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ABSTRACT A compact circularly polarized (CP) spiral antenna with enhanced impedance and 3-dB axial
ratio (AR) bandwidths that is fed by a tapered coax balun is presented. The antenna is composed of a two-arm
nonself-complementarity planar equiangular spiral, a z-directional helix, absorbing material with a stepped
cylindrical honeycomb structure, and a ground plane. The z-directional helix is used to extend the current
path and to improve the impedance matching and AR in the low-frequency band. The coupling between
the nonself-complementarity planar spiral arms is increased, which improves the impedance matching in
the low-frequency band and the AR at approximately 5.55 GHz. The stepped cylindrical absorbing material
can reduce the reverse current and improve the AR in the high-frequency band. The measured results show
that the impedance bandwidth and 3-dB AR bandwidths range from 0.5 to 6 GHz and from 0.5 to 5.8 GHz,
respectively. The overall size of the proposed antenna is 0.189A; x 0.065X,, (diameter x height, where A,

is the free-space wavelength at the starting frequency).

INDEX TERMS Spiral antenna, absorbing material, ultrawideband, miniaturization.

I. INTRODUCTION

Wideband antennas have attracted widespread attention for
application in many communication and radar systems. For
a wideband wireless system requiring circularly polarized
(CP) radiation characteristics, a spiral antenna is a good
choice. Many techniques have been adopted for wideband
CP spiral antenna designs. In [1], a polygonal-modified
Archimedean spiral with a bandwidth of 2-18 GHz was
studied. An Archimedean spiral antenna operating from 2 to
over 20 GHz and fed by a stripline was presented in [2].
A wideband CP equiangular spiral antenna with a 3-dB
axial ratio (AR) bandwidth of 3-14.5 GHz that was fed by
an integrated balun was proposed in [3]. In [4], by using
chip resistors inside the substrate, a planar equiangular spiral
antenna achieved an impedance bandwidth of 2-18 GHz.
A two-arm Archimedean spiral with a stepped ground plane
cavity operating in the frequency band of 2-10 GHz was
designed as a feed for a parabolic reflector [5]. An equian-
gular spiral antenna using a ring-shaped absorbing strip that
operates in the frequency band of 3-10 GHz was studied
in [6]. A two-arm Archimedean spiral antenna fed by a Dyson
balun operating in the frequency band of 18-110 GHz was
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studied in [7]. In [8], a single-arm spiral antenna with a disc
plane and a ring-shaped absorbing material was proposed; the
antenna operates from 3 GHz to 10 GHz. A spiral antenna
fed by a coplanar waveguide (CPW) achieved a frequency
band of 11.4-17.5 GHz in [9]. By using a frequency selective
surface (FSS), an Archimedean spiral antenna was designed
to improve the front-to-back (F/B) ratio and gain in the fre-
quency band of 3-10 GHz [10].

Recently, compact spiral antennas have been required
more frequently for limited-space systems. Research regard-
ing compact spiral antennas has attracted much attention.
Some wideband compact spiral antennas were presented
in [11]-[19]. In [11], metallic posts were employed to achieve
bandwidth enhancement and a low-profile (0.11;) for an
equiangular spiral antenna; the posts were placed between
the planar spiral and metal reflector. A sine wave meander
line was introduced to a planar Archimedean spiral antenna
to reduce the aperture area [12]. The 3-dB AR bandwidth was
from 1.63 to 10 GHz, and the overall size of the antenna
was 0.348X163 gz X 0.20611 63 gH, (diameter x height).
In [13], a spiral antenna using a semifractal reflector and
a combination of the equiangular Archimedean lines and a
meander line was designed to obtain a 3-dB AR bandwidth of
0.9-4.37 GHz. The overall size of the antenna was
0.3X10.9 GHzX 0.3X09 gHzx 0.15X10.9 gHz. To achieve 3-D
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miniaturization, a combination of z-directed meandering
and a tapered substrate profile was applied [14]. The
impedance bandwidth was from 0.8 to 3 GHz. However,
in the whole frequency band, the AR of most frequencies
was greater than 3 dB. The overall size of the antenna was
0.203A0.8 gaz X 0.102X0.8 gHz (diameter x height). In [15],
different high impedance surface (HIS) sections were applied
to an Archimedean spiral antenna. This antenna operated
from 3 to 10 GHz with a height of 0.085A7. A low-profile
equiangular spiral antenna with an electromagnetic band gap
(EBG) reflector was presented in [16]; the antenna operated
from 3 to 10 GHz. The height of the antenna was 0.07Xxp.
However, in the frequency bands of approximately 3-3.8 GHz
and 5-5.4 GHz, the AR was greater than 3 dB. In [17],
a spiral antenna printed on an extremely thin magnetodi-
electric substrate was presented. The antenna achieved an
operating bandwidth of 300-1000 MHz and a very small
height of 0.061Ar. The aperture size of the antenna was
0.4Ar x 0.4Ar. A differential-fed Archimedean spiral with
a novel loading structure and a ring-shaped absorber was
studied to achieve miniaturization design with an overall size
of 0.21Arx 0.21xrx 0.091; [18]. This antenna operated
from 0.5 to 1.4 GHz. In [19], in order to reduce the size of
an Archimedean spiral antenna, two arms were extended on
the profile and connected together at the end. Furthermore,
four lumped resistors were used to improve the performance
of the low frequency band. The 3-dB AR bandwidth was
from 2 to 6 GHz, and the overall size of the antenna was
0.2417 gHz X 0.24X7 GHz X 0.13X7 GHz-

In this paper, a miniaturization method for CP spiral anten-
nas is proposed. The z-directional helix increases the current
path, which improves the impedance matching and AR in the
low-frequency band. Nonself-complementarity planar spiral
arms are used to improve the impedance matching in the
low-frequency band and the AR at approximately 5.55 GHz.
To further improve the AR bandwidth, stepped cylindrical
absorbing material is applied to reduce the reverse current in
the high-frequency band, thereby reducing the cross polariza-
tion. Lumped resistor loading is not required. By applying the
proposed method, the antenna achieves a 169.2% impedance
bandwidth for VSWR < 2 and a 168.3% 3-dB AR bandwidth;
moreover, the antenna is miniaturized in three dimensions.
The size of the proposed antenna can be reduced to 0.1891, x
0.065A; (diameter x height). A prototype of the proposed
antenna is fabricated. The design procedure of the proposed
antenna, the simulated and measured results are presented and
discussed.

Il. ANTENNA DESIGN

The proposed spiral antenna consists of a planar equiangular
spiral, a z-directional helix, an absorbing material, a tapered
coax balun and a ground plane; it is depicted in Fig. 1. The
planar spiral and z-directional helix are printed on substrates
with relative dielectric constant &, = 2.5, loss tangent tand =
0.0018, and thicknesses of 2 mm and 0.127 mm, respectively.
The radius of the planar spiral is rsub. The z-directional helix
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FIGURE 1. Geometry of the proposed spiral antenna. (a) 3-D view,
(b) detailed view of hollow cylinder, (c) top view, (d) side view,
(e) detailed view of the interior of the antenna, and (f) coax balun.

printed on a substrate is wound around the hollow cylinder
with arelative dielectric constant of 4.4, a loss tangent of 0.02,
and a thickness of 2 mm. Four columns are added to the
hollow cylinder to support the planar spiral. The height of
z-directional helix is 4. A metal ring with width wz2 is used
to connect the ends of the z-directional helix.

The feed balun is based on a coaxial line. The diameters
of the central core and the dielectric material of the coaxial
line are 2.2 mm and 8 mm, respectively. The electromagnetic
parameters of the dielectric material are &, = 2.5 and tand =
0.0018. Upon moving toward the balanced end, the metallic
shield slot of the coaxial line opens. This balun changes the
unbalanced coaxial line to a balanced twin line and yields
the impedance transformation. In our design, a modified
nonself-complementarity spiral is proposed; it is obtained
by rotating the traditional self-complementarity spiral £rota
around the z-axis, as shown in Fig. 2. The traditional self-
complementarity spiral is defined by

ry = roe?, 0° < <360°x2.05—8 (1)

ry = rge?@0. 0° < ¢ < 360° x 2.05 )

where ro = 3 mm, a = 0.26, and § = 90°. Table 1 reports
the optimized dimensions of the antenna.

1. ANTENNA OPERATION PRINCIPLE
The influences of the nonself-complementarity planar
equiangular spiral, the z-directional helix, and the stepped
cylindrical absorbing material are studied to illustrate the
design process of the proposed antenna.
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(a) (b)
FIGURE 2. Arm of planar equiangular spiral: (a) traditional

self-complementarity spiral and (b) modified nonself-complementarity
spiral.

TABLE 1. Dimensions of the proposed antenna.

Parameters Values Parameters Values

rsub 56.8 mm h 39 mm

gz 9.85 mm wzl 9 mm

wz2 3 mm hal 13 mm
ha2 7 mm dal 109.6 mm

da2 70 mm hgl 3 mm

rota 30° rh 28 mm

Jsurf[A_per_m]

1.0000e+001
K 9.2929e+000
— 8.5857e+000

7.8786e+000
7.1714e+000
6. 4643e+000
5.7571e+000
| 5. 0500e+000
4. 3429e+000
3.6357¢+000 | §
2.9286e+000
2.2214e+000
1.5143¢+000 | (OB
8.0714e-001 | §/R
1.0000e-001

FIGURE 3. Current distributions of the antenna at 0.5 GHz.

A. EFFECT OF THE Z-DIRECTIONAL HELIX

Fig. 3 shows the current distributions of the proposed antenna
at 0.5 GHz. It can be observed that the currents on the
z-directional helix and the planar spiral are in the same direc-
tion. This result means that the z-directional helix extends the
current path in the low-frequency band.

The effects of the z-directional helix on the impedance
matching, AR and gain are shown in Fig. 4. When the
z-directional helix is removed, the impedance bandwidth is
narrow with 1.11-6 GHz for VSWR < 2. Meanwhile, the gain
decreases from 0.5 to 2 GHz, and the AR is greater than 3 dB
from 0.5 to 2.05 GHz.
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FIGURE 4. Effects of the z-directional helix. (a) VSWR and (b) broadside
gain and AR.

B. EFFECT OF THE NONSELF-COMPLEMENTARITY SPIRAL
We studied the effect of the nonself-complementarity spiral
on the antenna performance. Fig. 5 shows comparisons of the
simulated results for the antennas with a self-complementarity
spiral and those with a modified nonself-complementarity
spiral. By introducing the nonself- complementarity spiral,
the impedance matching in the band of 0.5-1.33 GHz and the
AR in the band of 5.44-5.71 GHz are improved. We can see
that a wide impedance bandwidth of 0.5-6 GHz for VSWR <
2 and a 3-dB AR bandwidth of 0.5-5.925 GHz were obtained.
However, the gain from 3 to 6 GHz is decreased when the
nonself- complementarity spiral is used.

Fig. 6 shows the current distributions of the nonself- com-
plementarity and self-complementarity spirals at 0.5 GHz.
The currents at the edge of the nonself-complementarity
spiral are increased, and more energy is radiated. The
input impedance of the antennas using the nonself-
complementarity and self-complementarity spirals is shown
in Fig. 7. The input resistance and reactance of the antenna
using the nonself-complementarity spiral is increased, and
the impedance matching in the low-frequency band is
improved.
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FIGURE 5. Comparisons of simulated results. (a) VSWR and (b) broadside
gain and AR.

The AR of the antenna using the self-complementarity spi-
ral at approximately 5.5 GHz gets worse, as shown in Fig. 5.
This is due to the reverse currents generated on the self-
complementarity spiral (shown in Fig. 8(b)), and the increase
in cross polarization. When the nonself-complementarity
spiral is used, the coupling between the two spiral arms
is enhanced. As the reverse currents are generated on the
arm, the opposite currents are coupled to the other arm
and these two currents cancel each other out. The cross
polarization of the antenna is reduced. This allows the
antenna using the nonself-complementarity spiral to have
a good CP radiation performance. Furthermore, the gain is
decreased due to the opposite currents coupled to the other
arm.

C. EFFECT OF THE STEPPED CYLINDRICAL

ABSORB-ING MATERIAL

To investigate the effects of the absorbing material with a
stepped cylindrical honeycomb structure, several simulation
calculations were performed with different values of da2 and
ha?2, as shown in Fig. 9. When da2 = 70 mm, ha2 = 0 mm
and da2 = dal = 109.6 mm, ha2 = 7 mm, the stepped cylin-
drical absorbing material becomes a traditional ring-shaped
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FIGURE 6. Current distributions of the planar spirals at 0.5 GHz.
(a) Nonself-complementarity spiral and (b) self-complementarity spiral.
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FIGURE 7. Input impedance of the antennas using nonself-
complementarity and self- complementarity spirals.

absorbing material. When the thickness of the traditional
ring-shaped absorbing material is only hal (ha2 = 0 mm),
the impedance matching in the low-frequency band becomes
worse, and the gain decreases in the high-frequency band;
moreover, the AR is greater than 3 dB at both low and
high frequencies. When the thickness of the traditional ring-
shaped absorbing material is hal 4 ha2, the VSWR changes
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FIGURE 8. Current distributions of the planar spirals at 5.55 GHz.
(a) Nonself-complementarity spiral and (b) self-complementarity spiral.

very little and the gain decreases in the low-frequency band.
Meanwhile, the AR is improved in the low-frequency band,
but it is greater than 3 dB in the band of 5.59-5.925 GHz.
It can be observed that the stepped cylindrical absorb-
ing material has an obvious influence on the VSWR, gain
and AR.

When the ring-shaped absorbing material with da2 =
70 mm, ha2 = 0 mm is used, the thickness of the absorbing
material in the middle area is reduced, and the absorption
capacity of the reverse currents decreases, leading to the
deterioration of the AR, as shown in Fig. 10.

By using the stepped cylindrical absorbing material with
da2 = 70 mm, ha2 = 7 mm, the reverse currents are reduced
compared to those produced when the ring-shaped absorbing
material with da2 = dal = 109.6 mm, ha2 = 7 mm is
used, as shown in Fig. 11. Then, the AR is improved in
the high-frequency band. The ring-shaped absorbing material
with da2 = dal = 109.6 mm, ka2 = 7 mm at the edge of
the antenna is thicker than the stepped cylindrical absorb-
ing material, and this reduces the gain in the low-frequency
band.

To further illustrate the effects of the stepped cylindrical
absorbing material, the simulated results for the antenna with
and without the absorbing material are shown in Fig. 12.
By introducing the absorbing material, the impedance match-
ing especially in the low-frequency band, is improved, and
the AR performance is improved in the whole operating
band. Moreover, the unidirectional radiation performance
is improved in the 3.6-4.5 GHz and 5.65-6 GHz bands.
Nevertheless, the radiation efficiency is significantly
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FIGURE 9. Effects of the absorbing material. (a) VSWR and (b) broadside
gain and AR.
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FIGURE 10. Current distributions of the antennas using (a) stepped
cylindrical absorbing material and (b) ring-shaped absorbing material
with da2 = 70 mm, ha2 = 0 mm at 5.6 GHz.

decreased when the absorbing material is used. In the low-
frequency band, the radiation efficiency of the antenna is low,
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FIGURE 12. Simulated results with and without the absorbing material.
(a) VSWR, (b) broadside gain and AR, and (c) radiation efficiency.

while in the high-frequency band, the radiation efficiency is
approximately 40%.

IV. EXPERIMENTAL RESULTS

The proposed CP spiral antenna with a compact size
of 113.6 mm x 39 mm (diameter x height, 0.1891¢ 5 gz X
0.065105 gHz) Was fabricated. To ensure the stability of
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FIGURE 14. Measured and simulated VSWRs of the proposed antenna.

the structure, we wound a layer of fiberglass cloth around
the z-directional helix. The radiation performance of the
antenna was measured in an anechoic chamber (shown
in Fig. 13).

The simulated and measured VSWRs are depicted
in Fig. 14. This discrepancy is mainly caused by the stepped
cylindrical absorbing material, which was held together by
glue, thereby affecting the electromagnetic parameters of the
absorbing material. This cannot be included in the simulation.
The measured impedance bandwidth for VSWR < 2 is in the
range of 0.5 to 6 GHz, with a fractional bandwidth of 169.2%.
The measured and simulated results for the broadside gain
and AR are shown in Fig. 15. The measured 3-dB AR
bandwidth is from 0.5 to 5.8 GHz (168.3%). The measured
minimum and maximum broadside gain are -5.3 and 4.6 dBic,
respectively.

Fig. 16 shows the simulated and measured right-hand
circular polarization (RHCP) radiation patterns. It can be
observed that the unidirectional radiation properties of the
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TABLE 2. Comparisons of proposed and other CP spiral antennas.
Impedance 3-dB AR . Gain
bandwidth bandwidth Size (dBic)
3-10 GHz AR >3 dB

i (107.7%) (63.6% of ?)(;-252/1301—171 “ | about
(VSWR <2) measured : 3‘%“21(0“ Y | 38104
frequencies) spiral)
1'625'100GHZ 1.63-10GHz | $0.3484; 6361
[12] (144.1%) . -
(VSWR < 2) (1439 /o) X 0.206/11,63(;1-[1
0.3 Ao.9GHz %
0.8-4.37 GHz | 0.9-4.37 GHz
[13] (138.1%) (131.7%) 0.3 A s * 7.5-13
0.15 0961z
0.8-3 GHz AR >3 dB in
[14] (115.8%) the band of | ¢ g'zlg;j“‘]“’ ) f‘lboofé
(VSWR<2) | 0.8-195GHz HUSA08GH
3-4.8 GHz
(VSWR>2) | ARZ3dBat | o
[15] frequencies 3 -
4.8-10 GHz 19 GH 0.085 36,
(VSWR <2) an z
AR >3 dB in
3-10 GHz the bands of 167 Asaine
[16] o, 1.67 A3ghz % --
(107.7%) 3-3.8 GHz
and 5-5.4 0.07 Asgite
0.3-1 GHz 0.4 40361, *
un | o | el | 04 | 0%
(VSWR <2) ) 0.061 40368,
05-14GHz 1 S 1 4GHZ | 6021 40s0m x
[18] (94.7%) 04 70, 5~3.1
(VSWR < 24) ( . 0) 0.09 4 561z
1.9-8.5 Gz 2-6 GHz 90240 x|
[19] (126.9%) 100% 6~7.5
(VSWR < 2) ( 0) 0.13 26hz
0.5-6 GHz
Prop. | (169.2%) 0‘(51'2383?/%“ 4 g':)iij“““’ “ | 5346
(VSWR <2) o P0G

patterns in the high-frequency band disappear due to the
antenna height being too high.

The performance of the proposed antenna is compared to
that of different CP spiral antennas studied in [11]-[19]; the
comparison is presented in Table 2. The proposed antenna
obtains better impedance and AR bandwidths, as well as a
smaller overall size.
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V. CONCLUSION

A wideband CP spiral antenna fed by a tapered coax balun
is presented. By using a nonself-complementarity spiral,
a z-directional helix, and absorbing material with a stepped
cylindrical honeycomb structure, the impedance and AR
bandwidths are improved, and the overall size of the antenna
is reduced. Experiments show that the antenna achieves
a 169.2% impedance bandwidth for VSWR < 2 and a
168.3% 3-dB AR bandwidth. The antenna has a small size
of 113.6 mm x 39 mm (0.189A¢ 5 guzx 0.065X0.5 GHz)-
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