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ABSTRACT Despite the universal importance of price based demand response (DR) for managing electric
vehicle (EV) charging load, the academic literature has explored various mechanisms to its implementation.
The prequel to this work has demonstrated that implementation of load management schemes on the basis of
price based DR programs leads to costlier scheduling for low or constant energy consumers. In this regard,
the proposed work has considered and expanded the same idea from analytical as well as implementation
point of view to multiple EV charging regions and respective loads. We present a novel mechanism to
calculate EV charging prices using individualized energy consumption patterns of EVs in each region.
In this regard, all EV regions/stations receive a dynamic price signal which is non-discriminatory in nature.
The dynamic price signals are specifically designed to mitigate the impact of discriminatory prices on end
user’s cost. Furthermore, the other objectives of these non-discriminatory prices are to lower energy cost and
rebound peaks without affecting utility objective (i.e., net revenue). Initially, a new mathematical model is
presented to calculate charging prices based on real time load demand andmarket dynamics. Then relatively a
well behaved functional form of the optimization problem is formulated and the cost minimization objective
function is solved by using genetic algorithm (GA). The optimization program successfully converges to
give global optimum solution validating the effectiveness of proposed mechanism. Finally, the analytical
and simulation results are conducted to show the achievements of our proposed work in terms of fair cost
distributionwith high user satisfaction. It is also proved that in bothmechanisms, the utility’s revenue remains
unaffected.

INDEX TERMS Demand response, electric vehicles, charging prices, constraint optimization, homogeneous
price policies.

NOMENCLATURE
i ∈ n index for users
t ∈ T index for time
x number of sub-partitioned users
U index for EV charging stations/users
µ EV ON/OFF state
ts start time of EV load
tf finish time of EV load
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ta arrival time of EV load
t∗s scheduling horizon of EV load
Pdx power demand for x user

Pdi max. power demand for ith user
Pdi min. power demand for ith user
Px total power demand of x users
r̂ global price for purchasing electricity
r̃ proposed price for purchasing electricity
Ĉ total EV charging cost using r̂ pricing policy
C̃ total EV charging cost using r̃ pricing policy
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vcs vehicle charging station
δ control parameter to calculate new price
`i,t load demand of ith user for time t
di,t delay experienced by ith user over time t
di,t maximum delay experienced by ith user over

time t
di,tavg average delay experienced by ith user over time t
ωi,t actual delay experienced by ith user over time t
τi,t operating time of EV load i over time t
σi,t pre-service time delay of EV load
cri required charging intervals of ith user
cschi scheduled charging intervals of ith user
tsch scheduled time for EV charging
f (ta, τi) a function used if `i,t can be served within ser-

vice time [0,1]
vi, si auxiliary vectors
κi,t charging/discharging rate of ith user over time t
soci,t soc of ith user over time t
soci,t−1 soc of ith user over time t − 1
soci upper limit on soc of ith user
soci lower limit on soc of ith user
socdi,t soc demand of ith user over time t

I. INTRODUCTION
In recent years, a large scale adaptation of EVs will affect
two cyber-physical networks: power and transportation [1].
Numerous studies have already been presented to discuss
these infrastructure systems regarding their operational point
of view. It is found that these network systems are coupled
as they provide energy resources with reduced CO2 emis-
sions along with green environment. However, in this work,
we argue that integration of EVs in residential and com-
mercial premises will couple both power and transportation
networks. Thus, without considering their interconnection
and assuming that charging and location of EVs follow an
independent process that does not get affected by electricity
charging prices may create instabilities in power systems
due to unfair price distribution [2]–[4]. Furthermore, cus-
tomersmay also be discouraged to participate inmarket based
DR programs without providing monetary or other incen-
tives. In addition, the increased charging cycles will pose
a serious challenge that what type of pricing model can be
employed given the possibility of massive power extraction.
So, to resolve this issue, there needs to design an EV charging
pricing mechanism in such a way to facilitate end users and
energy retailers, simultaneously. Hence, this work proposed
a new distributed scheduling and pricing mechanism for EV
charging stations at different regions.

To solve these issues, this work presents a distributed pric-
ing model for EV charging load management. The proposed
pricing policy is designed to impartially charge the EVs in
such a way that electricity prices are unbiased. To further
analyze the economic benefits of the proposed mechanism,
we first develop a mathematical model of constructing EV
charging prices. Then constraint optimization problem has

been formulated and heuristic solution is obtained to mini-
mize the EV cost. For validation, we compare two scenarios:
(1) the EVs follow FCFS policy without power and delay
limits, (2) optimized vehicles’ charging patterns considering
power and delay limits. The extensive simulation results indi-
cate that the proposed pricing model significantly reduces the
charging cost while facilitates the respective customers by
providing them customized price policies.

A. MOTIVATION
Analysis in [5] gives the results of total EVs registration
data analysis from January 2013 to October 2016, obtained
from New York State (NYS) department of motor vehicles
over the given time. It can be observed that in year 2015,
there were in total 1950 registered EVs in NYS. While in
year 2016, this figure increased 49.335% and total 2912 vehi-
cles registered. It is therefore concluded that the penetration
of vehicles is expected to increase in coming years impos-
ing serious effects on electric transmission and distribution
systems, if EV charging processes are not managed prop-
erly [6]. On the other hand, EV penetration in residential
premises may increase the electricity demand during evening
hours known as ‘‘duck curve’’ may pose serious challenges
regarding high peak to average demand ratio for the energy
market. Many researchers have been working to manage the
load demand and duck curve challenges by encouraging the
customers to shift their loads through various pricing and
incentive based schemes [7]. This motivated us to further
investigate the EV charging prices through adoptable strate-
gies and develop a dynamic pricing model for temporal load
shifting during high peak hours. It is also important to mentor
here that in a consumer oriented electricity market, utilities
and energy retailers cannot directly deny providing services
to EV owners and residential customers, even when a power
grid has stability problem. In this situation, the consumption
behaviour can be greatly influenced by properly adjusting the
electricity consumption prices. Therefore, a price calculation
can be used as a significant tool in EV network. Therefore,
a dynamic pricing has been an active area of research, where
researchers has already made some contributions [8]–[10].
However, non of the developed solutions has addressed the
challenge of customized price distribution.

In summary, the major contributions of the paper are dis-
cussed as follows:
• Firstly, based on EV arrival and power consumption
models, scheduling has been performed in terms of cost
reduction and social welfare maximisation.1 Day-ahead
electricity pricing policy, FCFS mechanism and GA are
used to solve constraint optimization problem with the
primary objective to facilitate end users.

• Secondly, we propose a distributed pricing mechanism
based on; aggregated load demand, day-ahead pricing,
individualised load demand profiles and load demand

1Social welfare maximisation in terms of scheduling delay is considered
in this work.
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patterns of EVs. Then a constraint optimization problem
has been formulated and a heuristic solution is obtained
indicating that EV charging price is different for all
charging stations.

• Thirdly, to analyze the proposed pricing model, ana-
lytical results of the mathematical model are obtained
which are further validated via extensive simulations
using a real time data set of a moderate size. Further-
more, the obtained results are compared with traditional
pricing which is usually calculated on the basis of aggre-
gated load demand.

• Finally, it is also proved that optimization problem is
formulated in such a way that GA efficiently solved
the problem to obtained a closed form solution without
constraint violation. Furthermore, to avoid premature
convergence, the local best solution in each iteration is
compared with previously obtained best solution. The
results presented in table 2 reflect the significance of
proposed mechanism in terms of fair price distribution
among all charging stations.

It should also be noted that the proposed pricing model
has a direct impact on end users, charging station owners and
energy retailers as well. In this work, along with proposed
mechanism, we also consider a grid stability issue caused
by an increased charging load demand during peak hours,
which is a major challenge. We assume that since the energy
retailers will enjoy the maximum benefits in terms of grid
stability, they will provide the incentives to the users in terms
of adjustment in selling electricity to further promote the
proposed pricing model.

The rest of the paper is organized as follows: section II
provides related work, section III and IV discuss the sys-
tem model and mathematical problem formulation of the
proposed mechanism, simulation methodology and results
have been discussed in sections VI and VII, respectively.
Subsequently, the conclusion is given in section VIII.

II. BACKGROUND LITERATURE
In literature, various mechanisms have been presented to
provide the optimized charging schedules of EV in response
to DR programs [11]–[15]. Where, most of the techniques
have been designed with a twofold objective: (i) to reduce
the electricity cost of potential users while adopting both
vehicle to grid (V2G) and grid to vehicle (G2V) integration
options. The primary objective is to smoothen the power
demand and supply through intelligent optimization mech-
anisms in response to dynamic electricity prices [16], [17].
In [18], authors have proposed a vehicle charging mechanism
using DR programs by taking into consideration random
charging patterns of EVs. A load shaping problem with the
effective utilization of DR programs in a distributed and
decentralized framework has been discussed in [19]. Another
study proposes an efficient power management system where
authors have introduced a mechanism which decides when
to discharge their EVs [20]. Furthermore, to mitigate voltage
and power demand imbalances caused due to massive power

extraction and photo-voltaic integration, algorithms decide
when to start V2G operation without compromising on user
comfort. To facilitate the adaptation of EV use, real time inter-
action between load aggregators and EV parking lot owners
has been established through intelligent power management
mechanisms [21]. On the other hand, to further facilitate the
EV customers, predicted electricity prices have been used
for charging purposes [22]. A Bayesian neural network and
linear programming technique have been used for predicting
electricity demand and decision making, respectively. It is
also estimated that up-to 15% saving can be achieved by
employing this technique. Another EV charging mechanism
by taking into consideration the aggregated charging load on
a specific bus has been proposed in [23]. This mechanism
has twofold objective: (i) minimizing the feeder losses due
to uneven load drawn, and (ii) facilitating maximum number
of EVs for simultaneous charging. These objectives have
been achieved through proper estimation of total number of
EVs which is modelled as a Poisson arrival process, as it is
understood that the utility’s profit is directly linked with the
high sale of electricity. Consequently, thismay create rebound
peaks if fleet charging prices are used, where customers wish
to charge EVs when charging prices are lower. A linear
programming model to minimize the customer’s charging
expense and to maximize the aggregator’s profit has been
proposed in [24]. To facilitate both customers and utilities
without violating their objectives, a novel DR mechanism
has been proposed [23]. This mechanism provides benefits to
customers with optimal charging patterns in accordance with
user demand. Meanwhile, the power system can be made sta-
ble through imposing maximum power consumption limits.
Another work has been proposed to devise a profit-optimal
pricing mechanism facilitating both EV charging customers,
without violating the aggregator’s objectives [25]. To achieve
this objective, EV’s characteristics and mobility patterns
have also been considered. For validation, the mechanism
is implemented and tested on a set of EVs having moder-
ated size. To minimize the EVs charging along with peak
reduction, a hierarchical control mechanism across multi-
ple aggregator has been proposed [26]. Distributed system
operators first solve the charging curve at their premises and
then heuristic algorithm is used to allocate optimal power to
EVs. In [27], [28], mathematical optimization models have
been solved by using mixed integer linear programming
and fuzzy linear programming to maximize the aggregator’s
profit. EV charging problem to maximize the parking lot
owner’s profit has been solved by using linear program-
ming technique [29]. This problem, however, can also be
solved by using quadratic programming technique. Similarly,
a quadratic programming technique is used to minimize the
EV charging prices [30], [31]. Another work reported in [32]
discusses the interdependence and collaboration between
independent power and transportation systems operators that
can lead towards cost efficient and socially optimal patterns
of EV charging. Furthermore, reserve capacity requirement
of operating the grid is also analyzed in the absence of these
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TABLE 1. Comparison of proposed work against various related works.

two infrastructures. Then a control strategy under a static
operating conditions is established to facilitate individual EV
owners in terms of reduce charging cost and shortest route
patterns. The initial work [33] of [32] gives general model
of ‘‘energy-aware shortest path problem’’ and an extended
transportation graph. In [34], an agent based distributed
holistic framework is proposed which used consensus based
innovation strategy to control optimal charging of EVs. The
underlying objective is to improve operational performance
of such type of cyber-physical systems with less information
and communication exchanged using internet of things (IoTs)
lens. Distributed solution is comparativelymore efficient than
centralized solution. However, it required advanced commu-
nication infrastructure and computing resources. Although,
this work is interesting in its kind, however, customers are
not provided incentives in the form of reduced charing or fair
charging pricing, which may discourage them participating in
market basedDR programs. In this work [35], to optimize the
utilization of virtual power plant involving dynamic energy
resources, a two-layer approach considering safety constraint

is presented. The upper layer is dedicated to maximize ben-
efits of virtual power plants, while the lower layer is respon-
sible for managing the charging demand through optimal
scheduling. The effectiveness of the layered architecture is
shown via IEEE 30 bus system test case with the integration
of wind source. Table 1 gives a brief summary of relevant
state of the art work.

III. SYSTEM MODEL
In this work, we consider a standard IEEE 30 bus power
system topology and a multi-model transportation system
topology as a test case as shown in Fig. 1, [36], [37].
The total geographical area is further divided into four
sub-regions. While in each sub-region, we assume six EV
charging stations U ∈ vcs1 , vcs2 , vcs3 , . . . , vcsn fulfilling the
charging load demand from DSO [39]. A centralized charg-
ing management unit (CMU) is responsible for all types
of decision making and communication services which are
assumed to be provided by advanced metering infrastruc-
ture (AMI) Fig. 3. Furthermore, there is also a possibility to
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FIGURE 1. Conceptual diagram of considered system model describing degree of freedom of transportation and power grid related operands:
(left) Topology of symmetrica, grid connected EV charging management system, (right) Topology of symmetrica, IEEE 30 bus system system.

integrate on-site renewable energy resources along with EVs
as a backup source, whenever it is required and profitable
for users. It can either maximize end user’s profit or reduce
total electricity expense. However, the proposed work only
considers the G2V option, where fair price distribution is a
primary objective. In order to achieve this objective, various
electricity pricing schemes can be considered and utilized (as
per given requirements). The proposed work uses RTP which
is obtained from utility server.

A. EV ARRIVAL AND DELAY MODEL
It is assumed that each EV charging user has different QoS
requirements depending on his preferences such as; arrival
time ta, service time ts, and finish time tf of driving tasks
arrived arbitrarily over discrete and finite time intervals
t ∈ {1, 2, 3, . . . ,T }. It is also assumed that arrival and
departure of EVs are modelled as random variable using
Poisson process model, with variable rate of arrival and ser-
vice time, depending on user requirements (Fig. 2). Let ta ∈
{1, 2, 3, . . . ,T } be the arrival time of any EV with random
and arbitrarily dynamics such that; `t is the load demand,
τt is the length of operation duration, and dt is the maximum
allowable duration before the service time. Assume that ts is
the actual service time of any EV, which is arrived at ta time.
So, the following constraints are associated:

t∗si,t = T − τi,t (1)

ωi,t = tfi,t − τi,t + σi,t (2)

In (1) and (2), QoS requirements in terms of EV’s waiting
time are presented. Particularly, (1) shows the condition when

FIGURE 2. EV arrival rate over the given time.

EV users do not concern with social welfare (user comfort)
objective and their scheduling horizon remains constant. Its
mean, the EV charging schedules can be planned between
ta − T time interval and (2) considers the pre-service time
delay σi,t . We define ωi,t , ts − ta as pre-scheduling time
delay experienced by EV user. We also define the average
waiting time of EV users in (3), and impose a constraint in (4)
as follows:

di,tavg =
1
T

{∑
t∈T

di,t
}

(3)

0 ≤ di,tavg ≤ di,t (4)

B. POWER CONSUMPTION MODEL
If all the EV charging users are given in a single set U and
the power consumed by an ith user over time t is represented
by Pi, which is given as:

Pi,t =
{∑
t∈T

∑
i∈|U |

[f (ta, τi).`i,t ]× µi,t
}

(5)
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subject to: 0 ≤ di,t ≤ di,t , ∀t ∈ Z+ (6)

0 ≤ τi,t ≤ T , ∀t ∈ Z+ (7)

`g,t =
{∑
t∈T

∑
i∈|U |

[f (ta, τi).`i,t ]×µi,t (ωi,t )
}

(8)

µi,t = [0, 1] ∀i ∈ |U |, t ∈ Z+ (9)

where, `i,t in (5) denotes the energy demand of ith component
of EV over time t for i = |U |. In (5), µi,t , {1 : if
`i,t > 0 :0 otherwise}. We also assume that each EV charging
station has to provide services to users which arrive over the
time slot with spatial uncertainty and temporal variability.
Each user has certain amount of load intensity for a specific
duration `i,t . We assume that the expected delay experienced
by `i,t is denoted by (6).Where, (7) denotes operating interval
of any EV load. Thus, [t, t+`t ] and [t+dt , t+`t+dt ] are the
earliest and latest serving time intervals of Pi,t , respectively.
While each EV arrived at time t is scheduled to serve if
t > dτ , the total amount of energy demand must be equal
to the energy supplied from the grid, which is depicted in (8).

FIGURE 3. Day-ahead RTP signal and total power demand of EV charging
over given time period.

C. ELECTRICITY PRICING MODELS
This paper proposes a novel mechanism to devise
non-discriminatory price policies for EV charging customers.
Where, instead of using the global pricing2 r̂ for all con-
sumers, the ‘‘individualized prices’’ depending on load con-
sumption patterns of all users have been calculated (Fig. 3).
The novel aspect lies in the concept that these prices do not
have any affect e be price profiles of other users, operated
under the same DSO/utility3. Moreover, these prices have
been designed such as to maximize the benefits of end
users. Initially, this study considers different users/regions
purchasing or selling the power. Specifically, three different

2We can refer RTP as a global pricing policy, as these prices are calculated
on aggregated power consumption basis.

3The proposed work assumes that all charging regions or stations have
been operated under the same DSO

vehicle charging regions; vcR1 , vcR2 and vcR3 are considered
as a test case. Whereas, each charging region contains 6 EV
charging lots with infinite queuing capacity. However, before
discussing mathematical models, we first discuss traditional
and proposed pricing models in the following subsections.

1) DAY-AHEAD PRICING MODEL
The day-ahead pricingmodel can also be known as traditional
pricingmodel is based on RTP or TOU pricing scheme, where
all users/EV-stations4, regardless of their type or power con-
sumption, are priced with a constant rate r̂ . Generally, these
prices are obtained from market retailer, which are subject to
aggregated demand. Based on the energy consumption model
presented in section III-B, the energy consumption cost using
market price signal over time t is given as:

Ĉ =
{∑
t∈T

∑
i∈|U |

τ (vi,t − si,t )(Pi,t × r̂t )
}
. (10)

Here, the parameter (Pi,t × r̂t ) represents cost of energy
at each time step, τ represents duration of each time step in
hours. Variables vi,t and si,t are auxiliary vectors vi and si
such that {vi,t−si,t , ~i,t }. The variable ~i,t represents charg-
ing or discharging rate of each connected vehicle i. These
auxiliary variables lie within sets Vi and Si. Where, in (10),
r̂t denotes the pricing signal obtained from a day-ahead elec-
tricity pricing market, which is constructed on the basis of
aggregated load demand. In literature, usually these pricing
signals are being widely used to schedule the EV charging
loads by assuming that there is not upper bound on energy
consumption. Then by assuming that r̂ is the only pricing
signal used to provide the electricity tariff information to end
users, the objective is to minimize the total charging cost
subject to respective constraints.

The (10) provides the basic mechanism for the calcula-
tion of power consumption cost in response to time varying
electricity prices [44]. Although this mechanism is being
widely used for cost calculation. However, we have explored
the literature and identified that this mechanism is infeasible
when power consumption trends of various users have large
variations. For example, we have i ∈ n users consuming
power at variable rate over the given course of time, whereas∑n

n=1 i(n − 1) users consume power at a constant rate. As a
response, the utility or retailers calculate the hourly prices
on aggregated power consumption basis (i.e., Eq. 10) rather
than individualized basis. Consequently, the users consuming
power at a constant rate get affected as they are receiv-
ing the same hourly price irrespective to their consumption
level. So, we have considered this problem and devise a
mechanism which calculates the prices in accordance with
individualized power consumption trends of EVs. The fol-
lowing section provides the details of the proposed pricing
mechanism.

4In this work, EV charging users and stations can be used synonymously.

VOLUME 8, 2020 40303



M. B. Rasheed et al.: Optimal Scheduling and Distributed Pricing Mechanism for Multi-Region EV Charging in Smart Grid

2) PROPOSED DISTRIBUTED PRICING MODEL
Basically, the EV charging load consumed at residential
premises is comparatively lower than the commercial users
and parking lot users. Hence, it is unfair to charge all the
users with a constant price i.e., (r̂). To overcome this issue,
the proposed scheme provides a mechanism to set a separate
price signal for a single category of users or parking lot.

a: PROBLEM MODIFICATION
Let the set U is partitioned into distinct sets corresponding
to the types of users, i.e., [Uvcr1 , Uvcr1 ,. . . , Uvcrx ]. The total
power demand can be written as:

Px
=

{∑
t∈T

∑
i∈|Ux |

[f (ta, τi).`xi,t ]× µi,t
}
, (11)

where, x ∈ [Uvcr1 , Uvcr1 ,. . . , Uvcrx ], and the total consumed
power can be denoted by Px . In Eq. 12, we consider same
pricing policy for all EV charging users and calculate the total
electricity bill as:

Ĉ =
{∑
t∈T

∑
i∈|Ux |

τ~i,t (Px
i,t × r̂t )

}
. (12)

Note that, so far, it was assumed that utility has rights
to calculate the relevant pricing considering the total power
consumption. In the proposed work, we consider the power
consumption based pricing schemes where the rate of each
unit is proportional to the total number of units consumed
by each user; it is modelled so that the total revenue is not
decreased. We first discuss this model on charging regions
level. For this purpose, we need to calculate the total amount
of power consumed by the charging regions. The control
parameter δ calculates the actual price to be assigned to each
EV in regard with the consumption trends of other EVs. The
value of δi,t for i users over time t is calculated as:

δi,t = (U−1)2×((f (ta, τi)`xi,t )×µi,t )×r̂, ∀t, i ∈ Ux , (13)

where, U =
∑|Ux |

i=1 (Pi) and ||x|| represents the Euclidean
norm of the vector x. Soon after finding the relative charging
prices for all EVs, customized price for each EV can be
calculated using r̃ = Pi,t × δi,t .

r̃ =
{∑
t∈T

∑
i∈|Ux |

Pi,t × δi,t
}
, (14)

where, the vectorized form of the above equation is
denoted as:
r̃ t1x1
r̃ t2x2
r̃ t3x3
...

r̃Txn

=

δ
t1
x1
δ
t2
x1
δ
t3
x1
...

δTxn

×

P t1
x1 P t2

x1 P t3
x1 · · · PT

x1
P t2
x2 P t2

x2 P t3
x2 · · · PT

x2
P t1
x3 P t2

x3 P t3
x3 · · · PT

x3
...

...
...

. . .
...

P t1
xn P t2

xn P t3
xn · · · PT

xn

 (15)

where, r̃ denotes new price signal which is assigned to each
user based on the consumed power. It is worth noting here
that δi,t has been calculated by using r̂ and power drawn by

all stations and for each EV charging user, the value of r̃ will
be different. In a result, total electricity bill C̃ incurred by all
stations using proposed mechanism can be calculated as:

C̃ =
{∑
t∈T

∑
i∈|Ux |

τ~i,t (Pi,t × δi,t × Px
i,t )
}
. (16)

Now, (16) ensures that total cost/revenue of the utility
remains constant when compared with r̂ . Thus, the EV charg-
ing bill can be calculated on the bases of traditional and
proposed policies using (10) and (12).

b: CHARGING AND SOC CONSTRAINTS
It is assumed that EV chargers are able to handle two-way
power flow and they have limited consumption or injection
rates that must be considered in the optimization problem.
These charging rate is described as [38]:

Pdi ≤ ~i,t ≤ P
d
i , ∀i, t (17)

where, Pdi and Pdi represent power limits of EV chargers.
In (17), ~i,t represents charging/discharging rate of ith user
over given time. If ~i,t is expressed as difference of two
variables vi,t and si,t , as shown in (10), then the (17) can be
modified as:

0 ≤ wi,t ≤ Pdi ∀i, t (18)

0 ≤ si,t ≤ Pdi , ∀i, t (19)

where, vi,t and si,t are elements of auxiliary vectors vi and si.
The (18) is only valid just before the departure time of EV.
Similarly, the battery state of any EV, at the end of time t can
be modelled as:

soci,t = soci,t−1 + τ
∑
t∈T

~i,t , ∀i, t (20)

where, soci,t−1 represents charging state in previous hour.
In order to prolong EV battery life time, it is required to avoid
deep discharging. For this purpose, we implement limits on
charging such as:

soci ≤ soci,t ≤ soci, ∀i, t (21)

where, soci and soci represent lower and upper limits on EV
battery charging states. The charging limits based on actual
load demand over the given time interval is given as:

soci ≤ soci,t + τ
∑
t∈T

~i,t ≤ soci, ∀i, t (22)

The expressions (20),(28),(27) demonstrate the general-
ized form of limits, while it is required to meet the minimum
lowest charging requirement. Thus, it is more restrictive to
impose desired socdi,t limit, based on demand requirement.
This limit is expressed as:

(soci,t + τ
∑
t∈T

~i,t )− socdi,t = 0, ∀i, t (23)

Finally, (29) gives the expression to meet the required SOC
requirements of all EVs, currently participating in charging
process.
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D. PRICE HOMOGENEITY
Intuitively, in order to have parking lot owners and other EV
users agreeing on paying bills in accordance with proposed
model (i.e., homogeneous pricing policies), it is required that
such prices must be non-homogeneous. In another words,
the newly calculated prices must be based on the actual power
consumption of EVs parking lot owners, regardless to the C̃
which are calculated on aggregated power consumption basis.
This is also necessary for EV users, parking lot owners as well
as electricity retailers and distributors to keep their objectives
(i.e., net profit/revenue that should not be reduced due to dis-
criminatory prices). Otherwise, discriminatory prices would
ultimately reduce the total number of participants adopting
such pricing schemes and DR programs, causing reduction in
utility’s revenue. However, in our context, we can informally
say that the prices are non-homogeneous if all the users have
same opportunity to pay their bills when such prices have
been calculated in relation with others consumption levels.
Moreover, the proposed mechanism for price calculations is
also feasible when EV users and parking lot owners are not
willing to participate in DR and load management programs.
In this case, prices are calculated on the basis of power
consumption levels. Formally, we can define the tariff as;
r̃ = (Pi,Px , r̂, δi).Where, δi gives the fraction of power used,
based on which the non-discriminatory prices are calculated.
The important point to note here is the value of δi which
decides the amount of bill by taking into consideration the
power consumption of all other users operating under same
DSO. For this purpose, real time load consumption data is
required, which can be collected from [39]. Since, r̂ is fixed
for all types of users, however, r̃ for all vcRn are dynamic
non-discriminatory prices.

FIGURE 4. Relationship between P and δi as a function of r̂ over the
given time. Day-ahead RTP is used in our case.

Generally, the proposed price policies depend on δi
(Eq. 13). Whereas, the δi further depends on two factors,
i.e., ui and r̂ . To show the dependence of δi onP and r̂ , we pro-
vide numerical results as shown in Fig. 4. The figure shows
relationship between δi and Pi, while, the value of r̂ is varying
over given time period. From figure, it is obvious that value
of δi decreases if we increase Pi and vice versa. Intuitively,
if any vehicle or parking lot requires more or less power, the δi

will decide the charging cost with respect to load consumed
(Eq. 13).
Lemma 1: Let δi,t = (U−1)2 × ((f (ta, τi)`xi,t ) × µi,t ) × r̂ ,

denotes the pricing policies for for EV stations in time T , and
Ĉ (Eq. 24) is the resultant energy consumption cost for all
charging stations. Let suppose, if total EV charging cost is
from residential viewpoint (Pi,t×µi,t×r̂t ) is equal to expected
cost of utility δi,t × Pi,t in such a way that condition δi,t ×
Pi,t = Pi,t ×µi,t × r̂t is satisfied. Then it is proved that price
policies obtained from proposed algorithm are homogeneous.
For proof, see appendix.

IV. PROBLEM FORMULATION
Based on load demand and user requirements, this work
considers two cases: (i) it is assumed that charging stations
have infinite queue capacity and charging cost is calculated
using a day-ahead pricing model, (ii) charging stations have
finite queue capacity, hence some delay could be occurred.
In addition, users intend to reduce their charging cost and are
willing to participate load management programs. Initially,
the P1 is solved and total cost is obtained using a day-ahead
pricing policy. Then, this cost is used as an input to solve
P2 using proposed pricing policy. For validation, the results
of both cases are compared (Table 2). Each case has some
assumptions, which are discussed as follows:

A. ASSUMPTIONS 1
1) EVs are charged as per schedules given by the users

and there is no limit on the power consumption. It is
assumed that EV charging lots are empty and any EV
can get charged at any time without bearing delay.

2) For cost charging cost reduction, an optimization pro-
gram is used, while the proposed mechanism is used to
distribute charging prices, fairly among all EVs.

3) There is no additional cost charged to EV for consum-
ing high power, even during peak hours.

4) Charging prices for EVs are fixed for the given interval
which is; (i.e., 60 min., charging interval is considered
in the proposed work).

5) EV charging prices are assumed to be varied in accor-
dance with the aggregated amount of power in the same
DSO.

Then, on the basis of aforementioned assumptions,
the objective function is formulated as follows:

P1 = min
{∑
t∈T

∑
u∈|U |

τ~i,t [Pi,t × µi,t × r̂t ]
}

(24)

where,

Pdi,t = Psi,t , Pdi ≤ P
d
i,t ≤ P

d
i , ∀T , i ∈ U , (25)

subject to: (1), (7), (8), (9), (17− 23)

di,t 6= 0, ∀t ∈ Z+, u ∈ |U | (26)∑
t∈T

∑
i∈|Ux |

[(Pi,t × µi,t )× δi,t ]× Pi,t

−

∑
t∈T

∑
i∈|U |

(Pi,t × µi,t × r̂t ) = 0, ∀i, t (27)
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Eq. (24) denotes the cost minimization objective func-
tion, (26) denotes that EV charging load is scheduled as per
user requirement without bearing any delay, (27) ensures
the cost balance in both pricing mechanisms. It is under-
stood that the aforementioned problem formulation is done
with the objective of fair cost distributions (i.e., electricity
prices in accordance with net power consumed) among all
EV charging customers. However, there is no pre-scheduled
mechanism used, which means that users can charge EVs
whenever they desire. If we consider electricity market,
there is always an uncertainty on power generation due to
dynamic power demand, which can disturb supply-demand
balance objective. In order to cope with this problem, vari-
ous authors and scientists have devised load scheduling and
EVs charging mechanisms in relation with consumer and
utility constraints [18]–[23]. Few authors focus on EV charg-
ing schedules [30], [31], [45]–[47]. While others proposed
EV charging scheduling in accordance with price based DR
programs [18], [19], [21], [23]. In the later case, there is a
possibility that EV charging customers can put on waiting
queues due to high electricity prices in particular hours. As a
consequence, the cost-saving customers may bear extra delay
while receiving extra benefits in the form of reduced bill,
while the other customers do not want to bear delay, even if
charging prices are high. In contrast to first case, the second
case has been considered in the proposed work to sched-
ule EV charging schedules in order to reduce charging cost
along with reduction in high peaks. Therefore, we have used
the proposed scheduling algorithm to perform the required
actions while keeping the utility and EV user’s objectives. For
this purpose, the following assumptions have been made:

B. ASSUMPTIONS 2
1) EVs can be charged in accordance to the optimal sched-

ules provided by algorithm. This may create some
delay in EV charging, however, there is no limit on the
power consumption.

2) If the charging lots are busy in serving other vehicles,
then the users can wait until to the availability of next
possible time slot. Now, it depends on the situation that
how much delay an EV has to bear. In the proposed
work, delay factor is not considered and the focus is
towards fair cost distribution among all EV users.

3) There is no limit on consuming high power even during
peak hours, so there is no extra charge.

4) Charging prices for EVs are assumed to be fixed for
a given interval of time. However, EV charging prices
are optimally distributed among all users, which are
calculated on the basis of proposed mechanism.

5) If any EV requires more charging time, then the
charging prices for all respective hours would eventu-
ally depend on four factors: (i) market clearing price,
(ii) aggregated power demand in a particular region,
upon which market clearing prices depend (iii) total
amount of power required for EV charging, and (iv) λi.

FIGURE 5. Total number of iterations of GA in achieving global minimum
solution.s.

Fig. 6 elucidates the steps for calculating EV charging
prices using traditional and proposed mechanisms.

Keeping in view the aforementioned considerations,
the objective function can be written as follows:

P2 = min
{∑
t∈T

∑
i∈|Ux |

τ~i,t
[
(Pi,t×µi,t×δi,t )×Pi,t

]
+di,tavg

}
.

(28)

subject to: (1− 9), (17− 23), (26), (27)

di,t ≤ (ts`i,t − tf`i,t ), ∀i, t (29)

V. PROPOSED ALGORITHM
In order to solve the optimization problem (28), heuristic
based GA is used. As on/off state is involved in making load
decision. Therefore, a binary version of GA is used to model
EV charging states. Initially, the random arrival of EV is
served using FCFS policy, without considering waiting and
service time delay. Then, a day-head pricing policy is used to
calculate charging cost based on extracted load. In addition,
we also introduced a distributed pricing mechanism, consid-
ering multiple DSOs. For this purpose, optimized charging
patterns of EVs considering pre-service and charging delay
are obtained to calculate charging cost. The second prob-
lem (28) is relatively more complex and difficult to solve
by using mathematical approaches [27], [28]. This is due to
inherent uncertainty in EV; arrival, departure and service time
in the presence of dynamic pricing and power demand. Fur-
thermore, when dealing with classical problems, it is highly
desirable to have a solution which is globally best or rather
a closed form solution. In contrast, the time complexity of
mathematical solutions may increase if global best solution is
not found, especially, when uncertainties are there. To handle
these limitations, heuristic algorithms [48]–[50] are gain-
ing popularity due to their capability to handle uncertain
and random parameters. Because, the global best solution is
obtained from locally optimal solutions from the entire search
space. These algorithms may also take more processing time
if global optimal solution is difficult to obtain. However,
at the end, there is at least closed form solution obtained.
From Fig. 5, it can be seen that based on proposed model,
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GA converges within feasible time to give global best solu-
tion. From simulation and analytical results, it is evident
that obtained solution is best in terms of fair cost distribu-
tion. To further improve this ability, the search space can be
expanded, leading to higher computational time.

In proposed algorithm, before solving (28), we first
solve (24) to obtain the vector containing all optimal values
of EV charging users. Then, this information is used in (28)
to calculate EV charging prices using proposed mechanism.
To ensure whether the EV charging prices obtained from
proposed mechanism are approximately equal to the total
cost returned to energy retailers, the (27) is imposed which
is validated once the algorithm completes one cycle.

FIGURE 6. Flowchart representing the mechanism of finding distributed
price policies for EV charging station.

We first solve the optimization problem OP (24) to get the
values of r̃ and Ĉ . So that, we can solve theOP in (28) to find
the optimized cost of all EVs such that the total cost must be
equal to the cost obtained from OP in (24). Eq. 28 denotes
cost minimization objective function, (27) depicts that total
charging cost in traditional and proposed pricing models
remain same, without disturbing utility and user objectives,
(29) describes the scheduling horizon of any EV arrived at
charging station over user specified time instant. It means,
the EV charging activity has to be performed before the
start of next scheduling horizon, which is considered to be
started after 24 hours. Because, the proposed test cases are
performed on 24 hours equally spaced time slots. Details of
Flowchart: Fig. 6 describes EV load management and pricing

mechanism using proposed algorithm. Just like traditional
pricing mechanism, we first calculate total cost in accordance
with aggregated load. Then aggregated load and individ-
ual load patterns are used as input parameters to calculate
separate price profile for all types of charging stations or
users. To validate, whether the cost obtained from proposed
mechanism, the optimization problem is solved by using GA
and results are compared with traditional pricing mechanism.
It is worth noting here that proposed pricing mechanism is
purely based on utility function eq. (13). From Fig. 6, it can
be seen that algorithm has to satisfy optimality, convergence
and equality eq. (22) conditions. The results section describes
and discuss the achievements of proposed mechanism.

VI. SIMULATION METHODOLOGY
The optimization problem for cost minimization has been
formulated as a linear programming that aims to reduce the
charging bill of EV customers. Each user can operate in any
region in accordance with power demand and preferences.
However, to maximize user comfort, two different modes of
EV charging have been discussed in this work: (i) there is
no limit on the power consumption over the given time, and
(ii) EVs are provided the upper limit on extracting the power.
Where in both cases, EV charging bills are calculated on the
bases of individualized aswell as aggregated [11], [23] power
consumption profiles.

The optimization program is demonstrated on a test case
of moderate size where each EV followed random arrival
process [51]. This test case is selected due to two main
reasons: (i) EV arrival and departure patterns reflecting real-
istic charging behaviors, and (ii) the total amount of power
demand over the given time period provides the demand
profile to effectively manage the power generation and and
respective tariff. The hypothetical test case consists of three
charging regions with random distribution of EV arrival.
For EV charging cost, a RTP mechanism has been used in
which the prices are known in advance [44]. Fig. 3 gives the
relationship between power and cost.

VII. RESULTS AND DISCUSSION
Fig. 7 shows a comparison of unscheduled and scheduled load
demand of EVs over given time period. It can be observed
from figure that proposed scheduling mechanism reschedules
charging patterns on the basis of market clearing prices and
user requirements. Although the charging prices have reduced
significantly, however, the user comfort is compromised. For
example in Fig. 7f, the unscheduled demand request received
at 10:00 shows that if scheduled, the resultant cost would be
higher. This typical results originate from the fact that cost
curves are independent to the EV demand profiles, leading
to dynamic cost curves. Hence, a day-ahead RTP which is
generally known in advance may produce unrealistic results.
Similarly, Fig. 8 elucidates a comparison of unscheduled
and scheduled power consumption profiles of EV over given
time period. Such a demand profile depicts more exagger-
ated optimization condition instead of found in real life EV
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TABLE 2. Comparison of power consumption cost results using traditional and proposed pricing schemes.

FIGURE 7. A comparison of scheduled and unscheduled vehicle
scheduling and load demand pattern based on proposed pricing model,
over the given time. These results are obtained for 6 charging stations in
single area, as shown in Fig. 1.

FIGURE 8. A comparison of scheduled and unscheduled vehicle load
demand based on proposed pricing mechanism over the given time.

arrival demand. The scheduled demand profile is compara-
tively more balanced due to limit on maximum power con-
sumption. Fig. 9 depicts the EV charging cost profiles over
the given time. Such a cost profile reflects the commonly
found EV charging patterns. However, the cost profiles shown
in Fig. 9 shows a most exaggerated cost patterns obtained
by using traditional and proposed mechanism, respectively.

It is also clear from the figure that resultant hourly cost in
both unscheduled and scheduled cases remains unaffected,
reflecting the real time applicability of the proposed mech-
anism. For example in time slot-7 (Fig. 9a), the EV charging
cost in unscheduled case of vcs2 is more as compared to
Fig. 9b. However, the total power consumption cost, i.e., 105$
in both cases remains same. This gives a clear understanding
about the proposed mechanism which calculates the charging
cost on the basis of net power consumption without only
considering charging prices, particularly. Similar is the case
with other time slots. In contrast, Fig. 9c,d gives the scheduled
cost profiles of EV charging over the given time interval.
In this case, the optimized EV charging schedules have been
obtained and then charging cost is calculated in accordance
with traditional and proposed mechanism mechanisms. It is
also noticeable that comparatively more stable EV charging
cost profiles have been obtained regardless to the power
demand patterns and customer preferences. Dynamic cost
patterns of scheduled load elucidate the fact that these cost
trends are subject to the proposed mechanism. It can be
further seen from the cost profiles of each charging station,
clearly demonstrating the variation in EV charging cost. Fur-
thermore, cost profiles (Figs. 9c,d) demonstrate the smooth
power consumption behavior (hours 15-24) due to lower elec-
tricity tariff as shown in Fig. 3. Fig. 10 gives a brief overview
of EV charging cost in response to a day-ahead and proposed
models over the given time interval. Figs. 10a,b provide
unscheduled and scheduled cost profiles using a day-ahead
and proposed pricing models. Such a cost profiles reflect
the impact of distributed pricing mechanism, which is based
on dynamic load demand trends. On the other hand, RTP or
TOU pricing schemes being widely used for load scheduling
are unable to handle dynamical. In a response, the overall
cost profiles may pose serious concerns to potential users.
Similarly, to overcome such types of concerns, the proposed
mechanism has the capability to not only schedule EVs for
cost reduction, but also useful in constructing electricity price
in such a way to maintain certain degree of fairness. It is
therefore reflected from Fig. 10c,d that total cost in response
to both day-ahead and proposedmodels remains same.While,
the hourly cost of each charging station is different, which
depends on load demand variation (Fig. 9, table 2). In other
words, the EV charging price of each stations would be
different in a particular hours, even if the market clearing
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FIGURE 9. Analyzing the impact of traditional and proposed mechanisms on EV charging cost in response to RTP.

FIGURE 10. A comparison of a day-ahead and proposed models on EV charging cost over given time period.

price is same. Thus, the proposed model reduces the charging
cost through calculating sub-prices without violating physical
limits.

FIGURE 11. A comparison of total EV charging prices for all stations and
regions using traditional & proposed mechanism over the given time
period.

Finally, Fig. 11 summarizes the daily unscheduled and
scheduled EV charging cost in all regions. It is evident
from the figure that charging cost is assigned to each vehi-
cle as per individualized power demand profiles obtained
form optimization facility, which are subject to hourly price

function obtained from day-ahead electricity market. For
example, the unscheduled charging cost of vcs1 using r̂
is comparatively lower, which reflects that vehicles in this
particular station have drawn comparatively more power.
However, the scheduled cost using r̃ is lower showing that
this charging station is accommodating less number of EV
as compared to other stations operating under same DSO.
Table 2 provides a detailed cost comparison of EV charging
over the given time interval. Cost profiles of unscheduled
and scheduled cases elucidate that total unscheduled cost
of each charging region is equal to unscheduled cost. How-
ever, the scheduled cost of each charging station is differ-
ent due to individualized price profiles obtained by using
proposed mechanism. Approximately, from 0.69-6.55% cost
saving is achieved by using the proposed cost calculation
mechanism.

VIII. CONCLUSION
This work proposes a novel mechanism for calculating EV
charging prices with the objective of cost reduction and power
system stability. The primary objective was to minimize EV
charging cost along with overall peaks in distribution system,
so that the cost incurred by each charging station is non-
discriminatory. For evaluation purposes, the proposedmecha-
nism is applied on a real time test case of a moderate size and
the results are compared with traditional approach. Where,
traditional EV charging stations operated under the same
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DSO receive the ‘‘traditional pricing policy’’. The proposed
work considers two cases: (i) EV are charged on FCFS basis,
and (ii) scheduled charging patterns have been obtained from
optimization facility. Then the EV charging cost is calculated
on the basis of traditional and proposed pricing mechanism.
From results, it is clear that customized cost profiles obtained
from proposed mechanism have comparatively more savings
(Table 2).

From analytical and simulation results, it can be concluded
that traditional pricing mechanism can cause synchronization
of EV load consumption patterns causing rebound peaks.
In this regard, the proposed work has advantages over the
traditional work which can increase the load factor and
reduce the power losses. The results presented in this paper
has drawn using realistic EV charging patterns. However,
the actual charging behaviors in response to market clearing
prices are complex and difficult to predict, accurately. There-
for, it is difficult to draw a general conclusion which can be
applied to other group of EVs. Despite, the results presented
in the proposed work are informative in that they highlight
the associated problems with traditional pricing mechanism.
One possible limitation of this work is that it does not directly
facilitate the EV charing users, rather than it allows that
market distributors to adopt such types of mechanisms to take
long-term mutual benefits.

APPENDIX
PROOF OF LEMMA 1
Let suppose that in response to a day-ahead pricing signal,
which is usually obtained from energy retailer, EV charging
cost using eq. (25) is calculated. From Fig (3), it can be
seen that utility price signal is dynamic in nature, which is
designed on the basis of aggregated load demand. As a result,
the total revenue is calculated. In our proposed work, we con-
sider same price signal and aggregated & individual load
consumption profiles of all EV stations and calculate separate
price signals (eq. 15) for all stations. In this case, it is again
expected that total cost in response to consumed load must
remain same. In other sense, the condition eq. 18 must be sat-
isfied. Otherwise, the proposedmechanismwill fail in achiev-
ing homogeneous price policies, as shown in Figs. 9, 10.

{
(Pi1,t1 × µi1,t1 × r̂t1 )+ (Pi2,t2 × µi2,t2 × r̂t2 )+, . . . ,

(PU ,T × µU ,T × r̂T )
}
=
{
(Pi1,t1 × µi1,t1 × δi1,t1 )

+(Pi2,t2 × µi2,t2 × δi1,t1 )+, . . . , (PU ,T × µU ,T × δU ,T )
}

(30)

Eq. 30 shows that for any EV charging station over time t ,
the proposed algorithm can calculate charging price for
that particular station without violating equality condition.
It can be seen from Fig. 12 that price signals are dynamic,
which depend on power consumption ratios and market price.
It means, the EV charging cost would be based on actual
consumption regardless to the aggregated load based price.

FIGURE 12. Aggregated price signals for EV charging stations using
proposed mechanism over the given time period.
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