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ABSTRACT The standard power-mismatch Newton method is still frequently used for computing load flow
due to its simplicity and generality. In this paper, a matrix-based generalization for the usual power flow
equations to an arbitrary number of phases is derived. The proposed equations enable computing power
injections and the Jacobian matrix in terms of submatrices that compose the network admittance matrix.
Besides the more compact representation, another advantage of the proposed generalization is execution
time reduction compared to the standard scalar formulation. Simulations are carried out to demonstrate the
time reduction achieved via the proposed equations.

INDEX TERMS Load flow, Newton method, power-mismatch, matrix equations.

NOMENCLATURE
N ,P Numbers of system buses and phases.
8 Set of system phases.
� Hadamard product.
∂xy Partial derivative of y with respect to x.
V Vector of bus voltage magnitudes.
V r
i Voltage magnitude in phase r of bus i.
θ Vector of bus voltage phase angles.
θ ri Voltage angle in phase r of bus i.
θ si , θ

c
i Vectors of sines and cosines for the bus i

voltage phase angles.
θ sij , θ

c
ij Vectors of sines and cosines for the voltage

phase angle difference between buses i and j.
P Vector of bus active power injections.
Pri Active power injection in phase r of bus i.
Q Vector of bus reactive power injections.
Qri Reactive power injection in phase r of bus i.
1P Vector of bus active power errors.
1Pri Active power error in phase r of bus i.
1Q Vector of bus reactive power error.
1Qri Reactive power error in phase r of bus i.
V̂ i Vector of voltage phasors in bus i.
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approving it for publication was Siqi Bu .

Î i Vector of injected current phasors in bus i.
Î ij Vector of current phasors from bus i to j.

Y(i)
ij Primitive admittance matrix relating V̂ i

and Î ij.

Y(j)
ij Primitive admittance matrix relating V̂ j

and Î ij.

Y(sh)
ii Primitive self-admittance matrix of bus i.

Y = G+ jB. System admittance matrix.
J Jacobian matrix.
H Sensitivity matrix of P with respect to θ .
M Sensitivity matrix of P with respect to V .
N Sensitivity matrix of Q with respect to θ .
L Sensitivity matrix of Q with respect to V .
Wi i-th subvector of vectorW .
Wij (i, j)-th submatrix of matrixW .
W r
ij r-th column of submatrixWij .

Ŵ∗ Complex conjugate of vector Ŵ .
1r r-th column of the P-th order identity

matrix.
tp Execution time for a single scalar equation.
tm Execution time for a vector equation, con-

sidering the application of method m.
Tm Full load flow computation time with

method m.
to Execution time for constructing and

inverting J .
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α, γ Loading and resistance factors.
A, 0 Sets of possible values for α and γ .
Z = R+ jX . Line impedance matrix.
Z′ = γR + jX . Modified line impedance

matrix.

I. INTRODUCTION
Load flow algorithms are widely used in the analysis of power
systems via simulation [1]–[5]. Due to the ample variety of
possible applications and power system topologies, multiple
methods have been proposed for solving load flow [6]–[18].
In general, it is acknowledged that Newton-type methods are
the most general, since no restrictive assumptions regarding
network topology are required. Furthermore, such methods
are frequently favored due to their precision and quadratic
convergence properties [9].

In what follows, we review representative algorithms that
have been considered for solving load flow problems. The
current-summation method [6]–[8] provides good perfor-
mance when solving radial and highly-loaded networks,
avoiding ill-conditioning problems that may be encoun-
tered when applying gradient-based methods. Its main lim-
itation consists in not being applicable to meshed grids;
considering that such topologies are increasingly common
in the distribution scenario, this disadvantage is signifi-
cant. Newton-type methods can be formulated either in
terms of power-mismatch or current-mismatch functions [9].
The power-based approach corresponds to the traditional
Newton-Raphson load flow, whereas the current-based for-
mulation has been more recently proposed as the current
injection method [10], [11]. It has been shown that the latter
method tends to perform better than traditional textpower-
mismatch load flow due to the linearity of the current-
mismatch equations with respect to voltage phasors. In [12],
an additional contribution to current-mismatch load flow is
given by incorporating an acceleration parameter to the cur-
rent injection method, further improving convergence prop-
erties. In [13], the authors propose an approximation-based
Jacobian decomposition for power-mismatch load flowwhich
accelerates Jacobian computation. However, it is based appli-
cable only to radial feeders with short lengths.

Among more recent methods, it is of special interest to
comment those based on optimal power flow (OPF) and
non-iterative approaches [14]–[18]. Many problems concern-
ing power system operation require simultaneous optimiza-
tion of system parameters (e.g. voltage and power losses) and
other objectives such as, for instance, economical power dis-
patch and allocation of reactive support units. Hence, solving
OPF problems is significantly harder than ordinary load flow
due to the system parameters being simultaneously subjected
to the load flow equations and objective-related constraints.
The authors in [16] propose the usage of semi-definite pro-
gramming for solving OPF and demonstrate that, under
sufficient conditions, the method is always capable of obtain-
ing a globally optimal solution. In [15], it is shown that

relaxation of quadratically constrained quadratic programs
can provide exact solutions in polynomial time for OPF in
distribution systems. In [14], conditions under which relaxed
optimal power flow achieves the global optimum for meshed
networks are derived.

A non-iterative method for solving load flow, named
holomorphic embedding load flow (HELM), was proposed
in [18]. The main advantages yielded by this method are its
independence from starting point selection and guaranteed
convergence, given that at least one solution exists. Despite
its attractive features, extensive comparisons with iterative
algorithms carried out in [19] have highlighted its main
disadvantages: relatively low precision and no guarantee of
convergence to the correct solution (from a system oper-
ation viewpoint) in problems with multiple solutions. The
deterministic nature of HELM makes it a strong candidate
for real-time applications, in contrast to iterative methods
that may pose a disadvantage to such applications. As an
example, the authors in [17] have integrated HELM to genetic
algorithm optimization in order to achieve load scheduling for
minimizing voltage unbalance.

It must be noted that, despite the availability of all methods
previously reviewed, Newton-Raphson power-mismatch load
flow is still often favored due to its intuitiveness and conve-
nient nature of direct specification of bus power injections [9].
Hence, any contribution that enhances its implementation
and execution time is desirable. In this work, we present
a generalized formulation of the power-mismatch equations
that can reduce processing time for multi-phase systems.

To the best of our knowledge, no work in the literature
has presented a matrix-form generalization to the power-
mismatch equations for an arbitrary number of phases.
At most, scalar equations for power injection and Jacobian
elements have been derived for three-phase systems [9]. This
fact represents a further motivation for achieving a matrix
representation of power-mismatch load flow, since it will per-
mit abstracting from the number of phases when handling the
power injection and Jacobian matrix computations. Although
the usual single-phase and three-phase systems may be sim-
ple enough for using scalar notation, this is not the case with
higher-order systems, whose practical implementation tends
to expand due to the increasing power density being required
for transmission [20].

The following are examples of high phase order power
systems, whose representation in power-mismatch load flow
is contemplated by the equations derived in this work: six
and twelve-phase transmission lines [21]–[23], double-circuit
three-phase transmission lines [24], [25] and pairs of
pole-sharing three-phase distribution lines [26], [27].

In this paper, matrix equations are derived for power-
mismatch load flow, which can be seen as a direct general-
ization of single-phase equations where scalars are replaced
by corresponding vectors and matrices. This result is of the-
oretical and practical interest because it:
• Enables the processing of load flow directly in terms
of bus mutual and self-admittance matrices, which can
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be previously computed from the specified network ele-
ments via their primitive admittance matrices;

• Provides a concise, matrix-based representation of
power and Jacobian equations for multi-phase systems,
independently of the number of system phases;

• Reduces execution time due to the multithreaded pro-
cessing of matrix operations [28].

II. PRELIMINARIES
Consider a power systemwithN buses andP phases. LetV =
[V r

i ]NPx1 and θ = [θ ri ]NPx1 be column vectors containing
all bus voltage magnitudes and phase angles, respectively,
where the bus index i = 1, 2, . . . ,N and the phase index
r ∈ 8 = {φ1, φ2, . . . , φP}. Bus active and reactive power
shall be denoted by P = [Pri ]NPx1 and Q = [Qri ]NPx1, with
i = 1, 2, . . . ,N and r ∈ 8, respectively. Finally, the system
Jacobian is J = [J rsij ]2NPx2NP, where i, j = 1, 2, . . . , 2N and
r, s ∈ 8. In the adopted notation, subscripts (i, j) precede
superscripts (r , s) for element ordering.

In each iteration of the power-mismatch Newton method,
the values of voltage angles and magnitudes are iteratively
updated according to the following equations:[

θ

V

](n+1)
=

[
θ

V

](n)
+

(
J (n)

)−1
·

[
1P
1Q

](n)
(1)

J =
[
H N
M L

]
=

[
∂θP ∂θQ
∂VP ∂VQ

]
(2)

where the superscript n denotes iteration number, ∂xy denotes
the partial derivate of ywith respect to x and theNPx1 vectors
1P and 1Q are the active and reactive power errors [29],
respectively. The sensitivity matrices that compose the Jaco-
bian in (2) are all NPxNP and given by H rs

ij = ∂θ sj P
r
i ,

N rs
ij = ∂θ sj Q

r
i , M

rs
ij = ∂V sj P

r
i and L

rs
ij = ∂V sj Q

r
i .

The Jacobian may be seen as being composed by PxP
submatrices. The relation between such submatrices and the
sensitivity submatrices is, for instance, H = [Hij]NxN , with
i, j = 1, 2, . . . ,N . Hence, it is clear that for fixed i = io
and j = jo, Hiojo = [H rs

iojo ]PxP, where r, s ∈ 8. Identical
considerations apply forM , N and L. The previously defined
bus vectors can be interpreted in a similar manner, e.g. V =
[Vi]Nx1, i = 1, 2, . . . ,N , with Vi = [V r

i ]Px1, r ∈ 8.

III. DERIVATION OF POWER EQUATIONS
Consider an arbitrary P-phase circuit element connecting
buses i and j. The relation between bus voltage and current
phasors (denoted with a circumflex) is given by the following
equations [30]:

Î ij = Y(i)
ij V̂ i + Y

(j)
ij V̂ j (3)

Î ji = Y(i)
ji V̂ i + Y

(j)
ji V̂ j (4)

where Î ij is the Px1 vector of currents from bus i to bus j

and the matrices Y(i)
ij and Y(j)

ij are PxP primitive admittance
matrices of the circuit element, i, j = 1, 2, . . . ,N .

The network admittance matrix Y is square of order NP.
It can be expressed by means of PxP submatrices Y =
[Yij]NxN , i, j = 1, 2, . . . ,N , which can be computed via
primitive matrices as [30]:

Yii = Y(sh)
ii +

∑
j∈�i

Y(j)
ij (5)

Yij = −Y
(i)
ij (6)

where �i is the set of buses connected to bus i and Y(sh)
ii

is the primitive self-admittance matrix of bus i. Henceforth,
the primitive matrices are considered as known via the spec-
ification of all circuit elements.
Theorem 1: Consider a power system with voltage magni-

tude and angle vectors V = [Vi]Nx1 and θ = [θi]Nx1, respec-
tively. The active power Pi and reactive power Qi injection
vectors for each power system bus i may be expressed by the
following matrix equations:

Pi = Vi � GiiVi

+Vi �
∑
j∈�i

[
θcij � Gij + θ

s
ij � Bij

]
Vj (7)

Qi = −Vi � BiiVi

+Vi �
∑
j∈�i

[
θ sij � Gij − θ

c
ij � Bij

]
Vj (8)

where θcij = [cos(θ ri −θ
r
j )]Px1, θ

s
ij = [sin(θ ri −θ

r
j )]Px1, r ∈ 8,

the admittance submatrices Yij = Gij + jBij and the symbol
� denotes the Hadamard product.

Proof: Applying Kirchoff’s current law to bus i
yields:

Î i = YiiOVi +
∑
j∈�i

YijV̂j (9)

where Î i is the vector of bus i nodal currents. Let Si be a col-
umn vector whose elements are the complex power injections
in bus i. It can be computed as Si = V̂ i � Î∗i , where (·)∗

denotes complex conjugation. Using (9) in this expression for
complex power, we have:

Si= V̂i � (Gii−jBii)V̂i∗+V̂i �
∑
j∈�i

(Gij−jBij)V̂j∗ (10)

where Yij = Gij + jBij was used. The voltage phasor vector
V̂ i can be decomposed in polar coordinates as V̂ i = Vi �
(θci + jθ si ), where θ

c
i = [cos(θ ri )]Px1 and θ si = [sin(θ ri )]Px1,

with r ∈ 8. Using this decomposition in (10), the following
is obtained:

Re{Si} = Vi �
[
θci � GiiVi � θci + θ

s
i � GiiVi � θ si

]
+Vi �

∑
j∈�i

[
θci � GijVj � θcj + θ

s
i � GijVj � θ sj

]
+Vi �

∑
j∈�i

[
θ si � BijVj � θcj − θ

c
i � BijVj � θ sj

]
(11)
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Im{Si} = −Vi �
[
θci � BiiVi � θci + θ

s
i � BiiVi � θ si

]
+Vi �

∑
j∈�i

[
θ si � GijVj � θcj − θ

c
i � GijVj � θ sj

]
−Vi �

∑
j∈�i

[
θci � BijVj � θcj + θ

s
i � BijVj � θ sj

]
(12)

Recall that the vectors θcij = [cos(θ ri − θ
r
j )]Px1 and θ sij =

[sin(θ ri − θ rj )]Px1, where r ∈ 8. It is straightforward to
demonstrate that the following identities hold:

θci � θ
c
i + θ

s
i � θ

s
i =

[
1 1 · · · 1

]︸ ︷︷ ︸
P elements

T (13)

θci � θ
c
j + θ

s
i � θ

s
j = θ

c
ij (14)

θ si � θ
c
j − θ

c
i � θ

s
j = θ

s
ij (15)

Applying (13)-(15) to (11) and (12), the matrix-form
active and reactive power equations given by (7) and (8) are
obtained, as we wanted to demonstrate. �

IV. DERIVATION OF JACOBIAN EQUATIONS
Consider that the Jacobian sensitivity matrices are composed
by PxP submatrices, according to our previously proposed
representation, e.g. H = [Hij]NxN , i, j = 1, 2, . . . ,N and
likewise for the other sensitivity matrices. Furthermore, each
submatrix can be decomposed in P column vectors of P-th
order, where each vector is the derivative of a Pi or Qi with
respect to a given phase voltage magnitude or angle. In other
words, all submatrices can be expressed as follows:

Hij =
[
∂θ rj Pi

]
1xP
,
[
Hr
ij

]
1xP

(16)

Nij =
[
∂θ rj Qi

]
1xP
,
[
Nr
ij

]
1xP

(17)

Mij =
[
∂V rj Pi

]
1xP
,
[
M r
ij

]
1xP

(18)

Lij =
[
∂V rj Qi

]
1xP
,
[
Lrij
]
1xP

(19)

where r ∈ 8. In Theorem 2, equations for the component
vectors in terms of admittance submatrices and voltage mag-
nitude and angle subvectors are presented and demonstrated.
Theorem 2: Let V = [Vi]Nx1 and θ = [θi]Nx1 be the

voltage magnitude and angle vectors of a power system,
respectively. The component vectors Hr

ij , N
r
ij , M

r
ij and L

r
ij of

each power-mismatch sensitivity submatrix can be expressed
by the following matrix equations:

Hr
ij =



Vi � [θ sij � Gij − θ
c
ij � Bij]

·Vj � 1r if i 6= j

Vi �
∑
k∈�i

−θ sik � Gik + θ
c
ik � Bik]

·Vk � 1r if i = j

(20)

Nr
ij =



−Vi � [θcij � Gij + θ
s
ij � Bij]

·Vj � 1r if i 6= j

Vi �
∑
k∈�i

[θcik � Gik + θ
s
ik � Bik]

·Vk � 1r if i = j

(21)

M r
ij =


Vi �

[
θcij � Gij + θ

s
ij � Bij

]
1r if i 6= j

1r �
∑
k∈�i

[
θcik � Gik + θ

s
ik � Bik

]
Vk

+1r � GiiVi + Vi � Gii1r if i = j

(22)

Lrij =


Vi �

[
θ sij � Gij − θ

c
ij � Bij

]
1r if i 6= j

1r �
∑
k∈�i

[
θ sik � Gik − θ

c
ik � Bik

]
Vk

−1r � BiiVi − Vi � Bii1r if i = j

(23)

where the index k is used to avoid confusion when i = j and
1r is a P-element column vector whose elements are zero,
expect for the r-th element which is equal to 1.

Proof: Consider at first the computation of Hr
ij . Assume

i 6= j and apply the derivate with respect to θ rj to (7):

Hr
ij = Vi �

[
∂θ rj θ

c
ij � Gij + ∂θ rj θ

s
ij � Bij

]
Vj

=

{
Vi �

[
θ sij � Gij − θ

c
ij � Bij

]
Vj
}
� 1r (24)

where the sum over �i disappears because the derivative is
with respect to a single j ∈ �i. In a similar manner for i = j,
it follows that:

Hr
ii = Vi �

∑
k∈�i

[
∂θ ri θ

c
ik � Gik + ∂θ ri θ

s
ik � Bik

]
Vk

=

Vi �∑
k∈�i

[
−θ sik � Gik+θ

c
ik�Bik

]
Vk

� 1r (25)

Proceeding toM r
ij , the following is obtained by deriving (7)

with respect to V r
j , i 6= j:

M r
ij = Vi �

[
θcij � Gij + θ

s
ij � Bij

]
(∂V rj Vj)

= Vi �
[
θcij � Gij + θ

s
ij � Bij

]
1r (26)

For the case i = j, the following is obtained:

M r
ii = ∂V ri (Vi � GiiVi)

+ (∂V ri Vi)�
∑
k∈�i

[
θcik � Gik + θ

s
ik � Bik

]
Vk

= 1r � GiiVi + Vi � Gii1r

+1r �
∑
k∈�i

[
θcik � Gik + θ

s
ik � Bik

]
Vk (27)

The derivations for Nr
ij and L

r
ij are analogous, respectively,

to those for Hr
ij and M r

ij . Due to this reason, they are not
detailed here. �
Remark: In our computations, it has been assumed that

the Jacobian matrix is of order 2NP and thus comprises all

40264 VOLUME 8, 2020



H. P. Corrêa, F. H. T. Vieira: Matrix-Based Generalization for Power-Mismatch Newton-Raphson Load Flow Computations

network buses, which are taken as PQ buses. However, this
does not imply any loss of generality; for the cases of PV
and V θ buses, the corresponding rows and columns of the
Jacobian may be omitted to obtain fixed values of voltage
magnitude and/or angle during all iterations.

V. PROCESSING TIME REDUCTION
Let O(Sm) be the asymptotic time complexity for solv-
ing the load flow problem S via the power-mismatch
Newton-Raphson load flow, using one of the methods con-
sidered in this work (scalar or matrix formulation). That is,
m can be scalar ormatrix. It can be noted that the asymptotic
complexity of the load flow problem is not altered when
choosing the scalar or matrix processing method, since the
matrix method is equivalent to applying the scalar method P
times, and P is independent of N . For this reason, we can
conclude that both methods exhibit, asymptotically (that is,
N →∞) and for every S, equal computational complexities,
i.e. O(Sscalar ) = O(Smatrix). Hence, the proposed method is
identical to scalar power-mismatchNewton-Raphson in terms
of convergence properties, scalability to larger systems and
asymptotic complexity.

The objective of our proposed matrix formulation is to
reduce execution time with respect to the scalar formulation,
not asymptotic complexity. In what follows, we derive an
expression for roughly estimating Tmatrix − Tscalar and show
that it may be expected to be negative, where Tm denotes
the average execution time of power-mismatch Newton-
Raphson, using method m, for a given load flow problem.
Denote by tmatrix and tscalar the average times required

for computing any of (7), (8), (20-23) via matrix and scalar
formulations, respectively. Additionally, let to be the aver-
age time required by the remaining computations (which
is dominated by Jacobian construction and inversion) that
are common to both methods. During a single iteration of
methodm, (7) and (8) are computedN times each, amounting
to 2N computations. Furthermore, (20-23) yield a total of
4N 2 computations. Thus, a simple estimate of Tm is:

Tm = 2 · (2N 2
+ N ) · tm + to (28)

Using (28), we obtain Tmatrix − Tscalar = 2 · (2N 2
+ N ) ·

(tmatrix − tscalar ). Denote by tp the average execution time
required for computing a single scalar component of (7), (8),
(20-23). In the scalar formulation, tscalar = P · tp. However,
due to multithreaded processing of the matrix formulation,
it can be expected that tmatrix < P · tp. For this reason,
Tmatrix − Tscalar < 0. It is of interest to highlight that this
derivation suggests absolute time savings proportional to N 2.

VI. PRELIMINARY VALIDATION - SMALL FEEDERS
Preliminary computer simulations were carried out in order
to compare execution times of power-mismatch load flow
achieved via standard scalar equations [9] and the previously
derived matrix equations. The systems considered for testing
were the IEEE reference 4-bus and 13-bus distribution feed-
ers; in the 4-bus feeder, the wye-wye step-down transformer

and unbalanced load configuration was selected. The 4-bus
feeder is considered ideal for preliminary tests of three-phase
modeling, whereas the 13-bus feeder is often used as a refer-
ence for power system studies and benchmarking of load flow
methods. Such systems and their respective documentations
are described in more detail in [31].

Both feeders were tested for different loading levels.
To modulate system loading, a multiplicative factor α ∈
A = {0.5 + 0.1 · i; i = 1, 2, . . . , 10} is applied to all
specified active and reactive power injections. The scalar
and matrix-based load flow routines were implemented in
MATLAB R2018a. For each combination of feeder, loading
level and method (scalar or matrix equations), load flow
was executed 1000 times in a dual-core 2.7GHz laptop. The
selected convergence criterion was maxi,r {1Pri ,1Q

r
i } < ε,

i = 1, 2, . . . ,N and r ∈ 8, with ε = 10−6 p.u. in the
power system bases [31]. Execution time results obtained for
the 4-bus and 13-bus feeders are given in Figs. 1(a) and 1(b),
respectively. In Figs. 1(c) and 1(d), we plot the number of
load flow iterations until convergence and the average time
required for Jacobian inversion and auxiliary computations
(to, as defined in Section V).

The results show that, despite both methods converging
in the same number of iterations for all loading levels, pro-
cessing time was smaller for the matrix formulation. This
corroborates what was discussed in Section V, in which it was
claimed that the proposed method can reduce execution time
even though it remains with the same asymptotic complexity
as that of the scalar equations.

As could be reasonably expected, average execution time
tends to be non-decreasing function of loading. Averaging
over all values of α, percentage reductions in execution time
were equal to 39.4% and 42.1% for the 4-bus and 13-bus
feeders, respectively. The fact that average percentage time
reduction was similar for both feeders can be explained by
analyzing Figs. 1(c), 1(d) and (28). In Figs. 1(c) and 1(d),
it can be seen that to is relatively small with respect to
execution time and, for this reason, does not dominate (28).
Hence, we can apply the approximation to ≈ 0 and obtain the
following expression for evaluating relative time savings:

Tscalar
Tmatrix

=
2 · (2N 2

+ N ) · tscalar + to
2 · (2N 2 + N ) · tmatrix + to

≈
tscalar
tmatrix

(29)

which is approximately independent of N .

VII. VALIDATION CONSIDERING A LARGER SYSTEM
It has been pointed out in Section V that the scalability and
quadratic convergence properties of Newton-Raphson load
flow are mantained in the proposed method; additionally,
the results from Section VI demonstrate favorable time reduc-
tions for the 4-bus and 13-bus test feeders via application of
the derived equations. However, it may still be objected that
time gains may not necessarily scale well for large N . In fact,
the approximate analysis in (29) is based on the assumption
of small to, which is not guaranteed for large systems.
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FIGURE 1. Simulation results for IEEE 4-bus and 13-bus feeders.

Hence, in order to provide further validation of the pro-
posed method, computer simulations were carried out for
the largest of the original IEEE test feeders, namely the
123-bus system. Initially, experiments analogous to those of
Section VI are carried out: for each α ∈ A, average execution
times and to are computed from 100 iterations of load flow,
both for standard scalar equations and matrix formulation.

To extend the results of this case study, analysis of execu-
tion time as a function of system R

X ratio is also carried out.
To this end, a resistance factor γ is applied to the real part
of the impedance matrix Z = R + jX of each distribution
line of the 123-bus system, yielding modified matrices Z′ =
γR+ jX which are then used to compute Y . Similarly to what
was done for variable α, load flow is iterated 100 times for
each γ in order to compute the averages of execution time
and to. In this particular case study, the adopted convergence
criterion and γ domain are, respectively, ε = 10−6 p.u. and
γ ∈ 0 = {1.0 + 0.1 · i; i = 0, 1, . . . , 30}. All the obtained
results are given in Figs. 2(a) to 2(d).

The results suggest that time savings yielded by the matrix
formulation scale well to larger N . In fact, the obtained

average percentage reductions in execution time for variable
α and γ were, respectively, 47.1% and 46.4%; such values
are similar to those obtained in the previous case studies for
the smaller feeders. It can also be observed that to did not
dominate execution time, as was the case for small N ; thus,
the approximate analysis which yielded (29) still holds.

An additional point of interest is the fact that behaviors
of the average time plots for scalar and matrix formulations
are very similar, aside from the obvious difference in scale.
Among the features of such similarity, it is worth noting
that, for variable γ , both methods diverge for γ > 3.7,
which was indicated in Figs. 2(c) and 2(d) with the notation
Tm→∞.
The above-mentioned features of the obtained results

suggest validity of the discussions in Section V regarding
convergence properties of the matrix formulation. In fact,
it was asserted that the proposed method reduces execu-
tion time of the Newton-Raphson method, despite having
the same asymptotic complexity. This is precisely what the
results indicate: the average time plots are reduced in scale,
whereas behavior of execution time (including divergence)
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FIGURE 2. Simulation results for IEEE 123-bus feeder.

as a function of system ill-conditioning (i.e. increasing α
or γ ) are essentially the same for both scalar and matrix
approaches.

VIII. CONCLUSION
In this paper, general equations in matrix form have been
presented for power-mismatch Newton load flow with an
arbitrary number of phases; a comprehensive derivation of
such equations was carried out. The obtained equations allow
the computation of injected power and the Jacobian matrix
as functions of P-th order admittance submatrices and bus
voltage magnitude/angle subvectors. Simulations involving
the IEEE 4-bus, 13-bus and 123-bus test feeders were car-
ried out and successfully confirmed time reduction via the
proposed formulation. The results suggest that the proposed
matrix generalization for the power-mismatch equations can
be applied for reducing the processing time in applications
of multi-phase load flow. The following characteristics and
results could be observed related to the proposed approach:

• Compared to ordinary scalar formulation, the obtained
equations were shown to be of greater convenience
notation-wise because the number of phases is
abstracted from notation, which becomesmore compact;

• It was shown by means of theoretical considerations
and computer experiments that usage of the derived
equations yields execution time savings when compared
to the scalar version of load flow. Combined with the
fact that convergence properties are unchanged (since
the Newton-Raphson method itself is not altered), this
suggests that the obtained matrix notation should be
preferred in order to reduce execution time;

• The results suggest that relative execution time reduction
is roughly independent of system size, which means
that time gains due to the matrix equations have good
scalability. Hence, the derived equations can in principle
be recommended for systems of arbitrary size.

In future work, the authors intend to evaluate processing
time benefits yielded by applying the derived equations in
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non-deterministic load flow problems, such as analysis of
power systems with distributed generation.
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