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ABSTRACT Electroencephalogram (EEG) have been extensively analyzed to identify the characteristics
of epileptic seizures in the literature. However, most of these studies focus on the properties of single
channel EEG data while neglecting the association between signals from diverse channels. To bridge this
gap, we propose an EEG instance matching-based epilepsy classification approach by introducing one
convolutional neural network (CNN). First of all, each pair of EEG signals are exploited to form one
2 dimensional matrix, which could be used to reveal the interaction between them. Secondly, the generated
matrices are fed into the proposed CNN that would discriminate the input representations. To evaluate the
performance of the presented approach, the comparison experiments between the state-of-the-art techniques
and our work are conducted on publicly available epilepsy EEG benchmark database. Experimental results
indicate that the proposed algorithm could yield the performance with an average accuracy of 99.3%, average
sensitivity of 99.5%, and average specificity 99.6%.

INDEX TERMS Convolution, machine learning, classification algorithms.

I. INTRODUCTION
Being a typical brain recording modality, Electroencephalo-
gram (EEG) has been widely applied in the detection and
identification of epileptic seizures. Generally, those electric
fields from brain are captured by scalp EEG equipment
that could provide an economical and non-invasive fashion.
Originally, the precise interpretation of EEG data were imple-
mented manually. Since it is a time-consuming and labori-
ous task, the automated classification of EEG samples had
become a buzzing field in current studies [1]–[5].

Previously, large amount of researches have paid attention
to this domain. For instance, Gotman [6] proposed the first
epileptic EEG recognition algorithm, in which the EEG
signals were decomposed into elementary waves whose peak
amplitude, duration, slope, and sharpness were then simulta-
neously as the representations for epilepsy in EEG samples.
Then, Adeli et al. [5], [7], [8] introduced the wavelet (WT)
features including discrete Daubechies and harmonic
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wavelets to characterize the EEG samples with seizures.
Adeli and Ghosh-Dastidar [9] presented an advanced compu-
tational model for automatic neurological disorder diagnosis
in EEG by using neural networks, wavelets, and chaos theory.
In the work of [10], Acharya et al. proposed a convolutional
neural network (CNN)-centric algorithm for classifying the
types of EEG signals. A method using the local binary
pattern (LBP) was proposed by Qi et al. [12] based on the
WT to discriminate the EEG behaviors. Within this frame-
work, the LBP operator was conducted on the WT-based
representations and fed into a support vector machine (SVM)
classifier. In the work presented in [13], Li et al. proposed
an automatic EEG signal classification method for epilep-
tic seizure recognition with a continuous WT. Both Gaus-
sian Mixture model (GMM) and Gray Level Co-occurrence
Matrix (GLCM) features were employed. Recently, U.R.
Rajendra Acharya et al. [11] reviewed the automated EEG-
based identification of epilepsy including the techniques that
are developed for seizure prediction.

Commonly, these automated techniques for epilepsy detec-
tion in EEG follow a straightforward procedure including
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FIGURE 1. The pipeline for general anomaly detection algorithms.

pre-processing, feature extraction, feature selection, and clas-
sification as illustrated in Fig. 1. These techniques have
shown their great performance in various aspects. However,
most of them did not take the association between multiple
channels of EEG signals as an extracted feature for the dis-
crimination of ictal, interictal, and normal EEG activities. The
relationship betweenmulti-path EEG signals could contribute
to the identification of epilepsy since the multi-path signals
are generated simultaneously. Although multiple channels
have been leveraged into these studies, most of them deal
with the channels in a serial fashion rather than a paral-
lel pattern. To be specific, the multi-channel EEG signals
are incorporated into the classification pipeline one after
another.

Meanwhile, since deep learning-based algorithms have
become a hot topic in recent applications including image
analysis and signal processing [118], [119]. A large amount of
them have also been applied in brain-machine interface (BCI)
applications. Specially, a number of works have presented the
employment of CNNs in EEG information analysis and pro-
cessing. For instance, Oshea et al. [15] proposed a end-to-end
deep learning framework that could automatically extract the
hierarchical representations from EEG signals for neonatal
seizure detection. And the presented CNNwas exploited both
as a feature extractor and the classifier. In [16], a CNN-based
pipeline was proposed to implement the classification of
intracranial and scalp EEG data. It could produce the optimal
feature sets over the manual descriptors. It is notable that the
deep learning-based techniques heavily rely on the quantity
and quality of the training set, which is usually inadequate for
the publicly available EEG datasets.

Bearing the above-mentioned analysis in mind, we pro-
pose a convolutional neural network (CNN)-based pipeline
for classifying the types of input EEG signals. In this
approach, the relationship between each pair of EEG firstly
are integrated into one matrix. By using the 1D convolu-
tion operation, the interaction between pair of EEG chan-
nels can be generated. Then, the generated matrices are fed
into the proposed CNN, which could accurately identify

the type of input data samples. Totally, there are nine cat-
egories of combinations for the pairwise EEG activities as
followings.
(1) (normal, normal)
(2) (normal, ictal)
(3) (normal, interictal)
(4) (ictal, normal)
(5) (ictal, ictal)
(6) (ictal, interictal)
(7) (interictal, normal)
(8) (interictal, ictal)
(9) (interictal, interictal)
To note that numerous pairs of EEG data are taken as the

input for this presented CNN in the following experiments.
While in the practical applications, one single channel EEG
signal is used as the baseline, which would be combined with
each input EEG sample.

To evaluate the performance of the proposed approach,
the comparison experiments between the state-of-the-art
techniques and our work were carried out on one pub-
licly available dataset. The experimental results indicate
that the accuracy of our work is superior over the state-
of-the-arts.

In general, our work offers the following contributions:
(I) To the best of our knowledge, this is an early work

of Pairwise matching-based deep learning strategy for
epileptic seizure detection in EEG data.

(II) We propose a novel deep learning architecture with
an input of the association between each pair of EEG
signals.

(III) Experimental results indicate that the proposed
approach could outperform the state-of-the-arts in
accuracy.

The remainder of this article is organized as follows.
Firstly, the details about the proposed approach is described
in Section II. In Section III, we provide the comparison exper-
iments, results, and the corresponding discussion. Finally,
both the conclusion and our future work were given in
Section IV.
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FIGURE 2. The proposed convolution operator on EEG signals. Each row represents one epoch of the original EEG sample from each
subject while one column stands for the 1

16 of an epoch.

II. METHODOLOGY
A. CONVOLUTIONAL EEG SIGNAL MODEL
Firstly, we propose a novel convolutional framework formod-
eling the EEG activity. As demonstrated in Fig. 2, the EEG
signals aligned sequentially are taken as the input of the
proposed convolution operator. Each row in the input data
represents one epoch of the original EEG sample from each
subject while each column stands for the 1

16 of an epoch
of EEG signal. Then, the representation vector with a fixed
length would be generated by using a sequence of convolu-
tional and pooling layers.

1) CONVOLUTION
The employed convolution operators are realized in a sliding
window fashion, simultaneously. In general, assuming that an
input is x, the corresponding outcome of class-c at layer-l is
formulated as following:

z(l,c)i =z(l,c)i (x)=σ (w(l,c)z(l−1)i +b(l,c)), c = 1, 2, . . . ,C

(1)

where w(.) and b(.) is the weight and bias function, respec-
tively. σ (.) represents the activation function like sigmoid
[17] and ReLU [18] while C denotes the maximal types of
the EEG signals. To note that the matrix form of Eq. (1) is:

z(l)i = z(l)i (x) = σ (W (l)z̄(l−1)i + b(l), (2)

where z(l,c)i denotes the output feature map for type-c at
layer-l of location i, w(l,c) is the weighting parameters for
class-c at layer-l. And z̄(l−1) represents the segment of layer-l
at location i with:

z̄(0)i = xi:i+k1−1 = [xTi , x
T
i+1, . . . , x

T
i+k1−1]

T (3)

where k1 denotes the width of each row for the input EEG
data.

2) MAX-POOLING
The max-pooling operator is performed on each pair of rows
for the input, which could be mathematically defined as:

z(l,c)i = max(z(l−1,c)2i−1 , z(l−1,c)2i ), l = 2, 4, . . . (4)

The role of max-pooling in the proposed CNN architec-
ture includes compressing the size of extracted features and
removing the redundant components in the data samples.

B. NETWORK ARCHITECTURE
The novel CNN architecture is built upon the association
between pairwise EEG signals. The EEG behaviors on multi-
ple channels are captured rather than the information from
one single channel. Both the characteristics of each sin-
gle signal and the relationship between two EEG samples
could be preserved before feeding into the proposed CNN.
To be specific, all of the combinations for the EEG data are
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FIGURE 3. The 2D pooling operation that could preserve the spatial position in the proposed CNN.

FIGURE 4. The proposed deep learning network architecture.

generated by using the convolution operation presented in
Section II-A1. We assume that sample x and y are denoted
by Sx and Sy, for segment m of Sx and segment n in Sy we
obtain:

z(l,c)m,n = z(l,c)m,n (x, y) = g(z̄0m,n).σ (w
(l,c).z̄0m,n + b

(l,c)), (5)

where z̄0m,n ∈ R denotes the concatenating vectors of Sx
and Sy.

z̄0m,n = [xTi:i+k1−1, y
T
j:j+k1−1]

T . (6)

From the concatenation, the spatial alignment of the seg-
ments are preserved in the first layer. And the following lay-
ers both leverage the 2D convolution and pooling operators
Fig. 3. In layer-2 and layer-3, the output could be respectively
expressed as:

z(2,c)m,n = max(z(1,c)2m−1,2n−1, z
(1,c)
2m−1,2n, z

(1,c)
2m,2n−1), (7)

and

z(3,c)m,n = g(z̄2m,n).σ (W
3,cz̄2m,n + b

3,c). (8)

Through leveraging the 1D convolution as mentioned
Section II-A1, a representation of the interactivity between
pairwise EEG signals, z(l)m,n contains the information from
both of them. And the 2D convolution could formulated as:

z(l)m,n = g(z̄(l−1)m,n ).σ (W (l)z̄(l−1)m,n + b
(l,c)), l = 3, 5, . . . (9)

where z̄(l)m,n connects the representation vectors in layer-l− 1.
In general, the architecture of the proposed CNN is illus-

trated in Fig. 4.
Besides the 1D convolution layer, there are the following

layers described as:
• Convolutional. 48 kernels of size 3 × 9 × 9 are used in
the first layers followed by one ReLU layer.

• Convolutional. 128 kernels of size 3 × 7 × 7 combined
with the ReLU layer

• Convolutional. 128 kernels of size 3 × 5 × 5 combined
with the ReLU layer.

• Fully connected layer. 1024 neurons in total that are is
used to realize the high-level reasoning.
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TABLE 1. Performance comparison between state-of-the-art techniques and ours for normal (Set A) and ictal (Set E) EEG signals.

One softmax loss function is located at the end of this
network, which is formulated as:

Ls = −
N∑
i=1

log (P (ωk) | (Li)), (10)

where N denotes number of the input images, P(ωk |Li) indi-
cates the probability of correct classification.

III. EXPERIMENTS
A. DATASET AND EVALUATION METRICS
1) DATASET
In our work, the dataset [19], which was presented by Depart-
ment of Epileptology, University of Bonn, was exploited
in the epileptic EEG classification experiments In general,
the data samples were captured fromfive healthy subjects and
five patients with epilepsy.

To be specific, there are five sets in the dataset denoted as
A, B, C, D, and E. The EEG recordings of the health sub-
jects were captured following the international 10-20 system.
Meanwhile, the interictal and ictal samples were respectively
collected from the depth electrodes and the same equipment
with the electrodes planted into the lateral and basal regions
of the neocortex. In each sequence, 100 EEG segments are
incorporated and every segment consists of 4,096 sampling
points while the duration for each segment is 23.6 seconds.
All of the samples are divided into three categories includ-
ing normal, interictal, and ictal that were collected from
128-channel EEG recordings after the pro-precessing like
artifacts eliminations.

In the experiments, three types of recordings composing of
the A (normal), D (interictal), and E (ictal) were used to eval-
uate the performance of the proposed approach. In general,
we sequentially conducted the binary classification of set A
and D, set D and E as well set A, D, and E.

2) PRE-PROCESSING
EEG has a low spatial resolution [20]. Therefore, the pre-
processing of EEG recordings usually consists of the artifact
elimination [21] from eye-movement [22], heartbeat [23],
respiration [24], and electrical disturbance [25].

The EEG samples were captured from one 128-channel
amplifier platform [19]. Furthermore, they were digitized at
a sampling rate of 173.61Hz. And the corresponding output
was then filtered by a band pass filter with 0.53 40Hz and
12 dB/octave.

3) EVALUATION METRIC
In this study, Accuracy was employed as the performance
metric in the experiments that could be formulated as:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
, (11)

where TP denotes true positive, FP is false positive, TN
represents true negative, and FN is false negative. Precision
is commonly used to indicate the percentage of positive
outcomes in total, and Accuracy denotes the true samples
comparing with the entire set.

To evaluate the presented method in a robust fashion,
we adopted one 10-fold cross-validation strategy. Firstly,
the entire EEG signal samples were separated into ten subsets
and each set contains same number of samples. Generally,
we conducted 10 rounds of experiments for cross-validation.
During one single round, one subgroup of recordings were
taken into the testing set while the other 9 subsets were
exploited as the training set.

It is notable that accuracy was firstly calculated for each
round. Finally, the average accuracywas taken as the outcome
result.

B. EXPERIMENTAL RESULTS
To evaluate the performance of the proposed algorithm,
we respectively conducted experiments on Set A and D, Set D
and E, and Set A, D, and E as illustrated in Table. 1, Table. 2,
and Table. 3.

It can be observed from the tables including Table. 1,
Table. 2, and Table. 3 that the classification performance of
the proposed EEG classification framework achieved supe-
rior accuracy over the state-of-the-art EEG identification
techniques with different features and classifiers. To be spe-
cific, most of these approaches exploit non-deep learning-
based algorithms along with manually-crafted features to
implement the classification of epileptic activity from the
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TABLE 2. Performance comparison between state-of-the-art techniques and ours for interictal (Set D) and ictal (Set E) EEG signals.

TABLE 3. Performance comparison between state-of-the-art techniques and ours for normal (Set A), interictal (Set D), and ictal (Set E) EEG signals.

multi-channel EEG signals. Table. 1 provides the comparison
of the accuracy performance between state-of-the-arts and
our work for normal (Set A) and ictal (Set E) EEG signals.
Since it is widely considered as a simple task at present,
the accuracy results are close to 100%. Similarly, there have
also been satisfactory outcome for both interictal (Set D) and
ictal (Set E) as well as normal (Set A), interictal (Set D), and
ictal (Set E) input.

C. DISCUSSION
It has been wide proven that EEG could be leveraged as
an invaluable too for diagnosing the epileptic seizures. And
large amount of automated EEG signal identification tech-
niques have been presented in the literature. However, most
of these approaches follow a straightforward framework and
usually neglect the association between pairwise EEG sam-
ples. To bridge this gap, we propose a deep learning-based
algorithm that not only could both capture the association
between the EEG activities and guarantee the accuracy of
classification.

As shown in Table. 1, Table. 2, and Table. 3, the algo-
rithm proposed in the work of [43] is superior over our
approach. However, it is notable that we adopted the 10-fold
cross-validation strategy in the experiments, which had not
been taken into consideration by the state-of-the-arts includ-
ing [43]. And we have achieved much higher accuracy by
choosing the training set and testing set properly when we
did not adopt the 10-fold cross-validation strategy.

IV. CONCLUSION AND FUTURE WORK
Automatic identification of the associations between nor-
mal, interictal, and ictal patterns in raw EEG samples is
one potentially valuable tool for the diagnosis and treat-
ment of epilepsy. Previously, numerous researches have been

implemented for the EEG discrimination tasks. However,
most of these techniques might neglect the spatial and tem-
poral relationship between each pair of EEG signals. Thus,
we presented a novel CNN-based algorithm for epileptic EEG
identification.

In the future, we would continue to improve the accu-
racy of the proposed approach through fine-tuning and
increasing the quantity of samples in the training set. Mean-
while, the permutation of the EEG signals will be taken
into consideration. It is notable that the proposed approach
relates to the following areas including network security
[44]–[58], optimization [59]–[65], graphics [66]–[71], rec-
ommendation system [72]–[74], multimedia [75]–[82],
automation control [83]–[87], networking [88]–[101], clas-
sification [102]–[106], image fusion [107], [108], image
retrieval [109]–[114], and simulation [115]–[117].

ABBREVIATIONS
Electroencephalogram–EEG
CNN–Convolutional neural network
Wavelet–WT
Local binary pattern–LBP
Support vector machine–SVM
TP–True Positive
FP–False Positive
TN–True Negative
FN–False Negative
GAN–Generative adversarial network
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