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ABSTRACT This paper considers a dual control problem for stochastic linear MIMO (Multiple Input
Multiple Output) systems with parameter uncertainty. A novel dual adaptive control law for MIMO systems
is proposed. The design is based on the innovation of the dual control cost function, which was originally
developed for conventional adaptive control of linear systems. However, the design process is modified
and developed to cater to the stochastic MIMO case. This is a more challenging problem because the
superposition of parameter uncertainty and the MIMO property makes the problem more intractable. As in
all dual adaptive strategies, it leads to a control law that balances out the need for caution, due to parameter
uncertainty, with the conflicting requirement of probing that acts to quickly reduce parameter uncertainty,
which is the nature of dual control. The proposed control law has two parts. One reflects the goal of regulating
the output, and the second reflects the ability to handle uncertain parameters. A learning factor is introduced
to balance these two parts to obtain a control law that can be applied to the original system. In the simulation
examples, the uncertain parameters can be estimated quickly and accurately for the unknown but constant
case and the abrupt parameter case. Furthermore, it is shown that the novel dual control law is superior to
other control strategies by comparing the performance of the cost function in a statistical sense.

INDEX TERMS Stochastic MIMO systems, parameter uncertainty, dual control, Kalman filter.

I. INTRODUCTION
In all control problems, there are certain degrees of uncer-
tainty with respect to the process to be controlled. These
uncertainties are probably the result of external noise (dis-
turbance), structure uncertainty, parameter fluctuations and
so on [1]. Simultaneously, the structure of the system or the
parameters of the process may vary in an unknown way [2].
For example, during the working process of a gyroscope,
due to the environment (temperature, humidity, etc. ), creep
degeneration of structural materials, the release of pretension
stress, the vibration of the gyroscope itself, motor wear and
other factors, the real-time parameters of the system are diffi-
cult to determine [3], [4]. There are also some systems where
the parameters of the components are accurately known and
the structural model of the system is fixed. However, due
to modelling simplification, approximation, or environmental
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influence, there is no one-to-one correspondence between the
equivalent parameters of the model and the practical physical
parameters, which may lead to large variation or fluctuation
in many different forms [5]. If these uncertainties cannot be
effectively addressed, they may affect system performance
and even have serious consequences. Therefore, it is neces-
sary to study this uncertain control problem.

Considerable research has contributed to solving this
uncertain control problem. Regarding this type of problem,
most of the research has focused on uncertainty problems
with unknown parameters in the system. For a stochastic sys-
tem with unknown parameters, in the early 1960s, the former
Soviet scholar Fel’dbaum noticed this type of problem and
proposed a control design theory consisting of caution and
probing, namely, dual control. Through caution, the control
strategy drives the system output to the desired reference
state. To obtain a good control effect or avoid generating
unacceptable output responses, the control should be appro-
priate and not too large, and it must be cautious. By contrast,
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probing aims to continuously excite the system using control
with a large amplitude so that the system generates richer
information to improve the estimation quality effectively.
Dual control aims to strike a balance between these two con-
flicting goals to yield an overall optimal response. The dual
roles of optimal control, optimisation and estimation, in gen-
eral situations, cannot be separated. This coupling between
optimisation and estimation makes an analytical form of opti-
mal control, in most situations, unattainable. For this reason,
IEEE Control SystemsMagazine listed this challenging topic
with significant theoretical implications and practical value
as one of the top 25 questions that had a significant impact
on Control theory in the last century [2]. Although several
such control laws have been proposed for standard adaptive
control cases involving an externally predefined reference
input [6]–[9], none of them addresses the dual adaptive con-
trol problem with the superposition of the MIMO case and
two uncertainties.

Presently, many methods are dedicated to single-input
single-output (SISO) systems with parameter uncertainty,
while there are few current research results onMIMO systems
with parameter uncertainty. For the SISO system with param-
eter uncertainty, many achievements have been made. Most
of them focus on cases in which parameters are unknown
but constant, such as dual adaptive control [15], innovation
dual control [18], the variance minimisation algorithm [6],
nominal dual control [19], [20], model predictive control
(MPC) [9], and dual adaptive extremum control [10]. For the
control problem of MIMO systems, in most cases, the com-
mon method is to decouple them into multiple SISO sys-
tems [11], [12]. Because modern industrial systems and
aerospace systems are composed of many interconnected
links, much important information is lost if they are forcibly
decoupled. Therefore, this method only works for systems
whose input and output are independent of each other, not for
most systems. Other than this kind of approach, there are only
a few methods for MIMO systems, such as dual MPC [13]
and functional adaptive control [14]. In [13] and [14], the sig-
moidal MLP and FRBF networks are used to estimate the
system model because they are nonlinear systems. Therefore,
the methods proposed work only for this kind of nonlinear
MIMO system because of the diversity of nonlinear systems.

To sum up, in our problem, there exist two types of uncer-
tainties, which make dynamic programming based on the
optimality principle invalid. Previous efforts in dual control
have thus mainly been devoting to developing certain subop-
timal solution, by bypassing this essential feature of coupling
in dual control. There are also some efforts to decompose
the global optimisation problem into multiple single-stage
optimisation problems and obtain the approximate optimal
control. Because of these restrictions, we consider how to
design a control law to make the resulting control tend to be
optimal and can effectively deal with uncertainty. Besides,
MIMO system has wide application in the development of
modern science and technology. Motivated by the above dis-
cussion, the dual control problem for stochastic linear MIMO

systems with parameter uncertainty is considered, which fills
the theoretical gap in such problems. In this paper, we design
a novel MIMO dual adaptive control law based on bicriterial
dual control (BDC). One criterionminimises the performance
of the cost function, and the other endows the control lawwith
a learning ability, which leads to the proposed control law
with two parts. One part reflects the goals of regulating the
output, and the other reflects the ability of handling uncertain
parameters. Meanwhile, a learning factor is introduced to
balance these two parts to obtain a control law that can be
applied to the original system. In contrast to the previous
method, the learning factor of this paper can be automatically
adjusted at any time so that the appropriate learning intensity
can be applied to the practical system. Compared with the
preset learning factor, this method prevents the system from
appearing unacceptable after the parameters have been accu-
rately estimated and the learning factor is still large.

The rest of the paper is organised as follows. In section 2,
the control problem to be solved is described. In section 3,
the estimation process of parameters with uncertainty is intro-
duced in detail. A novel MIMO dual adaptive control law is
designed for the control problem in section 4. In section 5,
the effectiveness of the algorithm in this paper is verified by
two numerical examples and compared statistically with the
controls. The conclusion is presented in section 6.
Notation: Throughout this paper, we use In to represent

the identity matrix of size n. tr(A) indicates the trace of
matrix A, and AT denotes the transposition of matrix A.
The expression ξ ∼ N (m, S) means that the variable ξ has
a normal distribution with mean m and variance S, and the
quadratic form ξTQξ will be denoted by |ξ |2Q.

II. PROBLEM STATEMENT
Consider a multiple-input multiple-output (MIMO) stochas-
tic linear system with parameter uncertainty described by the
following:

y1(k + 1)

=

m∑
i=1

a1i(k)yi(k)+
r∑
j=1

b1j(k)uj(k)+ ε1(k)

y2(k + 1)

=

m∑
i=1

a2i(k)yi(k)+
r∑
j=1

b2j(k)uj(k)+ ε2(k)

...

ym(k + 1)

=

m∑
i=1

ami(k)yi(k)+
r∑
j=1

bmj(k)uj(k)+ εm(k),

k = 0, 1, · · · ,N − 1,

(1)

where yi(k), i = 1, 2, · · · ,m are the control out-
puts and uj(k), j = 1, 2, · · · , r are the control inputs.
a1i, · · · , ami, b1j, · · · , bmj, i = 1, · · · ,m, j = 1, · · · , r
are the parameters describing the physical properties of
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the system, and they are uncertain time-variant parameters.
εi(k), i = 1, · · · ,m are external noise that are often Gaussian
distributions with zero mean and variance σ 2

i , i = 1, · · · ,m,
that is, they satisfy εi ∼ N (0, σ 2

i ).
The above model representing the stochastic linear sys-

tem is particularly common. Not only the MIMO case but
also single-input single-output (SISO) systems, single-input
multiple-output (SIMO) systems and multiple-input single-
output (MISO) systems can be represented, although SIMO
systems are very rare. For nonlinear systems, linearisation
near the equilibrium point is considered inmost cases to result
in a linear system. Therefore, this system can also be used to
describe a linearised nonlinear system.

For the sake of convenience in writing, in the rest of
this paper, ai1, · · · , aim, bi1, · · · , bir , i = 1, · · · ,m are
used to represent the time-variant parameters instead of
ai1(k), · · · , aim(k), bi1(k), · · · , bir (k), i = 1, · · · ,m.
By analysing the above system, it can be rewritten as the

following state-space model:

y(k + 1) = Ay(k)+ Bu(k)+ ε(k), (2)

where y(k)= [y1(k), y2(k), · · · , ym(k)]T , u(k)= [u1(k), u2(k),
· · · , ur (k)]T , ε(k) = [ε1(k), ε2(k), · · · , εm(k)]T , ε(k) ∼ N (0,
6ε), 6ε = diag (σ 2

1 , σ
2
2 , · · · , σ

2
m),

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

... · · ·
...

am1 am2 · · · amm

 ,

B =


b11 b12 · · · b1r
b21 b22 · · · b2r
...

... · · ·
...

bm1 bm2 · · · bmr

 .
Note that the model (2) is exactly identical to the original

system. Therefore, the control algorithm designed for the
model (2) is completely applicable to the original system (1).

Our control objective is design a control goal u(k) make
the control output y(k) can track reference signal r(k). The
following cost function is then introduced:

J , E

{
N−1∑
k=0

|y(k + 1)− r(k + 1)|2Q

}
(3)

where r(k + 1), k = 0, 1, · · · ,N − 1 is the given reference
output with appropriate dimension. E{·} denotes the mathe-
matical expectation conditioned upon the information set zk ,
and Q is a positive definite weight matrix. Note that zk is the
past information set before time k and will be defined in the
next section.

From the system described in model (2), it can be seen
that the system contains both the measurement noise that
is unavoidable during the system operation and parameter
uncertainty. Due to the existence of these two uncertainties,
it is obviously impossible to obtain an optimal controller

using direct dynamic programming. Therefore, we trans-
formed the original global optimisation problem intomultiple
single-stage optimisation problems. The transformed cost
function at time k can be described as follows:

Jk = E
{
|y(k + 1)− r(k + 1)|2Q

}
(4)

Concerning the stochastic linear system model (2),
the main aim of the work proposed in this paper is to design
a dual control law

u∗(k) = argmin
u(k)

Jk [u(k), zk ] (5)

such that the parameters can be estimated more accurately
and the performance of the transformed cost function is min-
imised.

Before proceeding with the design of the noval dual control
law, it is appropriate to first present the estimation process of
the uncertain parameters.

III. PARAMETER ESTIMATION
Due to the existence of two uncertainties, it is not possible
for dynamic programming based on the optimality principle
to solve the problem of this paper. For control problems with
only uncertain parameters, many researchers have proposed
several suboptimal control approaches [16], [23], [24]. The
main idea of these approaches is to better combine caution
with probing and to achieve the best balance between the two.
However, study results have shown that the one- or two-step
control solution to the original problem obtained is very
limited, and the controller designed has a disadvantage of
approximation [22]. To better achieve control and parameter
estimates for the original system, the key is to make full use of
the information provided by the original system to eliminate
the uncertainty as much as possible, as well as to minimise
the performance of the cost function. Innovation is a key
factor that cannot be ignored. The Kalman filter is clearly an
effective tool for estimating uncertain parameters.

To make it easier to use the Kalman filter to deal with our
problem effectively, the model (2) can be written as follows:

y(k + 1) = 8(k)2(k)+ ε(k) (6)

where, 8(k) = diag[φ(k), φ(k), · · · , φ(k)], φ(k) = [yT (k),
uT (k)], 2(k) = [θT1 (k), θ

T
2 (k), · · · , θ

T
m(k)]

T , θ i(k) = [ai1,
· · · , aim, bi1, · · · , bir ]T , i = 1, 2, · · · , m.
Here,2(k) is the m(m + r)-dimensional vector consisting

of all uncertain parameters. They are closely related to all
links in the whole operation process of the system. Even if the
physical parameters of each component in the practical sys-
tem is accurately known, uncertainties are inevitable because
of the difference in the operating environment or materials of
components [25]; this motivates us to establish the following
dynamic model:

2(k + 1) = 02(k)+ ξ (k), (7)

where 0 is the coefficient matrix revealing the variation
trend of uncertain parameters. ξ (k) is used to describe the
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process noise of parameter estimation and is assumed to be a
Gaussian contribution with zero mean and variance 6ξ , that
is, to satisfy ξ (k) ∼ N (0,6ξ ).

As shown in (7), we treat this as a state equation, together
with (6), to form a traditional state-space model. In the state
equation (7), when the coefficient matrix 0 is the identity
matrix, it is shown that the uncertain parameters are unknown
constants only influenced by process noise, which is the ideal
situation. However, this case is rare or even nonexistent.
The case where 0 is not an identity matrix should therefore
be highlighted. Here, the variation trend of parameters is
revealed by the 2-norm. If ||0||2 is greater than 1, the value
of the parameters increases gradually with sampling instant
k , e.g., in a power system, the temperature in the circuit
increases with time, and the resistance value increases with
the temperature increase. In contrast, if ||0||2 is less than 1,
the value of the parameters gradually decreaseswith sampling
instant k , e.g., for a gyroscope, the core device of the inertial
platform of a strategic missile, its performance gradually
deteriorates because of the wear of the internal motor and
the creep of the internal structure. When the parameter of the
gyroscope is greater than themaintenance threshold, the coef-
ficient matrix can be adjusted properly by correcting the gyro-
scope torque to reduce measurement error. However, because
the wear of the internal motor is irreversible, the parameters
after correction are still reduced. In our state-space model,
the vector 2(k) represents nominal values of the system
parameters, and the coefficient matrix 0 reflects the overall
trend of parameter variation. Therefore, model (7) applies to
all control systems with such characteristics.

For the model (7), uncertain parameters can be estimated
using all available information. A standard definition of the
information set [21] recorded up to and including time k is
the set of all past inputs and measurements:

zk , {y1(k), · · · , ym(k), u1(k − 1), · · · , ur (k − 1), zk−1}.

Note that the initial information set z1 = {y1(1), · · · , ym(1),
u1(0), · · · , ur (0)} is given in advance.

A recursive estimation algorithm needs to be used to
achieve dual adaptive control in the presence of parame-
ter uncertainty. Since the system is linear and subject to a
Gaussian distribution, the Kalman filter is able to achieve
optimal parameter estimation in a least-squares sense. There-
fore, the Kalman filter algorithm can be used to recursively
calculate an estimate 2̂ of the parameter vector 2 at every
sampling time k , as detailed in the equations of the following
lemma.
Lemma 1: For a system consisting of (6) and (7) with the

given initial state and the assumptions that the distribution
of 2(k + 1) conditioned on information set zk is Gaussian
distributed and the optimal mean-square predictive estimate
of2(k+1) conditional on zk is given by its conditional expec-
tation E{2(k+1)|zk}, the system together with its conditional
covariance, denoted as P(k + 1), can be propagated through

the following recursive relations:

P(k + 1|k) = 0P(k)0T +6ε (8a)

F(k + 1) = P(k + 1|k)8T (k)

× [8(k)P(k)8T (k)+6ξ ]−1 (8b)

2̂(k + 1) = 02̂(k)

+F(k + 1)e(k + 1) (8c)

P(k + 1) = P(k + 1|k)

−F(k + 1)8(k)P(k + 1|k) (8d)

where e(k + 1) , y(k + 1) − 8(k)2̂(k) is the innovation
sequence. 2̂(0) and P(0), reflecting the prior mean and
covariance, are assumed known.

Proof: The proof follows directly by applying the stan-
dard Kalman filter.

IV. DESIGN OF THE NOVEL DUAL CONTROL LAW
In this section, we propose a novel MIMO dual control
strategy. The strategy not only can estimate the uncertain
parameters in the system but also can motivate the con-
trol system to run towards the reference output so that the
performance is minimized. To overcome the shortcoming
of approximation after transformation and make the control
law optimal, we superimposed the learning objective on the
control objective. Therefore, in this dual control strategy,
the control law with learning ability will be designed by
bicriterial dual control (BDC). The basic idea of the bicriterial
approach is based on minimisation in terms of u(k) of two
criteria. These two criteria work together without conflict.

To minimise the performance of single objective optimisa-
tion problem after transformation, the following proposition
is used.
Proposition: For the system consisting of (7) and (6),

assuming that the external noise ε(k) and external noise ξ (k)
are mutually independent and independent of the parameter
vector2, the expectation of the innovation sequence at sam-
pling time k + 1 is as follows:

E{|e(k + 1)|2Q|z
k
} = tr(|8(k)|2QP(k))+ tr(Q6ε) (9)

given Q.
Proof: By the definition of innovation sequence and

covariance matrix, we have the following:

E{|e(k + 1)|2Q|z
k
}

= E{|y(k + 1)−8(k)2̂(k)|2Q|z
k
}

= E{|8(k)2(k)+ ε(k)−8(k)2̂(k)|2Q|z
k
}

= E{|8(k)2̃(k)+ ε(k)|2Q|z
k
}

= E{|8(k)2̃(k)|2Q|z
k
} + E{|ε(k)|2Q}

= tr(|8(k)|2QP(k))+ tr(Q6ε)

which follows from expanding the quadratic form and col-
lecting terms.

The proposition allows the performance index (4) to be
reformulated into the equivalent deterministic function in the
following theorem.
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Before describing the theorem, the following property of
the matrix should be elaborated in advance.
Property of matrix trace:

tr(ABC) = tr(BCA) = tr(CAB). (10)

Lemma 2: For the system consisting of (6) and (7), the per-
formance index function Jk in (4) can be written over the
available information set zk as follows:

Jk = |8(k)2̂(k)− r(k + 1)|2Q
+ tr(|8(k)|2QP(k))+ tr(Q6ε). (11)

Proof: By the proposition and the property of matrix
trace, we have the following:

Jk = E{|y(k + 1)− r(k + 1)|2Q|z
k
}

= E{|8(k)2̂(k)+ e(k + 1)− r(k + 1)|2Q|z
k
}

= E{|8(k)2̂(k)− r(k + 1)|2Q|z
k
}

+E{|e(k + 1)|2Q}

= |8(k)2̂(k)− r(k + 1)|2Q
+ tr(|8(k)|2QP(k))+ tr(Q6ε).

Then, the reformulation of performance (11) is obtained.
In the above formulation (11), the control action u(k) is

included in8(k). In the following partitioning of the observa-
tion vector φ(k), the parameter vector conditional mean θ̂ i(k)
and covariance matrix P(k) are introduced:

θTi (k) = [aTi ,b
T
i ], i = 1, 2, · · · ,m (12)

P(k) =


P1(k) ∗ · · · ∗

∗ P1(k) · · · ∗

...
. . .

...
...

∗ ∗ · · · Pm(k)

 (13)

where ai = [ai1, ai2, · · · , aim]T , bi = [bi1, bi2, · · · , bir ]T ,
and P1(t), · · · ,Pm(t) are (m + n)-dimensional square matri-
ces. Pi(t), i = 1, · · · ,m can be further partitioned as follows:

Pi(k) =
[
Pai(k) Pabi(k)
PTabi(k) Pbi(k)

]
(14)

where Pai(k) is the m-dimensional square matrix and Pbi(k)
is the r-dimensional square matrix.
Corollary: For a system consisting of (6) and (7), the per-

formance index function Jk in (4) explicitly including u(k)
in (11) can be reformatted as follows:

Jk =
m∑
i=1

qi|u(k)|2Pbi(k) +
m∑
i=1

|uT (k)b̂i|2qi

+ 2
m∑
i=1

qiuT (k)PTabi(k)y(k)+ ε

+ 2
m∑
i=1

(yT (k)âi − ri(k + 1))qiuT (k)b̂i (15)

where ε represents the terms independent of u(k) and y(k), qi
represents the ith term on the principal diagonal line of Q.

Proof: Considering the three terms of (11), the substi-
tution of the partitioning (12), (13), (14) into (15) yields the
following:

tr(|8(k)|2QP(k)) =
m∑
i=1

qitr(|φ(k)|2Pi(k))

=

m∑
i=1

qi
[
|y(k)|2Pai(k)

+ 2uT (k)PTabi(k)y(k)+ |u(k)|
2
Pbi(k)

]
|8(k)2̂(k)− r(k + 1)|2Q

=

m∑
i=1

[
|yT (k)âi − ri(k + 1)|Tqi

+ 2(yT (k)âi − ri(k + 1))qiuT (k)b̂i

+ b̂Ti u(k)qiu
T (k)b̂i

]
tr(Q6ε) =

m∑
i=1

qiσ 2

Then, the performance explicitly including u(k) is
obtained.

We can now formally express the result as follows.
Theorem 1: For a system consisting of (6) and (7), the opti-

mal control u∗c (k) based on the first criterion is represented
as follows:

u∗c (k) = −
4(k)+ ϒ(k)

5(k)
, (16)

where

4(k) =
m∑
i=1

qib̂i
[
(yT (k)âi − ri(k + 1)

]
,

ϒ(k) =
m∑
i=1

qiPTabi(k)y(k),

5(k) =
m∑
i=1

[
qi
(
Pbi(k)+ PTbi(k)

)
+ 2b̂iqib̂Ti

]
.

Proof: The optimal control is determined by differen-
tiating (15) with respect to u(k) and setting it equal to zero.
The result of Theorem 1 can be obtained.

It can be noted that u∗c (k) is used to represent the con-
trol under the first criterion. Due to parameter uncertainty,
the separation principle does not hold. It is forced to hold
artificially in this paper. However, the design procedure of
this controller does not deliberately take any measure to
improve the accuracy of the parameter estimate. The second
criterion is thus introduced to take into account the quality of
the parameter estimate.

The second component of the designed controller should
be evaluated for estimation quality and is shown as follows:

6k = E
{
[y(k)− ŷ(k)][y(k)− ŷ(k)]T

}
(17)
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Theorem 2: For a system consisting of (6) and (7),
the learning control u∗l (k) based on the second criterion is
obtained as follows:

u∗l (k) = −
ϒl(k)
5l(k)

(18)

where

ϒ l(k) =
m∑
i=1

PTabi(k)y(k)

5l(k) =
m∑
i=m

Pbi(k)

Proof: By the model (6) and the definition of the covari-
ance matrix, the following relation can be obtained:

tr6k = trE
{
[8(k)2(k)+ ε(k)−8(k)2̂(k)]

× [8(k)2(k)+ ε(k)−8(k)2̂(k)]T
}

= tr(8(k)P(k)8T (k))+ tr(6ε)

Differentiating (17) with respect to u(k) and setting it equal
to zero, the learning control u∗l (k) is obtained.

For the control problemwith performance (3), although the
optimal control can be obtained based on the current model,
the control effect is related to the model. The more accurate
the model, the smaller the tracking error. Therefore, in order
to improve the quality of model parameter estimation, this
paper considers the learning objective (17) based on the con-
trol objective. There is no conflict between the two goals. The
better the learning goal, the more accurate the control model.
When the uncertain parameters gradually approach the truth
values, the smaller the effect of the learning object item on the
control target, and the control objectives play a major role. At
this point, the corresponding control law should be very ideal.
In order to reflect the learning ability of the controller for
uncertain parameters, this paper superimposed the learning
effect u∗l (k) based on the second criteria on the control law
u∗c (k) based on the first criteria through the learning factor δ,
and obtained u∗(k) = u∗c (k)+ δ(k)u

∗
l (k). Obviously, the first

term of u∗(k) reflects the control and optimisation functions
of the control law, while the second term gives the learning
function of the control law. δ is a balance between the two
functions.

The actual control based on the two criteria applied to the
original system is thus expressed by the following theorem.
Theorem 3: For the system consisting of (6) and (7) with

parameter uncertainty, the control law designed in this paper
can be described as follows:

u∗(k) = u∗c (k)+ δ(k)u
∗
l (k) (19)

where δ(k) is the learning factor and stems from the reasoning
that it is necessary to enrich the control with probing propor-
tional to the parameter uncertainty. A common choice for δ(k)
is as follows:

δ(k) = ηtrP(k + 1) (20)

where η is a fixed diagonal matrix with length r, which
provides the amplitude of the probing signal.

Because the above formulation includes the term with
learning control, the control law is endowed with a learning
ability. At the same time, the designed controller deliberately
takes measures to enrich the information about uncertain
parameters to improve estimation quality. It is thus a dual
adaptive control law.

The key to this paper is that the learning factor δ(k) is
constantly changing based on the covariance matrix through-
out the control process. Of course, the value of the learning
factor δ(k) can be automatically adjusted to improve learning
ability and does not dramatically affect the control effect.
Even though η is set to be larger, as the estimated values
approach the true values, the covariance matrix becomes
smaller. Because the control law applied to the system makes
full use of the latest information obtained in the control
process as far as possible, the learning ability is also improved
by the learning term, and the designed controller has a better
control effect.

V. NUMERICAL EXPERIMENTS
The novel MIMO dual adaptive control algorithm in this
paper can be summarised as follows:

Algorithm 1NovelMIMODual Adaptive Control Algorithm

let k = 0 and let the initial information set z0 be given
repeat
Estimate the uncertain parameters 2̂ by Eq. (8c) based
on the information set zk at time k
Calculate the control u∗c (k) that minimises the perfor-
mance by Eq. (16)
Calculate the learning control u∗l (k) by Eq. (18)
Choose the appropriate η to determine the learning fac-
tor δ(k)
Calculate the control u∗(k) applied to the original system
by Eq. (19)

until k = N − 1

For parameter uncertainty, this paper separately considers
two different kinds of uncertainties: 1. The system parame-
ters are unknown but constant. 2. The parameters suddenly
change at a certain moment. For these two cases, numerical
experiments can be performed to illustrate the effectiveness
of the algorithm. This section presents MATLAB simulation
results for two stochastic system examples.

A. EXAMPLE 1
Considering a dynamic stochastic system with parameter
uncertainty, the uncertainty under consideration is assumed
to be unknown but constant. The original parameter vectors
are as follows:

θ1 = [0.2, 1.8,−0.8, 0.7]T ,

θ2 = [−0.6, 0.5, 0.2, 1.5]T .
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FIGURE 1. Estimation process of parameters a11 and a12.

FIGURE 2. Estimation process of parameters a21 and a22.

The initial values of the parameters are

θ1(0) = θ2(0) = [0.1, 0.1, 0.1, 0.1]T ,

The process noise variance and measurement noise vari-
ance of the parameters are: 6ξ = 0, σ 2

1 = σ 2
2 = 0.3,

6ε = diag(σ 2
1 , σ

2
2 ). The initial estimation covariance matrix

is P(0) = I8. The value of η is set to η = diag(0.6, 1.2).
The simulation results are as follows:
The estimation process of the parameters is shown

in Fig. 1-4. As seen from the figure, at the beginning of
the parameter estimate, the parameters change dramatically,
however, as the sampling time increases, they tend to grad-
ually become stable and converge to the true value from
approximately k = 15. To better demonstrate the estimation
ability of the proposed algorithm, we further illustrate the
estimation accuracy by calculating the mean and variance of
the estimated parameters, as shown in Tab. 1.

In Tab. 1, the left column of the term Mean represents the
mean for the entire estimation process, while the right column
represents the mean after time k = 15. This is because

FIGURE 3. Estimation process of parameters b11 and b12.

FIGURE 4. Estimation process of parameters b21 and b22.

TABLE 1. Statistical result of the estimated parameters.

the parameters change dramatically at the beginning of the
estimation, which may increase the variance even though the
parameters are estimated accurately. The standard deviation
and variance are the same. From the right column of the term
Mean, it can be seen that the estimated values are very close
to the true parameters. Additionally, the right columns of
the standard deviation and variance are close to zero, which
means that the effect of estimation is fairly good.
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TABLE 2. Results of Monte Carlo under different control law.

In addition to accurately estimating parameters, the pro-
posed control law is expected to minimise the performance
of the cost function.

The statistical properties of the performance of the con-
trol law cannot be evaluated through single-trial analysis.
Therefore, a Monte Carlo analysis was performed. The per-
formance of the cost function at the end of each trial was
quantified through the following measures:

NJ =
1
50

49∑
k=0

yT (k + 1)y(k + 1).

Since the system under consideration is a stochastic sys-
tem, different control laws can only be applied to this system
for the comparison of performance, which certainly includes
the proposed control law of this paper. Nominal control and
pure control are thus introduced. If the parameters of the
model that have fluctuations are fixed at the nominal value,
it is called nominal control. In this case, the control law is
determined based on fixed parameters and its control progress
does not need to be learned. If the diagonal matrix η of the
algorithm in this paper is restricted to the zero matrix, that
is, there are no learning terms, the control law is called pure
control.

Imposing the above three control laws on the system,
after 500 trials of Monte Carlo experiments are performed,
the statistical results are shown in Tab. 2.

As shown in Tab. 2, there is little difference between the
performance of nominal control and pure control. In other
words, if there is stochastic parameter uncertainty in the
system model, only Kalman filtering is used to estimate the
parameters, and the control effect is not significant.

The algorithm in this paper is obviously better than the
other two, which shows the effect of the proposed control law
in this paper.

Except for the above case, the proposed control law is also
effective for cases in which the parameters change abruptly.
Therefore, numerical example 2 is carried out.

B. EXAMPLE 2
For the dynamic stochastic system (1), the abrupt parameters
under consideration are as follows:

a11 =

{
0.2, t < 50
2.1, t ≥ 50

a12 =

{
1.8, t < 50
3.5, t ≥ 50

a21 =

{
−0.6, t < 50
2.9, t ≥ 50

a22 =

{
0.5, t < 50
2.5, t ≥ 50

b11 =

{
−0.8, t < 50
3, t ≥ 50

b12 =

{
0.7, t < 50
−2.5, t ≥ 50

FIGURE 5. Estimation process of parameters a11 and a12.

FIGURE 6. Estimation process of parameters a21 and a22.

b21 =

{
0.2, t < 50
2.5, t ≥ 50

b22 =

{
1.5, t < 50
4.5, t ≥ 50

The process noise variance and measurement noise vari-
ance of the parameters are the same as in the first example.
The initial estimation covariance matrix is P(0) = I8. The
fixed matrix η = diag(1, 1.2).

The simulation results are as follows:
In this case, the parameters change dramatically at the

sampling time k = 50, as shown in Fig 5-8. For the sake of
description, we take the interval k < 50 as stage 1 and k ≥ 50
as stage 2. It can be seen from the figures that the estimation
process of the parameters is very fast at stage 1, as in example
1, and remains stable. The most important point is that at
stage 2, when the parameters change suddenly, the parameter
can still converge quickly to the new variation value, even
though the parameters are particularly volatile, even messy,
at the beginning of stage 2.
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FIGURE 7. Estimation process of parameters b11 and b12.

FIGURE 8. Estimation process of parameters b21 and b22.

TABLE 3. Statistical result of the estimated parameters.

Next, we analyse the statistical results at stage 2. Similar
to stage 1, the mean and variance of the estimated parameters
are shown in Tab. 3.

Similar to Tab. 1, the left column of the term Mean rep-
resents the mean for the entire estimation process at stage 2,
while the right column represents the mean after time k = 65.
From the right column of the term Mean, it can be seen that
the estimated values are very close to the true parameters and
some of them are already exactly equal to the true parameters.

TABLE 4. Results of Monte Carlo under different control laws.

Meanwhile, the right columns of the standard deviation and
variance are close to zero, which means that the effect of
estimation is fairly good.

Next, the statistical properties of the performance of the
control law can still be evaluated throughMonte Carlo exper-
iments. The results are shown in Tab. 4.

The result shown in Tab. 4 is the same as in Tab. 2, and
there is still little difference between the performance of
nominal control and pure control. The algorithm in this paper
is obviously better than the other two, which also shows the
effect of the control law proposed in this paper.

In this section, two numerical experiments are performed.
By analysing the statistical properties of experimental results,
the effectiveness of the proposed algorithm is verified.

VI. CONCLUSION
In this paper, a novel MIMO dual control law for a MIMO
stochastic linear system with parameter uncertainty is pro-
posed as an extension of a SISO stochastic linear system.
The proposed control law has two parts. One can be used to
drive output into the desired state, and the second improves
the estimation ability of uncertain parameters. The key to this
paper is that the learning factor can automatically change at
any time and is closely related to the estimation covariance
matrix, which balances the control target and parameter esti-
mation. Even if the amplitude of the learning factor is set to
be very large, the effect of the second term can be weakened
due to the covariance matrix when the uncertain parame-
ters converge to the true value. Furthermore, the statistical
properties of estimation are analysed to verify the learning
ability, and the comparison of system performance under
three different control laws is made to illustrate the effec-
tiveness of the proposed algorithm. The research results of
the paper show that the learning property of the control algo-
rithm is indispensable for the control problem with parameter
uncertainty.

The practical system not only contains parameter uncer-
tainty but also has a variety of other uncertainties that affect
the performance of the system and even affect its normal
operation. Therefore, the control problem for aMIMO system
with mixed uncertainties will be considered in future work.
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