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ABSTRACT In the multivariable control literature there are few techniques that face the problem of selecting
suitable loop pairings in non-linear multivariable systems. Most techniques analyze the linearized system at
a specific operating point. This paper proposes a new methodology to optimally and simultaneously select
the loop pairings and the tuning of the parameters of the decentralized control by applying a multi-objective
optimization approach directly on the non-linear system. The main contribution of this work is that the
proposed methodology enables a detailed multi-dimensional analysis of the performances and trade-offs in
the available loop pairings to control a multivariable non-linear system. The methodology is applied in this
paper to three examples that analyze how the different types of loop pairings conflict. In one of the examples,
the proposed methodology was applied first in the linearized system and later in the non-linear system. The
results were contradictory and show how the application of loop pairing techniques for linear systems can
be inaccurate when they are applied on a non-linear system previously linearized at an operating point. The
following examples show that the operating point of a non-linear system, the design objectives of each multi-
objective problem, as well as the designer’s preferences have important roles in the selection of an optimal
loop pairing.

INDEX TERMS Multivariable control system, non-linear systems, loop pairing, decentralized control
structures, multi-objective evolutionary optimization, Pareto front.

I. INTRODUCTION
The development of efficient control strategies for
multiple-input and multiple-output (MIMO) systems remains
a challenge for designers or control engineers. This challenge
is due to the complexity of the multiple interactions that exist
between all the variables in a MIMO system.

In the field of multivariable control research there are
two major approaches to control this type of system: cen-
tralized control or decentralized control. Each approach has
advantages and disadvantages for the control of multivari-
able systems. In a decentralized control approach, the main
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benefits are: ease of implementation; existence of simple
procedures for tuning controllers; and effectiveness for main-
taining control loops (open control loops without the entire
plant remaining off-line) [1]–[4].

Centralized control approaches consist of a single con-
troller that has a global vision of the multivariable system and
the interactions between all the variables. An important exam-
ple of this type of controller is known as Model Predictive
Control (MPC). The main advantage of a centralized control,
compared to a decentralized one, is that it calculates control
actions considering all the interactions of the MIMO system.
Among the advantages of theMPC, it is worth mentioning the
following ones: 1) it uses a process model to obtain predic-
tions of the dynamic evolution; 2) it uses also the concept of
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moving horizon, which allows to recalculate control actions
when new process measures are available; 3) it can naturally
compensate the dead times that exist in a wide variety of
industrial processes as well as measurable disturbances. One
of the main limitation of the MPC is that its performance
depends on the model accuracy. Another disadvantage is its
high computational cost, as MPC generally requires to solve
an optimization problem in real time. This aspect is becoming
less and less problematic due to the advance of computer
systems [5], [6].

It is important to mention that to perform an efficient
decentralized control of a multivariable system it is necessary
to make an adequate selection of input-output pairings. The
selection of loop pairings to control a MIMO system is not
a simple task (for example, in an n × n system there are
n! possible loop pairings available to control the system).
A seminal work on loop pairing methodology for linearized
and time-invariant MIMO systems established the relative
gain array (RGA) [7]. After Bristol’s work, important con-
tributions were made with new methodologies for the selec-
tion of loop pairings with a focus on linearized systems
(e.g., [8]–[11]).

Among the contributions to face the problem of selecting
suitable input-output pairings for the decentralized control
of a non-linear MIMO system is the relative-order matrix
proposed in [12]. The relative order matrix was initially
used as an overview of the interaction between the input-
output of a non-linear MIMO system. An initial extension of
RGA that quantified the interactions between the input-output
of a non-linear MIMO system was proposed in [13], and
later the non-linear relative gain array (NRGA) was defined
in [14], [15].

It is important to mention that when a multivariable system
is linearized at an operating point, the RGA, as well as the
relative-order matrix or the NRGA for the same operating
point, can provide different information on the type of input-
output pairing to choose. This shows that the task of selecting
loop pairings to control a multivariable non-linear system is
complex due to the characteristics of these systems [16].

Another relevant aspect to achieve an efficient decentral-
ized control of a non-linear multivariable system is the tuning
of the system controllers. It is possible to successfully tune the
control structures of a non-linear MIMO system by applying
an optimal design.

Metaheuristics are non-deterministic techniques that simu-
late the behavior of some kind of natural phenomenon or sys-
tem to solve optimization problems. They have demonstrated
good performance in solving complex problems (difficult to
address by traditional mathematical methods), both in bench-
mark and real-life problems [17], [18].

Metaheuristics can be classified into two groups: those
that are nature-inspired and those that are not. Important
examples of nature-inspired metaheuristics are evolutionary
algorithms (EA) and algorithms using swarm intelligence.
Genetic algorithms (GA) can be considered as one of themost
representative methods of EA [19], [20].

Particle swarm optimization algorithms (PSO) are based on
the intelligent behavior of social insect colonies (bees, ants,
fireflies, butterflies, among others). [21]–[23]. Among the
most recent swarm metaheuristics is the Seeker optimization
algorithm, which is based on human group search behavior.
[24], [25]. EAs have been successfully hybridized with the
swarm intelligence approach [26]–[28].

Gradually, evolutionary techniques have been used and
further developed to solve multi-objective optimization prob-
lems. A significant example is the multi-objective evolu-
tionary algorithms (MOEA), which have been successfully
applied to many real engineering problems. MOEAs are
flexible enough to handle non-convex functions with hard
restrictions and high non-linearity [29]–[33]. For this reason,
a MOEA has been chosen for solving the multi-objective
optimization problems that arise in the tuning of the control
structures of the non-linear systems analyzed in this work.

A MOEA finds a satisfactory approximation of the Pareto
front of a multi-objective problem (MOP) and in the decision-
making stage a designer can select an optimal solution
according to his or her preferences. There are several tools
designed to help designers to select optimal Pareto front
solutions as briefly summarized in [34], [35].

Visualization tools have proven powerful in the decision-
making stage and have been widely accepted for helping
designers to choose optimal Pareto solutions [36]–[38].When
the dimension of a MOP is increased, the decision making
task becomes more complex and alternative visualization
tools are required (some examples are, among others: Level
diagrams, Scatter diagrams, Parallel coordinates and Star
diagrams) [39], [40].

The level diagrams (LD) tool has interesting features to
help the designer easily interpret and choose solutions from
a Pareto front. The main features of LD include: flexibility
to incorporate different design points of view (with different
types of synchronization norms); ability to compare different
design concepts; highlighting and coloring solutions; and
multi-dimensional interactivity between fronts [41], [42].

In the multi-objective optimization process, the ev-MOGA
algorithm1 was used to find the Pareto fronts [43]–[45].
However, it is important to emphasize that the methodology
proposed in this work can be applied with different optimiza-
tion algorithms, since it is independent of the optimization
algorithm used, as long as it guarantees a satisfactory quality
level.

The level diagrams (LD) tool2 was used to perform the m-
dimensional analysis of each Pareto front. To compare the
different design concepts proposed in this paper, the Pareto
front quality indicator QI proposed in [50] was applied.

1ev-MOGA algorithm available at:
https://es.mathworks.com/matlabcentral/fileexchange/31080-ev-moga
-multiobjective-evolutionary-algorithm.

2Level diagrams interactive tool available at:
https://es.mathworks.com/matlabcentral/fileexchange/62224-interactive
-tool-for-decision-making-in-multiobjective-optimization-with-level
-diagrams.
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LD and QI enable global evaluation of the Pareto fronts of
each MOP by applying Pareto dominance analysis.

This paper aims to contribute to the generation of a frame-
work that enables extending the multi-objective methodology
proposed in [46] to design decentralized controllers (loop
pairing and optimal tuning of controller parameters) in non-
linear multivariable systems. It is important to mention that
according to [46] and [47] the selection of an optimal loop
pairing depends on the designer’s preferences regarding the
design objectives of the multi-objective problem (MOP) and
the satisfactory tuning of the system controllers. An interest-
ing aspect of the proposed loop pairing methodology is that it
is associated with both the selection of input-output pairings,
as well as the tuning of each MIMO system controller in the
multi-objective optimization (MOO) process.

This newmethodology is compared to othermethodologies
from the existing literature and its benefits and convenience
are demonstrated.

For this purpose, the proposed multi-objective loop pairing
methodology is applied to three examples using two non-
linear multivariable systems. In the first example, a coupled
two-tank process like the one shown in [48] is analyzed, and
a control valve is added to generate a 2 × 2 MIMO system.
In the second and third examples, the quadruple-tank process
(4× 4 MIMO system) proposed in [49] is analyzed.

To explore the input-output pairings of the coupled two-
tank process, the system was linearized at an operating point
and the methodology presented in [46] was applied. The
performance of each loop pairing and the optimal tuning
of the system controllers were determined. Subsequently,
the methodology proposed in this paper was applied directly
to the non-linear system under the same operating condi-
tions and a different scenario was revealed (compared to
that obtained for the linearized system). This shows that the
results obtained on the linearized system (loop pairing) do
not necessarily have to coincide with the non-linear system.
Therefore, we propose to extend the methodology shown
in [46] and directly apply it to non-linear multivariable sys-
tems. The results obtained for the non-linear system of cou-
pled two-tanks were satisfactory. The behavior of the system
in a different operating area was analyzed and it was revealed
how loop pairings for a non-linear system can be affected
by the operating point (depending on the operating point).
Finally, a system analysis scenario with a greater number of
design objectives for each MOP was proposed and it was
revealed how a designer’s preferences over these objectives
can affect the choice of a loop pairing to control a non-linear
multivariable system.

In the second example, the methodology proposed in this
paper was applied to the quadruple-tank process proposed
by [49]. The system was analyzed when it presents non-
minimum phase dynamics and the levels of the lower tanks
of the system are controlled with the available pumps. In this
example, MOPs with four design objectives are proposed to
analyze the reference tracking error of each output and the
control efforts of each input independently. This example

reveals that loop pairings to control this non-linear system
are in conflict, and that an input-output pairing is better for
controlling a system output and vice versa. Also with the
proposed methodology, it was feasible to tune controllers
with better performances than those proposed in [49].

Finally, as a third example, the input-output pairings to
control all levels of the system tanks (quadruple-tank process)
using all available pumps and valves are analyzed. In this
example, MOPs with eight design objectives are proposed to
evaluate the reference tracking error of each output and the
control effort of each input independently. It is possible to
find a loop pairing that successfully controls the level of each
tank. This last example is proposed to show the applicability
of the methodology in non-linear MIMO systems with a
greater number of inputs and outputs. The increase in system
inputs and outputs also increases the number of input-output
pairings and the computational cost of the methodology.

Through the examples shown in this paper, the appli-
cability of the extension of the methodology proposed
in [46] for non-linear multivariable systems is demonstrated.
The proper selection of an input-output pairing to perform
the decentralized control of a non-linear MIMO system is
strongly related to the following aspects: the designer’s pref-
erences over the design objectives of each MOP; the opti-
mal tuning of control structures; as well as the operation
zone where a non-linear multivariable system is analyzed.
The ability of the proposed multi-objective methodology to
offer to the control engineer a multi-dimensional approach to
solving loop pairing problems is also demonstrated.

This paper is structured as follows: Section II shows the
basics of multi-objective optimization and a brief introduc-
tion about what is described in this paper as a design con-
cept. Section III shows the extension of the multi-objective
proposal of loop pairing for application in non-linear mul-
tivariable systems. In Sections IV, V and VI the proposed
methodology is applied to the non-linear multivariable sys-
tems mentioned previously. Finally, some conclusions are
presented in Section VII.

II. BACKGROUND OF MULTI-OBJECTIVE OPTIMIZATION
When a control engineer solves problems where there are
conflicting objectives (that is, improving some objectives
worsens others) it is advisable to perform amulti-dimensional
analysis and apply multi-objective optimization techniques.

A multi-objective optimization problem (MOP) can be
defined as shown in (1)-(5).

min
x

J(x) (1)

J(x) = {J1(x), J2(x), . . . , Js(x)} (2)

subject to:

g(x) ≤ 0 (3)

h(x) = 0 (4)

x ≤ x ≤ x (5)

where x = (x1, x2, . . . xn) ∈ Rn represents the decision
vector; J(x) ∈ Rm represents the vector of design objectives;
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FIGURE 1. Pareto front, Pareto set, and basic notion of Pareto dominace.

g(x), h(x) are the constraints vectors; and x, x are the lower
and upper bounds of each dimension of the decision space.

The solution of a MOP is not unique, since there is a
set of optimal solutions for each MOP. This set of optimal
solutions is known as the Pareto front. On the Pareto front,
each solution has a different level of compromise between the
design objectives of the proposed MOP (that is, no solution
is better than another) [51].

It is possible to build an optimal Pareto set Xp by applying
a Pareto dominance analysis [52], [53] (see Fig. 1).

A Pareto dominance definition is shown in (6) and the
optimal Pareto set Xp can be defined as in (7), and its cor-
responding Pareto front in (8).

∀i ∈ {1, . . . , s}, Ji(x1) ≤ Ji(x2) ∧ ∃k ∈ {1, . . . , s} :

Jk(x1) < Jk(x2) (6)

Xp = {x ∈ D| 6 ∃x′ ∈ D : x′ ≤ x} (7)

J(Xp) = {J(x)|x ∈ Xp} (8)

It is important to consider that in practical engineering
problems the Pareto front is generally unknown and the
MOEAs find a solutions set X∗p that is a subset of Xp, where
J(X∗p) satisfactorily approximates J(Xp).
Once the Pareto front is obtained, it is possible to select

solutions according to preferences that a designer has for
solving aMOP. For example, a designer’s preferencemight be
to select the Pareto front solution closest to the ideal solution
for the MOP (see Fig. 1). Another preference could be to
select solutions in a specific zone of interest of the Pareto
front as shown in Fig. 2 (a).
To compare different Pareto fronts in this paper (corre-

sponding to different design concepts) and analyze their per-
formance, the LD tool with different synchronization norms
was used as shown in [46], [50]. Fig. 2 compares two Pareto
fronts associated with two design concepts (each concept
proposes a MOP with two objectives), where there are four
zones with different characteristics. Zone 1 is covered only
by the design concept B. In zone 2, the design concept B

dominates design concept A, and theQI−norm of concept B
is less than one (QI < 1) as shown in Fig. 2(c). The opposite
occurs in zone 3 (concept A dominates concept B) and finally
zone 4 is covered only by design concept A. The LD tool
allows a designer to select solutions synchronously in each
design concept according to his or her preferences as shown
in Fig. 2 (b), (c) (solutions highlighted in yellow).

III. MULTI-OBJECTIVE PROPOSAL FOR THE SELECTION
OF INPUT-OUTPUT PAIRINGS IN NON-LINEAR
MULTIVARIABLE SYSTEMS
Consider a multivariable non-linear system to be controlled
with n inputs (u1, . . . , un) and n outputs (y1, . . . , yn) defined
by (9).

ẋ = f (x, u)

y = h(x, u) (9)

where the state vector x = (x1, x2, . . . , xm) ∈ Rm,
ui, yi ∈ Rn. The multivariable decentralized control for the
non-linear MIMO system3 described in (9) (for some generic
operating point ℘ or system operation zone) is defined by:
1) a vector ck whose elements represent the controllers to
stabilize the system outputs as shown in (10); and 2) an input-
output pairing matrix Lckp that connects the outputs ûi of each
controller with the inputs ui of the non-linear MIMO system
as shown in (11).

ck =
[
Cck
y1,û1

, . . .Cck
yi,ûi

, . . . ,Cck
yn,ûn

]
(10)

u1
...

ui
...

un

 = Lckp .



û1
...

ûi
...

ûn

 (11)

k ∈ {1, . . . ,w};

3Themethodology is also valid for other ways of representing a non-linear
system, and is applicable for any model that can be simulated.
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FIGURE 2. Pareto fronts and comparison of design concepts using level diagrams (LD). (a) Comparison of design
concepts A and B in a bi-objective space. (b) Comparison of design concepts A and B using LD with 2-norm.
(c) Comparison of design concepts A and B using LD with QI-norm.

In equation (10), Cck
yi,ûi

represents the controller that sta-
bilizes the output yi of the control ck . The controller Cck

yi,ûi
generates the control action ûi which is connected to an input
ui of the non-linear system using the loop pairing matrix Lckp
as shown in Fig. 3. Lckp is a Boolean matrix Bnxn as shown
in (12).

Lckp =

l11 . . . l1n
... . . .

...

ln1 . . . lnn

 ; lij=0, 1; ∀i, j=1. . .n (12)

The matrix Lckp must have only logical value 1 in each
row and column, since when adding all the elements of a
row and/or column its result will be one. For example, for
a non-linear system with four inputs and four outputs where
y1 is controlled with u3 (l31 = 1), y2 is controlled with u4
(l42 = 1), y3 is controlled with u2 (l23 = 1), and y4 is
controlled with u1 (l14 = 1). The matrix Lckp and the control

efforts ui are as shown in (13).

Lckp =


0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

⇒

u1
u2
u3
u4

 =

û4
û3
û1
û2

 (13)

Each controller Cck
yi,ûi

must also be tuned through a vector
of setting parameters xckyi . The process control would there-
fore be parameterized by the vector shown in (14).

xck = [xcky1, . . . , x
ck
yn] (14)

It is important to consider that in this proposed methodol-
ogy, ck refers to a design concept of the w design concepts
that can be analyzed. Each design concept must be opti-
mally tuned through its parameters xck by establishing a loop
pairing Lckp .
The proposed multi-objective optimization methodology

generates for each design concept a set of optimal Pareto
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FIGURE 3. Block diagram of the decentralized non-linear multivariable
control system defined in (10) and (11).

solutions Xck and the corresponding Pareto front J(Xck ).
Therefore, for each design concept, MOPs are proposed as
shown in (15)-(17).

Xck
= argmin

xck
J(xck ) (15)

J(xck ) =
[
J1(xck ), . . . , Js(xck )

]
(16)

xck ≤ xck ≤ xck (17)

where, xck and xck are the lower and upper bounds of the
search space of the parameter vector xck for the concept ck .
The design objectives J(xck ) to be optimized are associated
with each design concept ck in the k MOPs.

The proposed methodology is shown in Fig. 4. In stage
A, with the model of the non-linear MIMO system, it is
possible to define a region where you want to control the
system (operating points ℘). Thus, the analysis scenarios for
each MOP must also be established by selecting the level
of detail to analyze each loop pairing to control the system
(it is possible to define scenarios with 2, 3, 4, . . . , Jith (x

ck )
design objectives). Subsequently, the design concepts (loop
pairing and control structures) must be defined and theMOPs
declared. Stage B is the multi-objective (MO) optimization
stage where Pareto fronts (performance of each loop pairing)
are obtained, as well as Pareto sets (controller parameters
optimally adjusted). The Pareto fronts obtained in stage C
for each MOP are evaluated and compared using the LD and
QI tool. Finally, a designer or control engineer can choose,
according to his or her preferences, an input-output pairing
and the respective controllers that satisfactorily stabilize the
non-linear MIMO system. If the results do not satisfy a
designer, or if he/she wants to control the non-linear system in
another system operation zone, the process can be repeated.

FIGURE 4. Flow chart of the proposed methodology for selecting pairings
in non-linear multivariable systems.

FIGURE 5. Schematic diagram of the coupled two-tank system.

IV. EXAMPLE 1: NON-LINEAR COUPLED
TWO-TANK SYSTEM
The schematic diagram of the non-linear system of coupled
two-tanks is shown in Fig. 5 and its first principles model is
shown in (18), (19).

A1
dh1
dt
= −a1

√
2gh1 + a2

√
2gh2 + γ kv (18)

A2
dh2
dt
= −a2

√
2gh2 + (1− γ )kv (19)

where:
A1,A2: cross-section of tanks 1 and 2.
a1, a2: cross-section of the outlet holes.
h1, h2: water levels.
γ : valve opening/closing coefficient.
v: voltage applied to the pump v.
k: coefficient of water inflow of pump v.
g: acceleration of gravity.
The system actuators present the constraints given by (20).

0 ≤ v ≤ 7.2V , 0 ≤ γ ≤ 1 (20)
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TABLE 1. Parameters for the coupled two-tank system.

The parameters of the proposed model in (18), (19) are
shown in Table 1.

This first example shows three important aspects to con-
sider when selecting loop pairings in a non-linear system.
These aspects are: a) the validity of a loop pairing on a
linearized system does not guarantee a correct loop pairing
in the non-linear system; b) the validity of a loop pairing
for different operating points of a non-linear multivariable
system; and c) the importance of analyzing a loop pairing by
establishing a suitable MO scenario. We propose to carry out
three analyzes to show these important aspects:

Analysis 1): the methodology presented in this paper is
applied to the linearized system and then directly on the non-
linear system at operating point 1 (℘1) to compare the results
in both cases. This is intended to show that the application
of loop pairing techniques for linearized systems can be
inaccurate when applied in a non-linear system.

Analysis 2): the methodology proposed in this paper is
applied to the non-linear system at operating points 2 and
3 (℘2 and ℘3) to compare these results with those obtained
at operating point 1 (℘1). This analysis aims to show that
the best loop pairing to control a non-linear system at an
operating point must not necessarily coincide with the most
suitable at another operating point.

Analysis 3): a multi-objective scenario with two design
objectives (performance versus control effort) is analyzed and
the subsequent MO scenario is expanded with four design
objectives (performance versus control effort of each out-
put and input independently). This shows the importance of
establishing a suitable multi-objective scenario. In a suitable
MO scenario, a designer does not have to aggregate output

FIGURE 6. Proposed operating points for the coupled two-tank system.

performances with control efforts. This avoids a possible
loss of information when aggregating design objectives in a
MOP, as well as the inconvenience of establishing aggrega-
tion weights.

In order to carry out these analyses, a set of feasible oper-
ating points for the system shown in Fig. 5 was generated.
The operating points were obtained by increasing the pump
voltage from 0 volts to 5 volts by 0.5 volts increments and the
valve opening from 0% to 1% by 0.1% increments, as shown
in Fig. 6.
℘1 was selected as the initial operating point to begin

the system analysis. At ℘1 both tank levels have the same
value (h1 = h2 = 5 cm). Then ℘2 was chosen to analyze
the behavior of the system when h1 varies and h2 remains
constant (h1 = 10 cm; h2 = 5 cm). Finally, ℘3 was chosen to
analyze the behavior of the systemwhen both levels h1 and h2
shift from ℘1 (h1 = 10 cm; h2 = 7.7 cm) (see Table 2). This
intends to show the validity of the loop pairing of a non-linear
system at different operating points.

The system was linearized at the operating points shown
in Table 2. G1(s), G2(s) and G3(s) are shown in (21), (22)
and (23), as shown at the bottom of this page, respectively.
The relative gain array (RGA) was calculated to analyze the
input-output pairing suggested by this technique to control
each plant. RGA (3) clearly proposes a diagonal pairing for
the decentralized control in each plant as shown in (24), as
shown at the bottom of this page.

G1(s) =


0.02345s+ 0.002098

s2 + 0.04276s+ 0.0004431
0.2512s

s2 + 0.04276s+ 0.0004431
0.08354

s+ 0.01764
−0.2198

s+ 0.01764

 (21)

G2(s) =


0.05142s+ 0.002098

s2 + 0.0354s+ 0.0003133
0.3552s

s2 + 0.0354s+ 0.0003133
0.05907

s+ 0.01764
−0.3108

s+ 0.01764

 (22)

G3(s) =


0.03568s+ 0.001694

s2 + 0.03192s+ 0.0002518
0.3568s

s2 + 0.03192s+ 0.0002518
0.07284

s+ 0.01424
−0.3122

s+ 0.01424

 (23)

3G1 = 3G2 = 3G3

[
1 0
0 1

]
(24)
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TABLE 2. Operating points of the coupled two-tank system.

To determine the optimal loop pairing, the technique pro-
posed in this paper is applied to both the linearized system
and the non-linear system. In both cases, two design concepts
are proposed: c1 (diagonal concept) and c2 (off-diagonal con-
cept) as shown in (25) and (26), and (29) and (30). To stabilize
the system, 1-DOF PIs controllers with anti-windup are used
as shown in (27) and (28), and (31) and (32).

c1 =
[
Cc1
h1,û1

,Cc1
h2,û2

]
(25)[

v
γ

]
=

[
1 0
0 1

] [
û1
û2

]
(26)

Cc1
h1,û1
=

K c1
1 (s+ 1/Tic11 )

s
, Cc1

h2,û2
=
K c1
2 (s+ 1/Tic12 )

s
(27)

xc1 =
[
K c1
1 ,Ti

c1
1 ,K

c1
2 ,Ti

c1
2

]
(28)

c2 =
[
Cc2
h1,û1

,Cc2
h2,û2

]
(29)[

v
γ

]
=

[
0 1
1 0

] [
û1
û2

]
(30)

Cc2
h1,û1
=

K c2
1 (s+ 1/Tic21 )

s
, Cc2

h2,û2
=
K c2
2 (s+ 1/Tic22 )

s
(31)

xc2 =
[
K c2
1 ,Ti

c2
1 ,K

c2
2 ,Ti

c2
2

]
(32)

Two MOPs are proposed with two design objectives each
as shown in (33)–(39), where for k = 1 theMOP is associated
with the design concept c1 or the diagonal concept, and for
k = 2 it is associated with the design concept c2 or the off-
diagonal concept.

Objective J1 aggregates and evaluates the errors of the lev-
els of each tank h1 and h2 by applying the IAE for reference
input tracking (unit step response). Objective J2 aggregates
and evaluates the control efforts of the pump v and the valve
γ by applying the IADU. Because the IADU of the pump
was aggregated with the IADU of the valve, the pump control
effort (v) was divided by its maximum voltage to assign to this
variable a relative weight equivalent to the valve (v = 0 to 1).
The bounds of the parameter vector of each controller xck are
shown in Table 3.

min
xck

J(xck ) (33)

J(xck ) = {J1(xck ), J2(xck )} (34)

J1(xck ) =
∫ tf

0
|e1| + |e2|

∣∣∣h2=h02
h1=h01+1cm

dt

+

∫ tf

0
|e1| + |e2|

∣∣∣h2=h02+1cm
h1=h01

dt (35)

TABLE 3. Bounds of the decision vectors xc1 and xc2 for the first
example-operating point 1.

FIGURE 7. Pareto fronts for diagonal and off-diagonal design concepts
for the linear system.

J2(xck ) =
∫ tf

0

∣∣∣∣du1dt
∣∣∣∣+ ∣∣∣∣du2dt

∣∣∣∣ ∣∣∣h2=h02h1=h01+1cm
dt

+

∫ tf

0

∣∣∣∣du1dt
∣∣∣∣+ ∣∣∣∣du2dt

∣∣∣∣ ∣∣∣h2=h02+1cmh1=h01
dt (36)

tf = 400 seconds

xck ≤ xck ≤ xck (37)

J1(xck ) < 200; J2(xck ) < 14 (38)

xck =
[
K ck
1 ,Ti

ck
1 ,K

ck
2 ,Ti

ck
2

]
(39)

A. ANALYSIS 1: LINEARIZED SYSTEM VERSUS
NON-LINEAR SYSTEM
In this first analysis, the loop pairing technique proposed in
this paper is first applied to the linearized system and then to
the non-linear system.

By optimizing the MOPs proposed in (33)–(39) for the
linearized system at the operating point 1, the Pareto fronts
shown in Fig. 7 are obtained. It is possible to observe that the
diagonal design concept dominates the off-diagonal concept.
Therefore, in this case it is suggested selecting a diago-
nal input-output pairing for the decentralized control of the
MIMO system (this result is in accordance with the proposed
RGA).

The same procedure was applied directly to the non-linear
system. Pareto fronts for each design concept are shown
in Fig. 8. It is possible to observe that the scenario has
changed radically, and the off-diagonal design concept now
dominates the diagonal concept.

From this simple analysis it is concluded that when apply-
ing a loop pairing technique on a linearized system, the results
obtained may not be coincident with those that would be
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FIGURE 8. Pareto fronts for diagonal and off-diagonal design concepts
for the non-linear system.

TABLE 4. Bounds of the decision vectors xc1 and xc2 for the first
example, operating points 2 and 3.

obtained by applying the same technique directly on the
non-linear system. This gives a significant advantage to the
techniques that can be applied directly to non-linear systems
versus those techniques that need to linearize the plant to be
applied.

B. ANALYSIS 2: NON-LINEAR SYSTEM AT DIFFERENT
OPERATING POINT
In this second analysis, the input-output pairings to control
theMIMO system shown in Fig. 5 are analyzed. The behavior
of the system when the tanks decrease their levels is analyzed
(h1 and h2 decrease 1 cm from their operating points).

The diagonal and off-diagonal design concepts, the 1-DOF
PIs controllers, and the MOPs proposed in this scenario are
the same as in operating point 1 (Analysis 1). The bounds
of the parameter vector xck were expanded and are shown
in Table 4.
The Pareto fronts of each design concept applying the

methodology proposed directly on the non-linear system for
operating point 2 are shown in Fig. 9. Unlike operating point 1
(see Fig. 7 and Fig. 8), no design concept completely domi-
nates the other at operating point 2.

It is possible to analyze in greater detail the compromises
between these Pareto fronts by establishing two zones in the
objectives space (zone A and zone B) where each zone has
different characteristics as shown in Fig. 9.
Zone A corresponds to the region where the off-diagonal

concept dominates the diagonal concept. In this zone are the
controllers with the best performance for reference tracking
of the levels h1 and h2, and with greater control efforts on
pump v and valve γ .

Zone B corresponds to the region where the diagonal
concept dominates the off-diagonal concept. In this zone are

FIGURE 9. Pareto fronts for diagonal and off-diagonal design concepts
for the non-linear system for operating point 2.

FIGURE 10. Pareto fronts for diagonal and off-diagonal design concepts
for the non-linear system for operating point 3.

the controllers with the lowest performance for reference
tracking in h1 and h2 but with less aggressive control efforts
for v and γ . Therefore, at operating point 2 the best loop
pairing to control the system will depend on the designer’s
preferences a posteriori.

The Pareto fronts (one for each design concept) obtained
when the proposed methodology is applied to the non-linear
system at operating point 3 are shown in Fig.10. The sce-
nario is equivalent to the one obtained at operating point 2,
where no design concept completely dominates the other.
(In zone C, off-diagonal loop pairing is preferable and,
in zone D, diagonal loop pairing is preferable).

This disagreement of results between operating points
allows us to conclude that in a non-linear system the best loop
pairingwill depend on the operating point at which the system
is analyzed.

C. ANALYSIS 3: SUITABLE MULTI-OBJECTIVE SCENARIO
Two scenarios are compared in this third analysis: the sce-
nario with two objectives at operating point 2 presented in
analysis 2; and another with four design objectives at the same
operating point. The advantages and disadvantages of both
scenarios are analyzed.

In analysis 2, MOPs with two design objectives are pro-
posed (J1: IAE of h1 and h2; J2: IADU of v and γ ) to find
an optimal loop pairing. A fundamental advantage of this
scenario is that it is easy to compare Pareto fronts in each
multi-objective problem in the bi-dimensional space as shown
in Fig. 9. However, a scenario of only two design objectives
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FIGURE 11. PIs controllers responses in PB1 and PB2 in non-linear system for the operating point 2.

TABLE 5. PIs diagonal and off-diagonal controllers selected in Fig. 9.

has the disadvantage that there is information that can be
masked by aggregating errors from different outputs into a
single design objective J1. Also, by aggregating the IADU of
v and γ into a single design objective J2, two system variables
that physically represent quantities with different units of
measurement are mixed. This could hide information about
their behaviors and hinder a correct interpretation.

To analyze the differences between both loop pairings,
a controller from each design concept is chosen: PB1 of
the diagonal concept and PB2 of the off-diagonal concept
as shown in Fig. 9. Table 5 shows the performance of the
controllers inPB1 andPB2. It is observed that both controllers
have very similar performances, since J1(xc2) ≈ J1(xc1)
and J2(xc2) ≈ J2(xc1). A designer when analyzing these
objectives may not be able to detect that the controllers
are different. The responses of these controllers are shown
in Fig. 11. The diagonal controller has better performance
for reference tracking in h1 and the off-diagonal controller
for reference tracking in h2. This is not detectable in design
objective J1 because this objective mixes the performance of
h1 and h2.

To analyze in greater detail the performances of each
system output, the methodology enables the generation of a
new scenario with four design objectives. In this scenario,
the output and input variables are not mixed, and the trade-off
that exists between the IAE of output h1 and the IAE of h2 are

analyzed independently, as well as the IADU of each input v
and γ .

By analyzing the trade-off between the IADU of the pump
with the IADU of the valve independently, a better interpre-
tation of the MOPs and a greater physical sense of the system
is achieved. In this scenario, it is not necessary to resize
the control effort v because it does not mix with the control
effort γ . Two MOPs with four design objectives each are
proposed according to (40)–(48). The bounds of the decision
vector xck are the same as in Table 3.

min
xck

J(xck ) (40)

J (xck ) = {J1(xck ), J2(xck ), J3(xck ), J4(xck )} (41)

J1(xck ) =
∫ tf

0
|e1|

∣∣∣h2=h02
h1=h01−1cm

dt +
∫ tf

0
|e1|

∣∣∣h2=h02−1cm
h1=h01

dt

(42)

J2(xck ) =
∫ tf

0
|e2|

∣∣∣h2=h02
h1=h01−1cm

dt +
∫ tf

0
|e2|

∣∣∣h2=h02−1cm
h1=h01

dt

(43)

J3(xck ) =
∫ tf

0

∣∣∣∣du1dt
∣∣∣∣ ∣∣∣h2=h02h1=h01−1cm

dt

+

∫ tf

0

∣∣∣∣du1dt
∣∣∣∣ ∣∣∣h2=h02−1cmh1=h01

dt (44)

J4(xck ) =
∫ tf

0

∣∣∣∣du2dt
∣∣∣∣ ∣∣∣h2=h02h1=h01−1cm

dt

+

∫ tf

0

∣∣∣∣du2dt
∣∣∣∣ ∣∣∣h2=h02−1cmh1=h01

dt (45)

tf = 400 seconds

xck ≤ xck ≤ xck (46)

J1(xck ) < 200; J2(xck ) < 200;

J3(xck ) < 14; J4(xck ) < 14 (47)

xck =
[
K ck
1 ,Ti

ck
1 ,K

ck
2 ,Ti

ck
2

]
(48)
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FIGURE 12. Pareto fronts and comparison of design concepts using level diagram for operating point 2. The solutions PH and PJ were selected to
analyze their trade-off. (a) design concepts using ∞-norm. (b) design concepts using QI-norm. Only the solutions where QI < 2 has been plotted.

FIGURE 13. PIs controllers responses in PH and PJ for the operating point 2.

The Pareto fronts associated with the diagonal (k = 1)
and off-diagonal (k = 2) design concepts obtained with
the optimization of each MOP proposed in (40) are shown
in Fig. 12 (a). It is possible to observe that the diagonal
concept achieves better performance for h1 than the off-
diagonal concept (brown solutions). The off-diagonal concept
achieves a better performance than the diagonal concept
for h2 (green solutions). In Fig. 12 (b) when applying the
QI -norm, it is observed that there is a zonewhere the diagonal
concept dominates the off-diagonal concept (QIdiagonal < 1)
and a different zone where the opposite is true
(QIoff−diagonal < 1).

One controller from each design concept was selected
among those that have the best performances for each output
(PH and PJ ) and their responses are shown in Fig. 13. The
diagonal controller is better for reference tracking in h1,
the opposite is true for the off-diagonal controller as shown
in Fig. 13. This can be quantified in objectives J1(xck ) and
J2(xck ) as shown in Table 6. The off-diagonal controller has
softer control efforts than the diagonal controller as shown in
objectives J3(xck ) and J4(xck ) in Table 6.

This scenario has as its main advantage that it offers
detailed information on the trade-off between IAE and IADU
of each output and each input respectively. A designer can
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TABLE 6. PI diagonal and off-diagonal controllers selected in Figure 12.

choose in this scenario an input-output pairing with indepen-
dent preferences over these indices to control the coupled
two-tank system. As a disadvantage, the analysis in the deci-
sion making stage is more complex compared to a scenario of
only two design objectives. Another advantage is that having
more information on each MOP helps a designer choose
an optimal solution with greater certainty (with satisfactory
performances according to certain preferences).

It can be seen in this first example that the optimal input-
output pairing for the decentralized control of the non-linear
multivariable system shown in Fig. 5 depends on the fol-
lowing aspects: the operating point in which the system is
analyzed and its dynamics at that point; the design objectives
proposed for each design concept; the designer’s preferences
relative to the design objectives; and the type of controller
structure. A relevant aspect in this example is that by applying
the methodology proposed in this paper in the linearized
system, and subsequently applying the methodology directly
to the non-linear system, Pareto fronts with differing domi-
nances are obtained. Therefore, it is considered important to
extend the methodology proposed in [46] for its application
in non-linear multivariable systems.

V. EXAMPLE 2: NON-LINEAR QUADRUPLE-TANK
SYSTEM (2 × 2)
In this example, the non-linear quadruple-tank system used
in [49] is analyzed. The schematic diagram of the system is
shown in Fig. 14 and the first principle non-linear model is
shown in (49)-(52).

dh1
dt
= −

a1
A1

√
2gh1 +

a3
A1

√
2gh3 +

γ1k1
A1

v1 (49)

dh2
dt
= −

a2
A2

√
2gh2 +

a4
A2

√
2gh4 +

γ2k2
A2

v2 (50)

dh3
dt
= −

a3
A3

√
2gh3 +

(1− γ2)k2
A3

v2 (51)

dh4
dt
= −

a4
A4

√
2gh4 +

(1− γ1)k1
A4

v1 (52)

where:
Ai: cross-section of tank i, i=1 to 4.
ai, cross-section of the outlet holes i.
hi: water levels.
γi: Valve i opening/closing coefficients, i=1 to 2.
vi: voltages applied to the pumps i.
kivi: flows of pumps i.
g: acceleration of gravity.

FIGURE 14. Schematic diagram of quadruple-tank system.

TABLE 7. Parameters for the quadruple-tank system.

The system actuators have the constrains shown in (53).

0 ≤ v ≤ 7.2V , 0 ≤ γ ≤ 1 (53)

Model parameters are shown in Table 7.
For this example, outputs h1 and h2 are controlled through

pumps v1 and v2, the valves coefficients are γ1 = 0.43
and γ2 = 0.34. With these system conditions, the scenario
proposed in [49] is obtained, which is compared with other
scenarios generated with the methodology proposed in this
paper. The system under these valve conditions has a non-
minimal phase behavior and this adds complexity to the
decentralized control [49].

The operating point proposed in [49] was used here to
linearize the system and contrast the methodology proposed
in this paper over a model of a real laboratory process (the
scenario proposed in [49] was generated and compared with
other scenarios). The operating point is shown in Table 8.

RGA (3) proposes for this operating point an off-diagonal
pairing for the decentralized control of the linearized plant
as shown in (54), as shown at the bottom of the next
page. An extension of RGA to non linear systems [13] sug-
gests a diagonal pairing for the decentralized control of the
quadruple-tank system. The extended RGA is shown in (55),
as shown at the bottom of the next page. The non-linear RGA
(NRGA, [14], [15]) for the system is shown in (56), as shown
at the bottom of the next page. NRGA suggests considering
the operating point and parameters of the quadruple-tank sys-
tem when choosing a loop pairing. When applying NRGA at
the operating point shown in Table 8, an off-diagonal pairing
to control the quadruple-tank system is suggested. It is also
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TABLE 8. Operating point of the qudruple-tank system.

suggested in [15] to analyze the closed-loop response to study
the performance of each possible loop pairing (simulating the
diagonal and off-diagonal controllers).

The methodology proposed in this paper was applied
directly to the non-linear system in order to analyze in detail
how to choose the most appropriate input-output pairing.
Two design concepts c1 (diagonal concept) and c2 (off-
diagonal concept) are proposed, 1-DOF PIs controllers with
anti-windup equivalent to those proposed in [49] are used as
shown in (57)–(64), as shown at the bottom of this page.

For each design concept a MOP is proposed. Each MOP
has four design objectives as shown in (65)–(73). Two objec-
tives independently analyze the IAE of outputs h1 and h2 and
the other objectives analyze the IADU of each input v1 and v2.
Because the system has non-minimal phase behavior, it is

slower to stabilize and the simulation time tf is extended.

min
xck

J(xck ) (65)

J(xck ) = {J1(xck ), J2(xck ), J3(xck ), J4(xck )} (66)

J1(xck ) =
∫ tf

0
|e1|

∣∣∣h2=h02
h1=h01+1cm

dt

+

∫ tf

0
|e1|

∣∣∣h2=h02+1cm
h1=h01

dt (67)

J2(xck ) =
∫ tf

0
|e2|

∣∣∣h2=h02
h1=h01+1cm

dt

+

∫ tf

0
|e2|

∣∣∣h2=h02+1cm
h1=h01

dt (68)

J3(xck ) =
∫ tf

0

∣∣∣∣du1dt
∣∣∣∣ ∣∣∣h2=h02h1=h01+1cm

dt

+

∫ tf

0

∣∣∣∣du1dt
∣∣∣∣ ∣∣∣h2=h02+1cmh1=h01

dt (69)

J4(xck ) =
∫ tf

0

∣∣∣∣du2dt
∣∣∣∣ ∣∣∣h2=h02h1=h01+1cm

dt

+

∫ tf

0

∣∣∣∣du2dt
∣∣∣∣ ∣∣∣h2=h02+1cmh1=h01

dt (70)

3 =

[
−0.6357 1.6357
1.6357 −0.6357

]
(54)

3NL =


γ1 k1
A1

0

0
γ2 k2
A2

 . ∗

γ1 k1
A1

0

0
γ2 k2
A2


−T

=

[
1 0
0 1

]
(55)

3NRGA =



1

1−
(1− γ1)(1− γ2)

γ1γ2

√
h1 h2
h3 h4

1

1−
γ1γ2

(1− γ1)(1− γ2)

√
h3 h4
h1 h2

1

1−
γ1γ2

(1− γ1)(1− γ2)

√
h3 h4
h1 h2

1

1−
(1− γ1)(1− γ2)

γ1γ2

√
h1 h2
h3 h4


=

[
−0.1730 1.1730
1.1730 − 0.1730

]
(56)

c1 =
[
Cc1
h1,û1

, Cc1
h2,û2

]
(57)[

v1
v2

]
=

[
1 0
0 1

] [
û1
û2

]
(58)

Cc1
h1,û1
=

K c1
1 (s+ 1/Tic11 )

s
, Cc1

h2,û2
=
K c1
2 (s+ 1/Tic12 )

s
(59)

xc1 =
[
K c1
1 ,Ti

c1
1 ,K

c1
2 ,Ti

c1
2

]
(60)

c2 =
[
Cc2
h1,û1

, Cc2
h2,û2

]
(61)[

v1
v2

]
=

[
0 1
1 0

] [
û1
û2

]
(62)

Cc2
h1,û1
=

K c2
1 (s+ 1/Tic21 )

s
, Cc2

h2,û2
=
K c2
2 (s+ 1/Tic22 )

s
(63)

xc2 =
[
K c2
1 ,Ti

c2
1 ,K

c2
2 ,Ti

c2
2

]
(64)
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FIGURE 15. Pareto fronts using level diagram for second example. The solutions PC , PD were selected to analyze their
trade-off.

TABLE 9. Bounds of the decision vectors xc1 and xc2 for the second
example.

tf = 1500 seconds

xck ≤ xck ≤ xck (71)

J1(xck ) < 500; J2(xck ) < 2000;

J3(xck ) < 5; J4(xck ) < 5 (72)

xck =
[
K ck
1 ,Ti

ck
1 ,K

ck
2 ,Ti

ck
2

]
(73)

The bounds of the vector xck are shown in Table 9.
After the optimization process of each MOP, the Pareto

fronts were obtained as shown in Fig. 15. The diagonal con-
cept has a better performance for reference tracking of the
output h1 compared to the off-diagonal concept because the
zone where J1(xc1) < 96.43 is only covered by this design
concept.

The off-diagonal concept has a better performance for
reference tracking at the output h2 compared to the diagonal
concept because it covers a region where J2(xc2) < 873.8 that
the diagonal concept does not cover.

The control efforts of the pump v1 of the diagonal concept
(J3(xc1) > 1.302) are greater than those of the off-diagonal
concept (J3(xc2) < 1.448). The control efforts of the pump
v2 share the same zone in the Pareto front of both design
concepts (0.2916 ≤ J4(xck ) ≤ 0.789). The control efforts of
the off-diagonal concept where J4(xc2) > 0.789 correspond
to the best performances of h1.

A solution of each design concept (PC and PD) was cho-
sen to analyze its performance and compare them with the
solution proposed in [49]. A step reference input was applied
starting from the system operating point, the responses are
shown in Fig. 16 and their performances in Table 10.

The off-diagonal controller in PD has a better performance
for the output h2 compared to the diagonal controller in PC
as shown in Table 10 (J2(xc2) � J2(xc1)) and in Fig. 16.
The opposite is true, that is the diagonal controller in PC has
a better performance in the output h1, (J1(xc1) � J1(xc2))
(see Table 10 and Fig.16). The control effort of the pump
v1 is smoother for the diagonal controller in PD compared
to the off-diagonal controller in PC (J3(xc2) < J3(xc1)),
the opposite is true with the control effort of the pump v2 for
the controller in PC (J4(xc1) < J4(xc2)).
The diagonal controller in PC tuned with the multi-

objective technique proposed in this paper achieves better
performance in all design objectives than the diagonal con-
troller proposed in [49] as shown in Table 10 and in Fig. 16.
There is a conflict in this example between the two loop

pairings available to control the quadruple-tank system pro-
posed in [49]. An input-output pairing is better to control
the level of one of the tanks and vice versa. It is interesting
to note that with the proposed methodology it is possible to
find a diagonal controller with better performance than the
diagonal controller proposed in [49]. This is evidenced in
the Pareto fronts and design objectives shown in Fig. 15 and
in Table 10 respectively, as well as in the system responses
shown in Fig. 16.

VI. EXAMPLE 3: NON-LINEAR QUADRUPLE-TANK
SYSTEM (4 × 4)
In this example, the system proposed in [49] is analyzed
and shown in Fig. 14. But now the four levels of the tanks
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FIGURE 16. Responses of the controllers in PC , PD and the proposed controller in [49]. The outputs of the controller proposed
by [49] are converted from volts to centimeters.

FIGURE 17. Representation of Pareto fronts for loop pairings LP1 and LP2 using LD.

(h1, h2, h3, h4) are controlled through the available pumps
and valves (v1, v2, γ1, γ2). The RGA (3) of the linearized
system at the operating point proposed in [49] (see Table 8)
is shown in (74).

3 =


v1 v2 γ1 γ2

h1 0.43 0 0.57 0
h2 0 0.34 0 0.66
h3 0 0.66 0 0.34
h4 0.57 0 0.43 0

 (74)

RGA suggests the loop pairing that is highlighted in bold
as shown in (74) to control h1 with valve γ1, h2 with valve

γ2, h3 with pump v2, and h4 with pump v1. However, there
is another feasible input-output pairing to control h1 with v1,
h2 with v2, h3 with γ2, and h4 with γ1. The performance of
each loop pairing is analyzed with the technique proposed
in this paper to better choose an optimal input-output pair-
ing to control this MIMO system. Two design concepts: c1
(loop pairing LP1); and c2 (loop pairing LP2), are proposed
using 1-DOF PIs controllers with anti-windup as shown
in (75)–(82). A MOP for each design concept is proposed.
Each MOP has eight design objectives as shown in (83)-(89).
Four objectives analyze the trade-off between the IAE
of each output (h1, h2, h3, h4) and the remaining four
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FIGURE 18. System outputs for the controllers in PE and PF .

objectives analyze the trade-off between the IADU of each
input (v1, v2, γ1, γ2). When proposing MOPs with eight
design objectives, the performance of each input-output pair-
ing to control the system is analyzed independently. This
gives more information to a designer when choosing an opti-
mal loop pairing.

c1 =
[
Cc1
h1,û1

,Cc1
h2,û2

,Cc1
h3,û3

,Cc1
h4,û4

]
(75)

v1
v2
γ1
γ2

 =

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0



û1
û2
û3
û4

 (76)

Cc1
h1,û1
=

K c1
1 (s+ 1/Tic11 )

s
, Cc1

h2,û2
=
K c1
2 (s+1/Tic12 )

s

Cc1
h3,û3
=

K c1
3 (s+1/Tic13 )

s
, Cc1

h4,û4
=
K c1
4 (s+1/Tic14 )

s
(77)

xc1 =
[
K c1
1 ,Ti

c1
1 ,K

c1
2 ,Ti

c1
2 ,K

c1
3 ,Ti

c1
3 ,K

c1
4 ,Ti

c1
4

]
(78)

c2 =
[
Cc2
h1,û1

,Cc2
h2,û2

,Cc2
h3,û3

,Cc2
h4,û4

]
(79)

v1
v2
γ1
γ2

 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



û1
û2
û3
û4

 (80)

Cc2
h1,û1
=

K c2
1 (s+1/Tic21 )

s
, Cc2

h2,û2
=
K c2
2 (s+1/Tic22 )

s

Cc2
h3,û3
=

K c2
3 (s+1/Tic23 )

s
, Cc2

h4,û4
=
K c2
4 (s+1/Tic24 )

s
(81)

xc2 =
[
K c2
1 ,Ti

c2
1 ,K

c2
2 ,Ti

c2
2 ,K

c2
3 ,Ti

c2
3 ,K

c2
4 ,Ti

c2
4

]
(82)

min
xck

J(xck ) (83)

J(xck ) = {J1(xck ), J2(xck ), J3(xck ), J4(xck ), J5(xck ),

J6(xck ), J7(xck ), J8(xck )} (84)

Jη(xck ) =
∫ tf

0
|eη|

∣∣∣(h2,h3,h4)=(h02,h03,h04)
h1=h01+1cm

dt

+

∫ tf

0
|eη|

∣∣∣(h1,h3,h4)=(h01,h03,h04)
h2=h02+1cm

dt

+

∫ tf

0
|eη|

∣∣∣(h1,h2,h4)=(h01,h02,h04)
h3=h03+1cm

dt

+

∫ tf

0
|eη|

∣∣∣(h1,h2,h3)=(h01,h02,h03)
h4=h04+1cm

dt (85)

Jη+4(xck ) =
∫ tf

0

∣∣∣∣duηdt
∣∣∣∣ ∣∣∣(h2,h3,h4)=(h02,h03,h04)h1=h01+1cm

dt

+

∫ tf

0

∣∣∣∣duηdt
∣∣∣∣ ∣∣∣(h1,h3,h4)=(h01,h03,h04)h2=h02+1cm

dt

+

∫ tf

0

∣∣∣∣duηdt
∣∣∣∣ ∣∣∣(h1,h2,h4)=(h01,h02,h04)h3=h03+1cm

dt

+

∫ tf

0

∣∣∣∣duηdt
∣∣∣∣ ∣∣∣(h1,h2,h3)=(h01,h02,h03)h4=h04+1cm

dt (86)

η = 1 to 4

tf = 1000 seconds

xck ≤ xck ≤ xck (87)

J1(xck ) ≤ 8000, J2(xck ) ≤ 10000, J3(xck ) ≤ 2000,

J4(xck ) ≤ 5000, J5(xck ) ≤ 3, J6(xck ) ≤ 3,

J7(xck ) ≤ 1, J8(xck ) ≤ 1 (88)

xck =
[
K ck
1 ,Ti

ck
1 ,K

ck
2 ,Ti

ck
2 ,K

ck
3 ,Ti

ck
3 ,K

ck
4 ,Ti

ck
4

]
(89)

The bounds of xck are shown in the Table 11.
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FIGURE 19. Control efforts of the controllers in PE and PF .

TABLE 10. PI diagonal and off-diagonal controllers selected
in Fig. 16 [49] represents the controller proposed by Johansson.

TABLE 11. Bounds of the decision vectors xc1 and xc2 for the third
example.

In the multi-objective optimization (MOO) stage of each
MOP, the Pareto fronts shown in Fig. 17 were obtained. It is
possible to visualize that the design concept c1 (loop pairing
LP1) has a better performance for the reference tracking of h1
and h2 than the design concept c2 (loop pairing LP2), while
the opposite is true for levels h3 and h4.
To analyze the trade-off between the IAE and IADU,

a solution of each design concept (PE and PF) was selected,
taking into consideration the regions with the best perfor-
mances for h1 and h2, and also h3 and h4. The responses of
the controllers in PE and PF are shown in Fig. 18.

TABLE 12. PIs controllers selected in Fig. 17.

The controller in PE has a better performance than the
controller in PF for reference tracking at levels h1 and h2
as shown in Fig. 18 and in objectives J1(xc1) and J2(xc1)
shown in Table 12. For reference tracking at levels h3 and
h4, the controller in PF has a better performance than the
controller in PE as shown in Fig. 18 and in the objectives
J3(xc2) and J4(xc2) shown in Table 12. With respect to con-
trol efforts, the controller in PF is less aggressive than the
controller in PE as shown in Fig. 19, and in objectives
J5(xc2), J6(xc2), J7(xc2), J8(xc2) as shown in Table 12.

VII. CONCLUSION
This paper shows a new framework for analyzing the problem
of selecting optimal input-output pairings for decentralized
control of non-linear multivariable systems. The proposal
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presented in this paper follows a multi-objective optimization
approach by extending the methodology shown in [46] for
application in non-linear multivariable systems.

An interesting aspect of the proposed methodology is that
the optimal tuning of each controller and the loop pairing
are embedded in the multi-objective optimization process.
By simulating the closed loop system, the proposed technique
enables analyzing the characteristics of the system for a
designer to make a decision according to his or her pref-
erences. This aspect logically increases the computational
cost of the technique, but it has the advantage that it enables
analyzing in greater detail the problem of finding optimal
loop pairings to efficiently control a multivariable non-linear
system.

Three examples of application of the proposed method-
ology are shown. In these examples, the strong relationship
between a designer’s preferences and the selection of an
optimal loop pairing has been demonstrated. The scenario
contemplated in the problem statement (the operating point
where the plant is operated and the structure of the controllers
and design objectives) conditions the performance of each
loop pairing. When a loop pairing is not clearly better than
others, the proposed multi-objective methodology offers the
control engineer amulti-dimensional approach to solve a loop
pairing problem and make decisions with more information
and based on preferences.

In the first example presented (coupled two-tank) it was
shown that the application of the loop pairing technique to
the linearized system can generate results that do not coincide
with those obtained by applying the technique directly to
the non-linear system. This gives more added value to the
loop pairing techniques that can be applied directly to non-
linear systems (such as the technique presented in this paper)
than those techniques that need to linearize the plant before
application.

In the second example (2 × 2 quadruple-tank system) the
proposed methodology was applied directly to the non-linear
system. It was found that there is a trade-off between the
performances of each loop pairing. This trade-off between
loop pairings means that one of the input-output pairings is
better for controlling one of the outputs and vice versa. This
shows that no loop pairing is better than another in all aspects
and that a designer could choose one or the other depending
on his/her preferences.

The third example is aimed at showing the scalability of
the methodology. In this case, it was applied to the same
non-linear system of the second example, but increasing its
order (4 × 4 quadruple-tank system). In this example, there
is one loop pairing that is better for controlling two of the
system outputs (levels h1 and h2) and the other loop pairing is
better for controlling the other two outputs (levels h3 and h4).
This shows that there is a trade-off between the input-output
pairings. It is worth noticing that, in this example, thanks to
the methodology proposed, not only an optimal loop pairing
(according to the designer’s preferences) was found but also
the control parameter tuning was carried out at the same

time, a tuning, moreover, that outperforms the ones proposed
in [49].

Future work will focus on expanding the methodology
proposed in this paper for application in uncertain multi-
variable systems since traditional loop pairing techniques
cannot analyze this effect and it can degrade the efficiency
of decentralized control.

As a final comment, it is worth mentioning that it will
be necessary 1) to improve the optimization algorithms in
order to face the increasing complexity of controlling MIMO
systems ofmany variables and 2) to consider the possibility of
incorporating more indicators in the multi-objective problem.
In other words, for the methodology proposed in this paper
to be applicable to a higher scale, it is necessary to achieve
computational improvements in the optimization algorithms.
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