect malicious traffic in Modbus/
TCP communication traffic in virtual industrial scenar-
ios. Supervised learning algorithms including support vec-
tor machines (SVMs), random forests, k-nearest neighbors
(KNN), and k-means clustering were adopted. Through com-
parative analysis, SVM and KNN performed better on differ-
ent data sets. Zolanvari et al. [79] introduced the application
of machine learning based models in the Industrial Inter-
net of Things Intrusion Detection System (IDS), and eval-
uated the performance of machine learning-based anomaly
detection system in detecting these attacks against system
deployment backdoors, command injection, and structured
query language (SQL) injection etc. In response to the dif-
ficulty of anomaly detection in industrial control systems,
Sokolov et al. [80] supplemented traditional anomaly detec-
tion methods and used machine learning-based anomaly
detection methods, including the most common techniques
for machine learning (decision trees, linear algorithms, sup-
port vector machines) and deep learning models (neural
networks) and made comparative analysis of different perfor-
mances Schuster et al. [81] utilized one-class SVM(OCSVM)
to industrial control systems to detect anomalies in net-
work traffic, which can be applied to the real-time envi-
ronment with good performance. Wang et al. [82] reviewed
the anomaly detection applications of machine learning in
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FIGURE 9. Handshake process when slave and master establish communication.
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FIGURE 10. Detail contents of request packet (take 2333 packet as an example).

industrial networks, analyzed the advantages and disadvan-
tages of different machine learning algorithms, and gave
the future research trends of machine learning algorithms in
the field of anomaly detection in industrial control system.
Mantere et al. [83] analyzed the characteristics of net-
work traffic in industrial control systems, and used machine
learning-based methods to perform anomaly detection
on network traffic in confined environments with good
performance.

V. RISK ASSESSMENT
Attacks on ICS protocols are high-impact low-frequency
(HILF) events [84], which means that we should make a
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detailed assessment instead of describing risk as ““probability
times consequence’’. Fortunately, there are some methods can
be exploited to qualitatively or quantitatively make a risk
assessment.

The risk assessment of the ICS protocols mainly includes
three aspects [85]: the basic security elements, the analysis of
threats, and the failure impact, as depicted in Fig.15.

A. RISK ASSESSMENT METHODS

1) FAULT TREE ANALYSIS

Fault Tree Analysis(FTA) [86] takes a top event failure of a
system as the analysis target, finds the direct cause of failure,
and decomposes from top to bottom, layer by layer, analyzes
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FIGURE 11. Detail contents of response packet (take 2334 packet as an example).
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FIGURE 12. Data tampering attack scenario.

the cause and the probability of system failure through the event and then takes preventive actions and design changes
logical relationship between intermediate event and bottom to achieve the desired purpose of the security of the protocol.
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FIGURE 14. DoS attack scenario.
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FIGURE 15. Content of risk assessment.

The fault tree is composed of many different event symbols
and logic gates, and the logical relationship between events is
represented by logic gates. These symbols can be divided into
logical symbols, event symbols, and the like.

a: QUALITATIVE ANALYSIS OF FTA

Qualitative analysis aims to find failure modes that are pos-
sible and can cause the top event to occur, and to find all
the minimum cut sets (MCS) of the fault [86], as shown
in Fig.16. The simplified FTA provides a valuable basis for
the designers and analysts to perform a qualitative analysis
of the system. Even if the probability of the bottom event is
not clear, the analysis of the MCS clearly tells administrator
which areas are the weakest part of the system reliability.

b: QUANTITATIVE ANALYSIS OF FTA

Quantitative analysis is based on the probability of occur-
rence of the bottom event, with a certain degree of confidence
to estimate the probability of occurrence of the top event,
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TABLE 3. Machine learning based approaches for ICS protocol
vulnerabilities analysis.

Liter- Algorithms Purpose

ature

[73]  One-class Support Vec- Attack and Fault De-
tor Machine(OCSVM), tection
Isolation Forest

[74] oneR, J48, RandomFor- Overview

est, Navive Bayes, SVM,

and non-nested general-

ized exemplars(Nnge)
[75] SVM, RandomForest

Anomaly-based
Intrusion Detection
Attack Detection

[76]  the Matrix Profiles, One-
class Support Vector
Machine(OCSVM), and
Isolation Forest

[77] SVM, RandomForest,
k-Nearest Neigh-
bour(KNN), One-
class Support Vector
Machine(OCSVM), and
Autoencoder(AE)

[78] SVM, RandomForest,
k-nearest neigh-
bors(KNN), and k-
means clustering

[79] I Bayes,RandomForest,
OneR, J48, Navive
Bayes, SVM, and
non-nested generalized
exemplars(Nnge),deep
belief networks(DBNSs),
and conditional deep
belief network(CDBN),
artificial neural
network(ANN)

[80]  decision trees, linear al-
gorithms, SVM and deep
learning models

[81]  One-class Support Vec-
tor Machine(OCSVM)

[82] Q learning, Dyna-
Q, SVM, Logistic
Regression, artificial
neural network(ANN)
and Autoencoder(AE)

[83]  self-organizing maps
(SOM) approach

Overview

Overview

Overview,
Vulnerability
Analysis

Overview

Anomaly Detection

Overview

Anomaly Detection

providing a quantitative basis for reliability design and anal-
ysis [86], as shown in Fig.17 and Fig.18.

In general, complex systems are very difficult to achieve
the solution and usually requires simplification, so we
use independent approximation, taking of all events as
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Identify Top Events

AV

Build the Fault Tree

Qualitative Analysis of System Failure
Mode

AV

Identify Failures in the System

N

Take Improvement or Preventive
Measures

FIGURE 16. Qualitative analysis of FTA.

FIGURE 17. Quantitative analysis of FTA - series model.

independent, and calculate the probability of the top event
occurring from this assumption. There are two models, series
model and parallel model. Fig.17 shows a series reliability
model consisting of two components, A and B. The proba-
bility of success is R = AB, and the probability of system
failure is R = 1 — AB = A + B — A B. Fig18 shows a parallel
reliability model consisting of two components, A and B. The
probability of successis R = 1 —A B = A+ B — AB, and the
probability of system failure is R = A B.

2) MARKOV MODEL
Markov Model [87] is a statistical model based on stochas-
tic process theory. Its original model is the Markov Chain,
which is used to study the state space migration of discrete
event in dynamic systems. Markov chain is a Markov process
whose time and state are both discrete, abbreviated as X, =
X(n),n=0,1,2...

In the process, given the current knowledge or information,
the past is irrelevant for predicting the future. At each step
of the Markov chain, the system can change from one state
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FIGURE 18. Quantitative analysis of FTA - parallel model.

FIGURE 19. Markov model.

to another according to the probability distribution, and can
also maintain the current state. The state change is called a
transfer.

The Markov chain is a sequence of random variables
X1, X2, X3 . ... The range of these variables, that is, the set
of all their possible values, is called the "state space", and the
value of Xn is the state of time ». If the conditional probability
distribution of Xn + 1 for past states is only a function of X,,,
then P(X;+1 = x | Xo,X,1,X2,...,Xn) = PXp+1 = x |
X,,) Here x is a state in the process. The above identity can be
seen as a Markov property [88].

As shown in Fig.19, the circle indicates different states,
the source of the state transition indicated by the arrow’s
starting point, the circle pointed by the arrow indicates the
destination of the state transition, and the number on each
arrow represents the probability of the state transitioning
between states. A first-order process with M states has a
squared state transition of M. The probability of each tran-
sition is called the state transition probability, which is the
probability of moving from one state to another. The squared
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probability of all of these M can be represented by a state
transition matrix as following:

0 1 2 3
Ao Al A2 A3
w1 Xo A4 A6
M2 4 Ao As
u3  me M5 Ay
Using the Markov State Transfer Matrix, we can perform
a quantitative risk assessment of the ICS protocols and the
whole system.

W = O

3) BAYESIAN NETWORK

As mentioned above, the Markov chain describes a sequence
of states. However, in many cases, the relationship between
things cannot be chained together. At this time, the Bayesian
network [89] is used: each state is only related to the state
directly connected to it, and is not related to those indirectly
connected to it. The topology of the Bayesian network is
more flexible than the Markov chain, and is not constrained
by the chain structure, which more accurately describes the
correlation between events. The Markov chain is a special
case of the Bayesian network, and the Bayesian network is
a generalization of the Markov chain.

The Bayesian network, also known as the Belief Net-
work, or the directed acyclic graphical model, which is one
type of probability graph model. It is an uncertainty process-
ing model that simulates causality in human reasoning. Its
network topology is a directed acyclic graph (DAG). Let G =
(I, E) denote a DAG, where I represents a set of all nodes in
the graph, and E represents a set of directed connected line
segments, and let X = (X;),i € I, For a random variable
represented by a node i in a DAG, if the joint probability of
node X can be expressed as:

p) = [ [ pGxi | Xpa)
iel

Then X is called a Bayesian network relative to a directed
acyclic graph G, where pa(i) indicates the “cause” of node i,
or the parent of node i.

For any random variable, the joint probability can be
obtained by multiplying the respective local conditional
probability:

px1, .oxk) = plg | x1, .. xk—1) ... pQe2 | x1)p(x1)

In fact, the Bayesian network can be seen as a nonlinear
extension of the Markov chain. The significance of this fea-
ture is to clarify that the Bayesian network can easily calculate
the joint probability distribution.

4) ATTACK TREE

The above three methods are concerned about failure scenar-
ios, while attack tree [90], [91] is more concerned about mali-
cious attempts to manipulate a system. The attack tree uses
a tree structure to represent the attacks faced by the system,
where the root node represents the target being attacked and
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FIGURE 20. A simple example of attack tree.
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1
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1
| Attacks Against Master |

Attacks Against Slave

| 1
Disable Read Data
Slave from Slave

FIGURE 21. Using attack tree to assess ICS system.

1
Disrupt Master/Slave Disable
C i Master

the leaf node represents the method of achieving the attack
target.

The attack tree has multiple levels of nodes, including root
and leaf nodes. The lower level of the root node is the leaf
node, and the lower level of the leaf node is still the leaf node.
For a leaf node, the lower-level leaf node directly drawn by
it is its child node. Naturally, the leaf node is the parent node
of its lower-level child node. For example, in Fig.20 below,
we can see that the child nodes of leaf node C are leaf node
D and leaf node F, then leaf node c is the parent node of leaf
node D and leaf node F'. In the attack tree, the child node must
satisfy the condition that its parent node is true (i.e., node D
can cause node C to be true).

Eric J. Byres [92] has utilized attack trees in assessing
vulnerabilities in ICS system, which can be depicted in
Figure 21.

B. METHODS COMPARISON

Different risk assessment methods have their own advantages
and disadvantages and are applicable to different scenarios.
Current mainstream risk assessment methods can be divided
into two categories: methods based on knowledge reasoning
and methods based on pattern recognition. Methods based
on knowledge reasoning are the focus of current research
and have achieved a lot of research results, which reduce
the impact of the researchers’ subjectivity on the risk assess-
ment to a certain extent. However, this type of methods
are less intelligent and are also limited by the formulation
of inference rules and the acquisition of prior probabilities.
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TABLE 4. Insecure function calls and solutions in C language.

Method Category Advantage Disadvantage

FTA Knowledge Reasoning The cause-effect relation- The analysis is local and the
ship is clear,can be used analyst must be very famil-
for both qualitative analysis iar with the object system
and quantitative analysis and  being analyzed.
systematic evaluation

Markov Model Pattern Recognition The effect of the process Strict independence

state prediction is good, and
it can be considered for the
prediction of the dangerous
state on the production site

assumptions are required,
and various probabilities of
state changes are required.
Knowledge about matrix
operations is complicated.

Bayesian Network Knowledge Reasoning

Performs well on small-
scale data and is suitable for
multi-classification tasks

Very sensitive to the repre-
sentation of input data

Attack Tree Knowledge Reasoning

A clear and organized way
to describe the security
threats the system faces
and the multiple attacks the
system may be subject to

When an attack tree is ap-
plied in a specific instance,
its structure may become
large and complex. A com-
plete attack tree is likely to

include hundreds or thou-
sands of leaf nodes.

On the contrary, methods based on pattern recognition are
more intelligent, but require a lot of training data to obtain
the parameters of the model. A comparative analysis of the
listed methods is performed below (See Table 4).

The current risk assessment methods have been applied
in the actual security assessment process and have achieved
good results. However, With the increasing complexity of the
industrial control system and the continuous development of
artificial intelligence technology, risk assessment need to be
performed in a more intelligent way. The future trend is to use
deep learning methods to build a knowledge map and perform
correlation analysis based on the protocol vulnerabilities,
so as to obtain global security situation awareness of the
whole system.

VI. CONCLUSION

In this paper, we analyzed the causes of ICS protocol
vulnerability and summarized the two main categories of
vulnerabilities—vulnerability in design and vulnerability in
implementation. We analyzed some potential attack scenarios
and conducted experiments to exploit several vulnerabilities.
In addition, we provided the applications of machine learn-
ing algorithms on industrial protocols for security analysis,
vulnerability exploitation detection, and security assessment.
We also provide four methods to perform the assessment
of the ICS protocols and make a comparative analysis of
these methods. Based on the research work presented in this
paper, we conclude that in order to improve the security of
the whole ICS system, protocol designers should consider
security attributes when design an ICS protocol, whether it is
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public or proprietary; and protocol developers should conduct
sufficient tests such as fuzzing-test before its implementa-
tion in practice; and system maintenance personnel should
perform comprehensive risk assessment and take appropriate
security measures timely. All these aspects of research work,
machine learning methods can play a great role, and will
play an increasingly important role in the field of industrial
protocol security.
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