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ABSTRACT Computer-aided diagnosis systems (CADs) present valuable second opinions to radiologists
in diagnosis. Many studies on thyroid nodules have proposed various CADs to provide a binary result,
benignity or malignancy, for doctors, ignoring interpretability of more ultrasonic features that could be
more useful. We develop an interpretable CADs (iCADS) that utilizes deep-learning networks’ classification
power and interpretability potential of clinical guidelines, like TIRADS, a well-established scale for thyroid
nodules. iCADS incorporates a main neural-networks model and six neural-network based interpreters. The
outputs of the six interpreters are compared with TIRADS guidelines and the matched result will form a
report, more than a benignity or malignancy result, for radiologists. Clinical images of 16,946 thyroid
nodules from 5,885 patients were used to train the proposed iCADS. An extra experimental data set
containing 501 images were used to test the performance of the model. For better illustrating the assistant
ability of iCADS, we also recruited ten junior radiologists to make diagnosis decisions with or without
the help of different versions of iCADS. The experiments demonstrated that iCADS can largely improve
junior radiologists diagnosis with the help of interpreter strategy. These experiments are also the very
first attempt to evaluate the effect of interpretability of deep-learning based CADs in clinical practice.
Comparison experiments with other deep-learning based CADs and traditional CADs indicated that the
interpreter strategy can easily be combined to other intelligent CADs without the loss of performance. The
framework of iCADS can also inspire more research on the development of CADs.

INDEX TERMS Interpretable computer-aided diagnosis system, deep learning, multi-task learning,
thyroid nodules, ultrasound.

I. INTRODUCTION
Thyroid cancer is one of the most serious cancers among
endocrine tumors, and its incidence has been rising more
rapidly than other types of cancers [1]. High-resolution ultra-
sound, thanks to its lower cost, noninvasive scanning and
non-radiation, has been widely used to image thyroid nod-
ules. But distinguishing malignant nodules from benign ones

The associate editor coordinating the review of this manuscript and
approving it for publication was Luca Cassano.

through ultrasound images is heavily dependent on the expe-
rience of radiologists, and a junior physician can easily
misinterpret those sonographic characteristics [2], [3].

Computer-aided diagnosis systems (CADS) can provide
efficient and quantitative diagnostic results to assist doctors
in the interpretation of medical images. A CAD result can
be seen as a second opinion that is objective and comprehen-
sive. Studies have reported that the second opinion provided
by CADS, known as a double reading, contributed to the
reduction of the occurrence of missed cancers [4].
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Traditional approaches utilized features that were manu-
ally extracted from thyroid ultrasound images [5]–[7]. How-
ever, Liu T et al found that these features were inept for
their dataset [8] and proposed a new extraction method that
combines deep features with conventional textual findings.

This improvement, however, can hardly cope with the
style of varies images. Given different ultrasonic devices
and diversified radiologists’ scanning habits, ultrasonic
images can differ widely from dataset to dataset. A high-
transferability classification model is required.

Some researchers have adopted deep learning to classify
diseases features through ultrasonic images, including breast
lesions [9], liver lesions [10], and prostate lesions [11].

These deep-learning-based approaches can indeed com-
pete with skilled radiologists [7], [12]–[14]. but few studies
have regarded their expertise as an assistant to doctors. It has
been widely acknowledged that the goal of CADs is not to
replace radiologists, but to deliver valuable second opinions
to them [15].

Actually, deep-learning algorithms are far from being as
trustworthy as people think. Some researchers have even
claimed’’ letting the data speak for themselves can be prob-
lematic’’ [16]. Machine learning could present some mis-
classifications simply against human’s common sense [17],
[18]. These errors could come from parameter sampling, or
certain noises in the original images. Given possible medical
malpractice these mistakes might cause, AI diagnosis needs
strict double-check from physicians. Their contribution is to
provide intelligent references to doctors, not to act for them.

But the existing classification models output results in
terms of statistical texture features or deep network features
that doctors can hardly understand. Although some literatures
claimed their approaches could elevate radiologists’ ability to
diagnose thyroid cancer [12], they failed to elaborate how
much the CADs contributed to final decisions.

Both traditional and deep-learning approaches output a
binary result: benign or malignant. The lack of inference
pathway cannot convince radiologists [15], and CADs that
could provide more interpretable and elaborative results are
eagerly required.

In fact, many clinical guidelines can be used as reference
to CADs, especially the medical-image-related reporting
systems. For example, in 2009, an ultrasonogram reporting
system for thyroid nodules proposed by Horvath et al. [19].
In 2009, guidelines for the management of patients with thy-
roid nodules and differentiated thyroid cancers developed by
the American Thyroid Association (ATA) in 2015 [20]. ACR
TIRADS Committee’s recommendations [21] were released
by the ACR Thyroid Imaging, Reporting and Data Sys-
tem (TIRADS) Committee in 2017. These clinical guidelines
hold compelling potentials to retrofit deep-learning-based
CADs.

Among them, ACR TIRADS is the dominant guidelines
for determination on thyroid nodules. It is a semi-quantitative
scale that describes ultrasound features designating to benign
or malignant nodules and assigns scores for each level.

FIGURE 1. Typical ultrasound image of thyroid nodule.

Thyroid nodules are divided into 5 levels where a larger
number implies a higher risk of malignancy. Some stud-
ies found that based on consent of multi-doctors on the
TIRADS-based results, the classification could reach a cor-
rectness rate of 80.9% [22]. Similarly, some doctors input
BIRADS(guidelines for breast nodules)-based features into
classifiers and the correctness passed 90% [23]. Fig. 1 dis-
plays an ultrasound image of a thyroid nodule. According
to ACR TIRADS, its four features beget it 7 points: solid
or almost completely solid(2 points), Hypoechoic(2 points),
wider-than-tall(3 points), smooth(0 point), which leads to
highly suspicious malignancy. And the pathological result
confirmed that.

Much different from common strategies that are most
likely to improve the accuracy of classifiers in previous
CADs, the starting point of this study is to develop an
interpretation computer aided diagnosis system (iCADS) to
achieve better decision assistant’s ability by introducing clin-
ical guidelines.

A common deep learning based CADs can effectively
explore the underlying patterns among ultrasound images and
the corresponding pathology results through the supervised
learning process, which can achieve highly-accurate but
seem difficult to interpret. Basically, one feasible solution
for this issue is to ignore the pathology results, and develop a
series of clinical feature classifiers to learn from radiologist’s
experiences. However, the performance are limited by the
experiences of radiologists, and probably cannot compete to
the pathology learning based CADs

In this study, we appropriate the classification power of
a deep-learning algorithm, ResNet50, and the valuable ref-
erencing of ACR TIRADS to establish a novel iCADS for
ultrasound thyroid nodule images. Our system extends nor-
mal ResNet50 into a framework containing seven classifiers:
one for judging benignity or malignancy, and six for extract
nodules features. Through matching the features with ACR
TIRADS, iCADS can provides understandable reference to
radiologists. The comtributions of our study are as follows.

1. The extended six classifiers can exploit deep features
that convolutional network extracted and transforms them
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into comprehensive information with the help of TIRADS.
Thus, iCAD can provides valuable reference to doctors,
more than just benignity or malignancy, which elevates the
assistant ability of CADs into a higher level.

2. The extra information iCADS interprets can improve
diagnosis correctness of junior radiologists, which was vali-
dated by a series of experiments. And these experiments are
the first ones that could evaluate the effect of interpretability
of CADs in clinical practice.

II. METHOD
A. DATA COLLECTION
Our retrospective study was approved by the Research Ethics
Committee of the General Hospital of the People’s Liberation
Army of China. The two datasets used in this study are the
training dataset for model training and validation, and the
experimental dataset for evaluation. No image of the same
patient is included in both datasets. The ultrasonic scanners
that obtained all the images of the two datasets included
Siemens ACUSON S2000, Philips iU22, Esaote MyLab
Twice, the Siemens ACUSON SEQUOIA 512, the Hitachi
HI VISION Ascendus, PHILIPS iU Elite and GE Vivid
E9 ultrasound systems with a high-frequency probe.

The training data set contains 16,946 images col-
lected from 5,885 patients with thyroid nodules between
May 2014 and November 2018.

An extra experimental data set includes 501 images
from 300 patients with thyroid nodules from June 2016 to
June 2017.

Images in both datasets had been labeled with patholog-
ical tags before they were transferred to investigators, and
4,078 of the training set and all the images in the experimental
set were marked with TIRADS by an experienced radiologist.

The inclusion criteria are (1) patients with complete pre-
operative ultrasound of the thyroid nodules, (2) patients who
underwent surgery or a core needle biopsy(CNB) after thy-
roid examination, (3) patients who underwent a fine needle
aspiration biopsy (FNAB) for thyroid benign lesions (exclud-
ing adenomas) at least two times with a one-year interval,
(4) patients who underwent initial FNAB and US follow-up
(>12 months after FNAB) for thyroid benign lesions (exclud-
ing adenomas). Eligibility criteria are specified as: patients
were excluded if pathological findings were inflammatory
lesions or unclear.

B. INTERPRETABLE AIDED DIAGNOSIS SYSTEM
The proposed iCADS is to utilize intelligent decisions of the
deep learning model as well as the informative features it
extracts. With the help of clinical guidelines, the extracted
features can be transformed into comprehensible information
and used as reference, together with the result of the deep-
learning model, to facilitate radiologists’ final decision.

iCADS consists of two parts: a main network trained by
pathological images to output benign or malignant, and an
interpretation strategy containing six interpreter networks

FIGURE 2. The diagram of the proposed iCADS structure.

based on clinical guidelines to explain the incomprehensible
features extracted by the main network.

First, iCADS selects region of interest (ROI) of thyroid
nodules from original ultrasound images; second, deep net-
works classify nodules, including main networks and six
interpreters. Finally, iCADS compare nine outputs of clas-
sifiers with TIRADS and presents detailed and final sugges-
tion to radiologists. In practical terms, the clinical features
were identified and formed diagnostic report by the iCADS
and one radiologist independently. Thereafter, the radiolo-
gist considers both diagnoses and draws the final diagnostic
decision based on TIRADS. The three-step processing is
elaborated as follows.

1) ROI SELECTION (PREPROCESS)
In this procedure, a single roi covering an entire nodule
in each image is manually selected by an experienced radi-
ologist. Each ROI is a square and normalized to a size of
224 × 224. Then the aspect and the echogenicity ratio can
be calculated by following equations respectively:

Raspect =
wroi
hroi

(1)

Rechogenicity =
En
Et

(2)

where wroi is the width of ROI, hroi is the height of ROI, En
is the average intensity in ROI and Et is the average intensity
around the ROI, as shown in Fig. 3. The two parameters
will be used as two of the outputs of iCAD for template
matching.
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FIGURE 3. Typical ultrasound ROI section of thyroid nodule.

FIGURE 4. Main network and interpreter network.

2) NODULE RECONGNITION
An increasing number of researchers have delved into the
interpretability of deep networks, and developed models that
can generate interpretable knowledge representations [24].
These approaches inspire us to exploit deep features hiding in
the layers of neural networks, but their resulted knowledge
representations are still obscure for clinical practice. There-
fore, we design an interpretation method that maps deep
features into clinical characteristics to obtain more explicit
representations.

The whole iCADs is constructed based on the extended
ResNet50 networks, and composed of two parts: the main
networks to classify nodules into benign or malignant =,
ones, and the interpretation model composed of 6 six
interpreter networks to classify clinical features, as shown
in Fig. 4. It is the deep features extracted by the main net-
works, instead of the nodule ultrasound images, that are
input into the interpretation model.

Fig. 2 indicates that the training procedure is actu-
ally a multi-task learning process and its key drive is the
ResNet50. The ResNet50 [25] used in this study was pre-
trained on ILSVRC [26], which have demonstrated useful
for medical image analysis [27]. As a typical DCNN, the
Resnet50 ResNet50 consists of five stages of convolutional
layers, and an average pooling layer followed by a 1000-
way fully connected layer. To tailor to the multi-task strategy,
we retrofit the ResNet50’s original framework by extending
it upon the most commonly used Shared-Bottom multi-task
DNN structure [28], that is, replacing the 1000-way fully
connected layer with seven parallel separate layers. The seven
layers correspond to the respect seven binary classification
tasks, including benign or malignant, solid or not, cystic or
not, mixed cystic and solid or not, with or without macro-
calcifications, with or without punctate echogenic foci, and
smooth or irregular, as shown in Table.1. Each task outputs
a binary result, which can be easily normalized and fitful for
later TIRADS form template matching. Each network train-
ing clinical feature has a separate layer with 256-dimensional
fully connected layers followed by a two-way softmax layer
with randomly initialized weights W drawn from a normal
distribution as follows: W ∼ N (µ = 0, σ 2

= 0.05). It is
worth mentioning that some features mentioned in the ACR
TIRADS guide were not included in the model due to its poor
robustness, which appeared less in the training data. Besides,
features of shape and echogenicity in ROI were estimated
by direct measurement, and did not participate in network
training.

Notably, the six features that are labeled in the ultrasound
images and fed into the six impetrators are seriously unbal-
anced. A common solution is to sample those data before
training. This is suitable for most single task classification,
but would cause oversampling or under-sampling in multi-
tasks and even exasperate the unbalance. Therefore, we
deploy a strategy of rotation training, as explained in Fig.5.
During each round, the network is trained feature by fea-
ture with each batch; then it is trained for the classifier
that predicts benignity and malignancy. This rotation training
keeps repeating until all the feature-learning processes reach
convergence. All the tasks employ the categorical hinge loss
for training with the gradient descent method.

3) TI-RADS FORM TEMPLATE MATCHING
iCADS uses ACR TIRADS to match the networks’ outputs
with clinical characteristics. ACR TIRADS lists 18 features
in an ultrasound image that could imply the state of a thyroid
nodule, leading to 262144(218) potential feature combina-
tions. Fortunately, most of these feature combinations are
unlikely to occur in clinics. We selected the most represen-
tative 13 features, as listed in Table. 1, and form 83 feature
combinations for matching templates. Thus, those nine out-
puts of iCADS, including six features from six interpreters,
one benign or malignant classification and two measure-
ment parameters of the ROIs, can be compared with these
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FIGURE 5. Training process is a continuous cycle. Each task is trained
alternately.

TABLE 1. The features mentioned in TIRADS and their detection methods
in this study.

83 matching templates, and the most matching template will
be selected as the aided diagnosis report.

C. DIAGNOSTIC AND INTERPRETATION
PERFORMANCE OF THE iCADS
To further validate the performance of iCADS, we acquired
an experimental data set from 300 participants containing
501 images (208 benign and 293malignant) as the experiment
dataset. We used the results of core needle biopsy (CNB) and
fine needle aspiration biopsy (FNAB) as clinical diagnosis for
thyroid nodules.

To verify the binary classification performance of the
in terms of benign and malignant tumor of thyroid, the

corresponding diagnosis result of two experienced radiologist
was compared as reference. In addition, another learning
based model (VGGNet [29]) which commonly used in assis-
tant diagnosis system is also used for comparison [10], [30].
The precision, recall, accuracy and f1-score of diagnosis
were then evaluated. To further validate the correctness of the
six interpreters, we compared their results with the judgment
of an experienced radiologist (over ten years of experience
in ultrasound diagnosis), and calculated related Cohen’s
kappa coefficient and proportional agreement to analyze the
consistency.

D. RADIOLOGIST-COMPUTER COOPERATION
EXPERIMENTS
To evaluate the assistance performance of our iCADS, we
recruited ten junior radiologists who had 1-3 years of expe-
rience at ultrasound diagnosis. They were randomly divided
into two equal groups: the experimental group where the five
radiologists used the full version of iCADS, which means
they were allowed to obtain both the TIRADS matching
results and the benignity or malignancy result; and the control
group where the radiologists used a short version of iCADS
through which they could only obtain the benignity or malig-
nancy result. Since the two groups will receive same binary
results, the differences of the final decisions between the two
groups would largely depends on the contribution of clinical
interpretability that the six interpreters produce.

The comparison was exerted in two steps: 1) The ten
junior radiologists independently diagnosed the images in the
experimental data set without the help of iCADS; 2) After
one week, those junior radiologists were divided into the
two groups and used corresponding versions of iCADS to
re-diagnose the images in the experimental data set.

We had observed that it takes at least, three seconds to
complete a procedure from opening a window and clicking
the save button, which means if a diagnosis lasted less than
3 seconds, chances would be high the radiologist had not
finish reading iCADS’s report. Thus, results that the radiolo-
gists were diagnosed less than 3 seconds were automatically
deleted. We used precision, recall, accuracy and f1score to
compare diagnosis of benign or malignant nodules between
the two groups. We employed McNemar’s test to compare
manual diagnosis with iCAD-aided results in terms of recall
and accuracy, and adopted permutation test to compare the
changes of precision, recall, accuracy and f1-score in the
two groups.

III. RESULT
We conducted a series of experiments to validate the perfor-
mance of iCAD.We trained the iCADmodel using stochastic
gradient descent(SGD) method. The training was exerted on
a personal computer equipped with NVIDIA GTX 1080Ti.
We randomly chose 85% of the image set as the training set
and used the remaining 15% of the images as the validation
set. The training lasted five hours.
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FIGURE 6. The loss curve of each task during the training.

TABLE 2. Inter-observer variability between the CADs and an experienced
radiologist.

A. PERFORMANCE OF CLINICAL FEATURES EXTRACTION
The effectiveness of the six interpreters is crucial to iCAD’s
performance. After the training, all the six networks con-
verged to a stable value, as depicted in Fig. 6. As shown
in Table. 2, six interpreter networks show substantial or
moderate agreement between the CADs and the experienced
radiologist in the analysis of inter-observer variability, and
their identification results exhibit similar or better perfor-
mances than the mentioned in previous work [31], [32].

B. PERFORMANCE OF BENIGN AND MALIGNANT
CLASSIFICATION
The performances of two networks, including proposed
iCADS based on VGG16 [29] and ResNet50 [25] for clas-
sification of benign and malignant nodules were compared
with experienced radiologists and previous study. As shown
in Table. 3, the two networks perform comparably in recall
and f1-score, and both are higher than that of the two radi-
ologists, while precisions of the two networks are lower
than that of the radiologists. The two neural-network-based
iCADS also achieve better results than those of the two
methods in previous studies [31], [32].

C. ASSISTANT’S ABILITY
In Fig. 7, no significant difference in accuracy(p > 0.1),
precision(p > 0.1), recall(p > 0.1), and f1-score(p > 0.1)
exists between the two groups when exerting independent
diagnosis.When the both groups obtained the help of iCADS,
whether with TIRADS or not, the recall of both groups

TABLE 3. Comparison between different models and experienced
radiologists.

FIGURE 7. Comparison of the diagnostic accuracy(A), recall(B),
precision(C),and f1-score(D) between radiologist computer cooperation
and junior radiologist only (*p<0.1; **p<0.05;***p<0.01).

were increased (the control group: 71.59%vs. 89.61%, p =
0.0000***; the experimental group: 59.51%vs. 92.42%, p=
0.0000***), which directly leds to an improvement in accu-
racy (the control group: 74.05%vs. 77.19%, p = 0.0555*;
the experimental group: 70.1%vs.80.2%, p = 0.0000***)
and f1-score (short version icads: 76.36%vs. 82.14%; the
experimental group: 69.71%vs. 84.37%). But the precision of
the two groups both decreased (the control group: 81.82%vs.
75.82%; the experimental group: 84.14%vs. 77.6%).

The experimental group exhibited significant advantages
over the control group: accuracy: 2.24%vs. 9.76%, p =
0.0159**; recall: 12.22%vs. 30.99%, p = 0.0238**; f1-
score: 3.81%vs. 14.35%, p = 0.0198**. And the precision
of the two groups decreased in a similar level (−4.62%vs.
−6.61%, p = 0.7262). In particular, the accuracy and the
f1-score that the junior radiologists in the experimental group
achieved can compete with those of experienced radiologists,
which radiologists in the control group could not reach.

IV. DISSCUTION
We designed a neural-network-based approach iCADS that
performs better in classification of benign or malignant thy-
roid nodules and can provide comprehensible assistance to
radiologists. We attribute this success to the adaption of
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ResNet50 and the adoption of TIRADS as the matching
templates. Compared with traditional TIRADS-based classi-
fication methods, our iCADS agree better with pathological
results; compared with common deep-learning-based meth-
ods, iCAD can offer extra useful information for junior radi-
ologists. The experiments demonstrated that the diagnostic
evidence presented by iCADS can impose positive influences
on radiologists. And our experiments is the first setup that can
evaluate the impact of the interpretation in clinical practice.

Most studies on ultrasound-aided diagnosis focused on
improving classifiers’ performance by training models with
large amounts of data or utilizing advanced models, and
some physicians acknowledged the value of feature classi-
fication, but seldom noticed interpretability of clinical fea-
tures. We developed an interpretation approach that brings
comprehensible clinical features to radiologists for the very
first time, and thus exploit potential power of CADs to
benefit human-computer cooperation.

Most studies on ultrasound-aided diagnosis focused on
improving classifiers’ performance by training models with
large amounts of data or utilizing advanced models, and
some researchers acknowledged the value of feature classi-
fication, but seldom noticed interpretability of clinical ultra-
sound features. Alternatively, we blaze a new trail, clinical
features mentioned in the TIRADS were introduced in this
study. At present, there are some researches on the clinical
features classification. However, previous studies did not
report any finding on the radiologist computer cooperation.
This study is the first attempt to evaluate the impact of the
interpretation in clinical practice.

iCADS’s performance on benign and malignant classifica-
tion indicated that iCADS’s precision and recall were higher
than those of junior radiologists, which demonstrates iCADS
has a potential of providing valuable suggestions for docotors.
The performance of clinical feature extraction indicated that
the TIRADS matching results generated by the proposed
iCADS is consistent with radiologists’ understanding of clin-
ical features, which implies that the results of iCADS can be
smoothly integrated into the radiologists’ reasoning.

The comparison experiments between the experimental
group and the control group showed that both groups could
increase accuracy,recall,and f1-score but decrease precision
from those of the decisions that the junior radiologists made
independently. This can account for iCADS itself of holding
an ability to provide higher recall and lower precision than
radiologists. And this also agrees with common knowledge
of AI-based CADs The superiority of iCADS lies in its
interpretability. Without six interpreters, iCADS is basically
a traditional CAD.

The experiments also indicated that the experimental group
provided a higher recall than and a similar precision with
those of the control group. The only difference between the
two groups was whether they were provided with the six
interpreters, which means that the clinical interpretability
embedded in iCADS can significantly reduce the rate of mis-
diagnosis. The control group without TIRADS only received

an alert of disagreement or agreement with iCADS, which
can remind junior radiologists to make a check on their diag-
nosis. Basically, compared with the ’’disagreement’’ alert, it
is more important for different radiologists to exchange rea-
sonable ideas from different perspectives in the consultation
by human radiologists

CADs naturally hold a different perspective from radiol-
ogists, which can benefit doctors’ final decision as a ‘‘sec-
ond opinion’’. But its binary output limits the possibility of
sharing diagnostic evidence with radiologists. Without clin-
ical interpretation, the CADs’s only present benignity and
malignancy that is hard to be incorporated into radiologists’
reasoning system, especially for junior ones. The simple
‘‘yes or no’’ suggestion would also push radiologists to an
extreme situation: trusting CADs or ignoring their results.

Our approach that incorporates six interpreters is to estab-
lish a bridge between CADs and radiologists. Our experi-
ments on iCADS’s assistance ability demonstrated that the
bridge is necessary and beneficial to radiologists, by effec-
tively providing detailed interpretation of clinical features.

The interpretation strategy in the proposed iCADs makes
it much easier for radiologists to integrate their own opinions
into the available evidences, rather than just using either
their own results or CADs’. In fact, in the experiment of
the radiologists using the short version of iCADS, a large
number of samples appeared without effective double reading
(operation time less than 3 seconds), which was rare in
the experiment of the radiologists using the full version of
iCADS.

In order to avoid influences of radiologists’ preference
or memory, we invited two groups of doctors to use two
versions of iCADS, instead of one group used the two ver-
sions in turn. Although individual differencesmight influence
the comparison, our experiment on radiologists independent
diagnosis showed that no significant differences existed in
accuracy, precision, recall, and f1-score between radiolo-
gists, implying individual differences can be ignored.

This iCADs were established on a ResNet50 architecture
and ACR TIRADS guidelines, but more than just that. Two
common deep-learning networks were compared in the clas-
sification of benign and malignant nodules: ResNet50 and
VGG16, and results showed that they demonstrated accept-
able performance, and both showed similar advantages in
recall rate, which might allow to complement with radiol-
ogists, especially with junior radiologists. This implies our
interpretation strategy can be used in other deep-learning-
based CADs and obtain similar performance elevation.

Besides, the role of clinical guidelines in this study is
to provide the valuable evidences for reasoning. There are
different guidelines from the consensus of thyroid diagnosis,
which can also be adapted for the interpreter design and
training using the proposed strategy.

In conclusion, by introducing the interpretation strategy
based on TIRADS guideline, we proposed a novel iCADS
with extra clinical feature interpretability for thyroid nodules.
A series of experiments demonstrated iCADS can improve
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junior radiologists’ diagnosis decisions remarkably by pre-
senting them comprehensible clinical feature matching. Our
study is the first attempt to investigate the effect of inter-
pretability of CADs in clinical practice.
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