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ABSTRACT Solar cells defects inspection plays an important role to ensure the efficiency and lifespan of
photovoltaic modules. However, it is still an arduous task because of the diverse attributes of electrolumines-
cence images, such as indiscriminative complex background with extremely unbalanced defects and various
types of defects. In order to deal with these problems, this paper proposes a new precise and accurate defect
inspection method for photovoltaic electroluminescence (EL) images. The proposed algorithm leverages
the advantage of multi attention network to efficiently extract the most important features and neglect
the nonessential features during training. Firstly, we designed a channel attention to exploit contextual
representations and spatial attention to effectively suppress background noise. Secondly, we incorporate both
attention networks into modified U-net architecture and named it multi attention U-net (MAU-net) to extract
effective multiscale features for defects inspection. Finally, we propose a hybrid loss which combines focal
loss and dice loss aiming to solve two problems: a) overcome the class imbalance problem, and b) allowing
the network to train with irregular image labels for some complex defects. The proposedmulti attentionU-net
is evaluated on real photovoltaic EL images datasets using 5-fold cross validation technique. Experimental
results demonstrate that the proposed network can segment and detect various complex defects correctly. The
proposedmethod achieved themean intersection over-union (m-IOU) of 0.699 and F-measure of 0.799which
outperforms the previous methods.

INDEX TERMS Multi-attention U-net, cracks segmentation, electroluminescence images, defects
inspection.

I. INTRODUCTION
In this era of technology, solar energy provides the most
elegant solution for arising energy demand by enabling gener-
ation at any scale [1]. Among different solar cell technologies,
polycrystalline solar cells dominate the monocrystalline solar
cells due to cost. During the production process, solar cells
may get damaged due to thermal stress or improper opera-
tions. The damage may be due to defects such as finger inter-
ruptions, cracks or cell breakages etc. Among these defects,
cracks can cause a severe loss in power efficiency of solar
cells because they can electrically disconnect certain areas of
solar cells [2]. The more severity of crack will lead to greater
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electrical power loss of the module [3]. Therefore, timely
detection of these cracks is essential to improve the endurance
and reliability of solar cells [4]. Thus, this paper presents
a method based on deep learning to automatically segment
and detect various crack and finger interruption defects in
polycrystalline solar cells.

Electroluminescence (EL) imaging is an important non-
destructive technology for defects inspection of solar
cells with the ability to capture high-resolution solar cell
images [5]. The EL imaging highlights the internal defects
such as cracks that are difficult to be recognized by the human
eye. These cracks are of different sizes, shapes and orien-
tations and appear darker as compared to the background.
Figure.1 shows two defective solar cell images with various
types of cracks and finger interruption defect. The defects can
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FIGURE 1. Selected polycrystalline solar EL images showing common defect types: (1) Defect submerged into background (2) Complex star crack
defect (3) line crack defect (4) Crack separated by bus bar (5) Finger interruption defect.

be categorized into 1) defects submerged into background,
2) complex star-like cracks 3), line crack defects, 4) crack
defect separated by bus bar and 5) finger interruption defects.
As compared to monocrystalline El images, polycrystalline
EL images have heterogeneous complex background with
randomly distributed crystal grains making random patterns.
These patterns are unique for every image and may contain
the same pixel intensity value as a defect which makes the
defect detection task difficult. As shown in Figure.1 the EL
imaging makes the defects prominent. However, the visual
inspection of polycrystalline solar cell EL images is time con-
suming and also require expert’s involvement. Several image
processing algorithms are proposed to eliminate expert’s
involvement. However, they are not robust and are inaccu-
rate. Figure.2(a) shows the defected EL image. As shown
in Figure.2(b), Figure.2(c) and Figure.2(d) the segmentation
of crack is inaccurate with large amount of noise using tradi-
tional image processing algorithms (such as Otsu threshold,
Gaussian threshold and global fixed threshold).Thus, we pro-
pose an automatic defects inspection method for polycrys-
talline solar cells which is fast, robust and accurate.

The defects inspection methods are commonly divided into
statistical, structural and filter-based approaches. In statistical
approaches, the image is separated into distinct regions based
on their statistical behavior. Histogram analysis analyzes the
image features based on histogram which is a kind of sta-
tistical method. Tsanakas and Botsaris [6] proposed a ther-
mographic method for hot-spot detection in defective solar
modules. They used non-destructive thermographic approach
to view the photovoltaic patterns by using data gained through
line profile and image histogram. The proposed method
does not filter hot-spots in the image background. Wakaf
and Jalab [7] used images with arbitrary gray-level pixel

FIGURE 2. Effect of traditional image processing algorithm on defect
image: (a) Input image (b) Otsu threshold image (c) Gaussian threshold
image (d) Global threshold image.

distribution and propose amethod to detect defects from these
images. They used histogram matching and separated defec-
tive object from foreground from the image background. Gray
level co-occurrence matrix (GLCM) is a powerful statistical
technique that provides second-order method for producing
texture features. GLCM contains frequencies at which two
pixels in an image are separated by a certain vector.

The structural analysis methods make up the image tex-
tures and spatial arrangements. Qian et al. [8] used self-
learning features to detect polycrystalline solar cell surface
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micro-cracks. In their method, the defect information is
obtained from self-learning features then these features are
combined with super-pixel segmentation for defect regions
localization. The proposed method gives significant results
but they used a very small number of defective samples.
Furthermore, the method is only evaluated on simple micro-
crack defects. Tsai et al. [9] used a Haar-like feature
extraction techniques and proposed a novel fuzzy c-means
clustering technique for cracks and finger interruption defects
in polycrystalline solar cell EL images.

Filter based methods are implemented in the spatial
domain, frequency domain or joint spatial/spatial-frequency
domain. The filter-based methods can carefully select the
points of interest and detect irregularities. A particular
method has been introduced in [10] using Fourier image
reconstruction. The methods eliminate unwanted objects by
setting their frequency in the frequency domain to zero and
then transforms to a spatial image. Their method takes into
account only the straight line-like defects. Chen et al. [11]
generated an enhanced saliency map using a novel steer-
able evidence filter then applied morphological opera-
tions to accomplish the segmentation of solar cell EL
defects. Anwar and Abdullah [12] detects and segment
micro cracks in polycrystalline solar cell images using a
method based on anisotropic diffusion. The method per-
forms well but didn’t consider the cracks submerged with
background.

In recent years, deep convolutional neural networks
(DCNN) has made convincing progress in the computer
vision domain. In comparison to traditional methods, DCNN
provides better solutions for arduous problems such as image
segmentation [13] and scene recognition [14]. Researcher
in the field of industrial defect inspection also adopts the
power of DCNN to solve the problems of segmentation and
classification of industrial defects. Recently, Han et al. [15]
added a region proposal network (RPN) into U-net [16] and
used dilated convolutions to segment polycrystalline silicon
wafer defects. The method gives reasonable results but com-
bining RPN and dilated convolution makes the detection
slower. The U-net gives significant results in segmentation
tasks with small-scale datasets. Despite having symmetric
skip connections to fuse encoder and decoder features, U-net
like architecture still faces degradation problem which can
be solved by adding residual connections within encoder
and decoder [17]. Another problem with U-net is that it
fuses low-level features with high-level features based on
fixed weights. In order to solve this problem, this paper
proposes a multi-attention network to weigh the feature maps
according to their importance and suppresses the irrelevant
information.

Inspired by human visual system, attention mechanism is
a popular trend in deep learning which has proven to offer
significant results for image captioning [18], machine trans-
lation [19] and classification [20]. Chen et al. [21] introduced
spatial and channel attention and incorporated into a DCNN
for image captioning. Channel attention highlights the most

FIGURE 3. Schematic diagram of Multi attention U-net (MAU-net).

important features while spatial attention suppresses the noise
information. The architecture outperforms previous meth-
ods for image captioning. Xu et al. [22] confirm significant
improvements in speech recognition task by adding spatial
and channel attention into the CNN. Henceforth, we intro-
duce a multi-attention network consisting of spatial and chan-
nel attention and incorporate it into modified U-net to solve
defects segmentation problem. The schematic diagram of
the proposed network is shown in Figure.3. The proposed
method effectively improves the performance and speed with
a smaller number of parameters. The main contributions of
this paper are as follows,

1. A multi attention network is proposed consisting of
spatial attention and channel attention which helps to
learn and weigh multiscale feature map channels. The
channel attention emphasizes on defect regions while
spatial attention suppresses the background noise.

2. The proposed multi attention network is added into
the modified U-net to accomplish defects inspection
in Photovoltaic electroluminescence images. The inser-
tion of multi attention network allows the network to
utilize contextual and spatial information effectively.

3. A hybrid loss function is presented to train Multi atten-
tion U-net. The hybrid loss combines dice loss and
focal loss which solves class imbalance problem and
allows the network to learn poorly classified complex
cracks. With the proposed loss function and multi
attention network, we achieve a reasonable increase in
performance.

4. The Multi attention U-net is trained and evaluated
on a real industrial dataset. The results are compared
with former methods for defects inspection of solar
cells. The results verify the significant improvement in
defects inspection using Multi attention U-net.
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FIGURE 4. Multi attention network.

II. METHODOLOGY
A. MULTI ATTENTION NETWORK
Attention mechanism is inspired by the human visual system.
Human visual attention allows to emphasize on a certain area
while defocusing the surrounding region. Most convolutional
neural networks for defects inspection give equal contribution
to all channels, which is ineffective for feature extraction.
Generally, each channel of CNNs generate different semantic
information from the image. Some features may be valuable
for defect localization, while some features may comprise
of noises and can result in redundant information which in
turn lead to bad segmentation. So, with the aim to extract
effective features, a CNN must be capable of highlight-
ing the defects while suppressing the background informa-
tion. In this paper, we propose a multi attention network,
which consists of channel attention and spatial attention to
emphasize the defective area and suppress the unwanted
details.

As shown in Figure.4, the input features Ch are firstly
refined using channel attention and spatial attention, then we
will get the channel attention map Ch and spatial attention
map Sh. Ch and Sh are used to reweight the input features.
Then these features are added together to complete the phe-
nomena of multi attention network. The multi attention net-
work is incorporated into U-net which gives a boost to the
performance and will be verified by following experimental
results. The phenomenon of multi attention network is given
in Equation (1).

MAN = Sh + Ch (1)

where Ch and Sh are channel attention and spatial attention
respectively.

B. CHANNEL ATTENTION
In order to extract effective features, a CNN must be capable
of highlighting the defect regions. For, this purpose, we pro-
pose a Channel attention mechanism which enables the net-
work to emphasize on the defect regions. The Squeeze and
excitation (SE) block in [23] is designed for classification
task, and it plays a significant role in improving the per-
formance of the network by placing it in each block of the
network. For segmentation task, we improved the original SE
block by adding a global max pooling branch together with
global average pooling branch. In [24] and [25] the signifi-
cance of Global max pooling and Global average pooling is
shown for distinct objects recognition. After squeezing the
inputs using Global max pooling and global average pooling,
we apply fully connected layer followed by LeakyRelu layer
to add non-linearity and decrease the number of channels to a
certain ratio. Then the second fully connected layer followed
by a sigmoid activation layer is added to provide each channel
a smooth gating function. Finally, we add the outputs of both
branches that will be used to re-weight the input feature maps.

As shown in Figure.4 the channel attention block consists
of two branches. Global Max pooling (Gmax) and Global
Average pooling (Gavg) are used to squeeze the input fea-
tures in first and second column respectively. In first branch
(Gavg) is applied to squeeze each input channel Ch

=
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h
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h
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where n is the number of input channels. Furthermore, V h is
given into a fully connected layer followed by a Leaky Relu
activation function which gives output Ah = {ah0, a
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of 1× 1×n/4 dimension. Finally, subsequent fully con-
nected layer and a sigmoid layer gives the output Ah =
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1, . . . ,a
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n}. The same process is adopted in the second

branchwhich gives the outputMh
= {mh0,m
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1, . . . ,m
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end, the outputs of both branches are added together giving
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1, . . . ,o
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n}.O

h weighs the input channels based on
their importance and gives high weights to the most important
features.

Ah = σ1( f C2(δ
(
f C1

(
V h,W1

))
(2)

Mh
= σ2( f C4(δ( f C3

(
V h,W2

)
) (3)

CA = Oh = Mh
+ Ah (4)

whereW represents parameters in channel attention, σ repre-
sents the simoid function, f C1, f C2, f C3 and f C4 represents
the fully connected layers and δ irepresents the LeakyRelu
function. The final output will be obtained by weighting the
input features with CA and is given in Equation (5).

Ch
= CA.Ch (5)

C. SPATIAL ATTENTION
Electroluminescence images have heterogeneous complex
background containing more background region as compared
to the defect region. So, the feature maps may contain a lot
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of unnecessary information which may result in bad seg-
mentation. In order to focus more on defects rather than
on background, we adopt spatial attention block which sup-
presses background details while preserving defects details.
From [26] large receptive field can increase the representa-
tional power of the network leading to an increase in accuracy.
Dilated convolutions [27] or Atrous convolutions [28] are
used to increase the receptive field size deprived of increasing
kernel size but they are slow. Inspired by [29] we use sepa-
rable large kernel convolutions in spatial attention block in
order to increase the receptive field and minimizing memory
consumption with a smaller number of parameters. As shown
in right side of Figure.4we separate k×k convolutional kernel
into 1×k and k×1 kernels. We tried different values of k such
as k = 5, k = 9, k = 11 and k = 15. However, k = 5 has
given best results, so, we set k = 5 in each experiment. Each
convolution operation is followed by a batch-normalization
and a non-linear LeakyRelu layer. Furthermore, we use a sig-
moid gating function to map the feature maps to [0, 1]. This
output feature map is mapped to input features to generate
effective features for defects segmentation.

S1 = conv1×k (conv1×k
(
Sh,W1

)
,W2 (6)

S2 = convk×1(convk×1
(
Sh,W1

)
,W2 (7)

SA = σ3(S1 + S2) (8)

where W represents parameters in spatial attention, σ repre-
sents the simoid function, conv1×k and convk×1 represents the
convolution operations and we set k = 5 in the experiments.
The final output will be obtained by weighting the input
features with SA and is given in Equation (9).

Sh = CA.Sh (9)

To test the effectiveness ofMulti-attention network, we incor-
porated it into the modified U-net and demonstrated the
results in the experiments. The results have shown that by
adding multi-attention network into U-net, the defects are
detected robustly by suppressing the complex background
information.

D. MULTI-ATTENTION U-NET
Based on multi-attention network for effective features
extraction, we offer a fast and robust Multi attention U-net
architecture. The inputs of the network are grayscale images
with size 1 × 512 × 512 and the output is a black and
white segmentation map of size 1 × 512 × 512. Each pixel
represents a defect or background. In this paper, defects are
represented as white pixels while background as black pixels.
The structure of MAU-net with definition of each layer is
shown in Table.1 in which
• Conv represents the convolution layer.
• LR represents Leaky-Rely layer.
• Max-pooling represents the Max Pooling layer.
• Up-sampling represents the Up-sampling layer.
• Sigmoid represents the sigmoid activation later.

• Concat represents the concatenation layer.

TheMAU-net architecture is illustrated in Figure.5. It is com-
posed of 9-level encoder and decoder path. Each level on the
encoder path consists of two 3× 3 convolutions followed by
2 × 2 Max-pooling operation for down-sampling the feature
maps. As the model grows, the numbers of feature maps are
doubled while the size of the feature map is halved. A multi
attention network is incorporated at each encoder-decoder
path to weigh the feature maps to achieve the attention mech-
anism. The multi attention network allows the network to
focus on the defect features while suppresses the background
information. The working principle of the multi attention
network is explained in the previous section. On each level
in decoder path, we firstly apply convolution operation to
halve the number of features using 3 × 3 convolution, then
these features are up-sampled using 2× 2 up-sampling layer.
We use concatenation operation to fuse these up-sampled
features with low-level features passing through the multi-
attention network which are at the same level in the encoder
path. Then a set of two 3 × 3 convolutions is applied on
these feature maps. It should be noted that each convolution
layer is followed by a leaky-Relu layer. In the final layer,
1 × 1 convolution with sigmoid activation is used to output
the segmentation map of the original image. It should be
noted that unlike U-net we did not use any cropping. The
MAU-net simplifies the U-net architecture and increases it
representation power with a smaller number of parameters.
In addition, the MAU-net is superior to U-net in training
speed, test speed with improved segmentation accuracy.

E. HYBRID LOSS
During the training of the network, it is necessary to esti-
mate the weights to increase robustness and accuracy of the
network. This is achieved by using a proper loss function
which will be minimized during training. Segmentation of
objects exhibiting various sizes and shapes is a challenging
task in semantic segmentation. Electroluminescence images
has imbalanced pixels distribution i.e. the images contain
about 95% of background and crack covers only about 5%.
As the contribution of these cracks to the loss is less as
compared to the background, so the network may result in
low performance

In order to overcome this problem, as suggested in [30], we
train our model using a hybrid loss function, which combines
both dice loss LD [31] and the binary focal loss LBFL [32]. LD
helps the network to mitigate the class imbalance problem.
On the other hand, LBFL helps the network to learn poorly
classified examples in an efficient way.

The dice loss LD helps to overcome the class imbalance
problem in Binary segmentation task by formula given in
Equation (10).

LD = −2

∑
j pjgj∑

j
(
pi + gj

) (10)
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TABLE 1. Structure of the multi attention U-net (MAU-net).

where pj ∈ [0, 1] be the jth output of the final layer of the
model passed through sigmoid activation layer and gj ∈ [0, 1]
is the jth ground truth label.

The Binary focal loss can be given by Equation (11).

LBFL = −
C=2∑
j=1

gj(1− pj)γ log(pj) (11)

where (1− pi)γ is the modulating factor with γ ≥ 0 be
the focus parameter to make the loss focus on problematic
classes. We experimented different values of γ and γ = 2
produced the best results.

The final hybrid loss can be calculated by Equation (12).

Hybrid loss = βLBFL + (1−β)LD (12)

where β is a parameter introduced to regulate the stability
between dice loss and focal loss. The value of β is set
to 0.5.

III. EXPERIMENT RESULTS AND ANALYSIS
A. EVALUATION METRIC
After training, it is compulsory to assess the performance of
the proposed architectures. Many metrics are used to deter-
mine the performance of segmentation results. In reference
to [18], predicted results are compared with ground truth
images using five metrics: mean-Intersection-over-Union
(m-IOU), accuracy, recall, precision and F-measure. The
IOU, accuracy, recall, precision and F-measure are computed
by Equations (13), (14), (15), (16) and (17) respectively as
follows

IOU =
TP

TP+ FP+ FN
(13)

Accuracy =
TP+ TN

TP+ FP+ FN + TN
(14)

Recall =
TP

TP+ FP
(15)
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FIGURE 5. Multi attention U-net (MAU-net).

Precision =
TP

TP+ TN
(16)

F − measure = 2x
Precision ∗ Recall
Precision+ Recall

(17)

where TP, TN, FP and FN are the number of correctly clas-
sified defect pixels, the number of background pixels that
are classified correctly, the number of incorrectly classified
defect pixels and the number of background pixels that are
incorrectly classified respectively. IOU calculates the spa-
tial overlap between predictions and the ground-truth. The
value of IOU is between 0 and 1 while 0 means no overlap
and 1 means full overlap. Accuracy gives the probability of
correctly classified pixels by our model. Recall measures
the number of defective pixels in the ground truth image
that are also detected as defect by the segmentation model.
While precision is the measure of correct positive pixels in
the ground truth that are also detected as positive by the
segmentation model. F-measure gives the harmonic mean of
precision and recall.

B. IMPLEMENTATION DETAILS
The Multi attention U-net and other models for compar-
ison experiment are implemented in Python using Keras
2.2.4 library. All the models are trained for 100 epochs on
GTX 1080 Graphics processing unit (GPU) with 12GB of
memory. We use RMSprop optimizer with a learning rate
of 0.0001 to update the weights of the model. All the param-
eters are initialized using Xavier uniform initialization. The
main CPU parameters are given in Table.2.

C. SOLAR CELL EL IMAGES DATASET
As shown in Table.3, the solar cell EL images dataset consists
of total 828 images. There are 406 crack defect images, 359
finger interruption defect images and 63 defect-free images.
We only used defective images for training and algorithm

TABLE 2. CPU parameters.

TABLE 3. Solar Cell EL datasets.

is tested on both defective and defect free images. All the
images are captured in a real industrial environment. Each
image has a different contrast, brightness and patterns. All the
images are grayscale and are resized to 512 × 512 pixels
for faster training. The images are annotated by a specialist
using LabelME to provide images for training and testing the
segmentation network. Each image has a binary label that
means each pixel is either a defect or background: 0 or 1.
We marked the defect as white; in which pixel value equals
to 1, and the background as black; in which pixel value
equals to 0.

Usually, data augmentation is used to enlarge the dataset
and overcome the overfitting problem. There are many tech-
niques that are applied to data augmentation for specific
problems. In this paper, we use rotation = 40, flipping,
height shift = 0.05, width shift = 0.05, shear range = 0.05,
horizontal flip, vertical flip and adaptive histogram equal-
ization. In adaptive histogram equalization, several different
histograms are computed for each different section of the
image and used to adjust lightness values of each section of
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TABLE 4. Comparison of segmentation results of proposed method with state of art methods.

image. AHE refines the local contrast of images and improve
the quality and definitions of edges in the whole image. Data
augmentation increase the generalization abilities and the
accuracy of the model.

D. SEGMENTATION RESULTS
Segmentation of cracks in photovoltaic EL images is an ardu-
ous task due to the existence of heterogeneous background
and various crack shapes. A fast, robust and efficient method
for defects detection in polycrystalline Electroluminescence
images is proposed in this paper. The proposed method lever-
ages the advantage of multi attention network and hybrid
loss. After training and evaluating the network, we obtained
promising segmentation results on EL finger interruption and
cracks dataset. Thus, we offer an automatic defects inspection
algorithm that can segment various defects with high accu-
racy. It should be noted that the Multi attention U-net offers
improved results with only 8.1M parameters.

In this paper, we compare the multi attention u-net with
Tsai’s method [9], SEF method [11] and Han’s u-net [15].
We evaluate the segmentation performance of proposed
method and state of the art methods using k-Fold cross val-
idation. We set k = 5 for each method. K-fold validation
is commonly used to determine the performance of deep
learning models on small dataset. We randomly divide the
finger interruption and crack defects datasets of 745 images
into 5 folds. Thus, each group exhibits 149 images. It should
be noted that we don’t use defect-free images during testing
at this stage. On each fold, four groups are used for training
and the fifth group is used for testing. For each fold we
calculate the mean intersection over union, precision, recall,
accuracy and F-measure of proposed method and state of

FIGURE 6. F-measure of 5-Fold cross validation of different methods.

the art methods. The results of Tsai’s method, SEF method,
Han’s U-net and proposed method are listed it in Table.4.
The last row of each method illustrates the average of
5-folds. From Table.4, it can be seen that Tsai’s method has
high recall as compared to SEF method. While SEF outper-
forms Tsai’s method in terms of other metrics. Furthermore,
in terms of recall proposed method has almost similar results
as compared to Han’s methods. From the results it can be
seen that the proposed method gives the best segmentation
results in each metric as compared to other four methods. The
comparison of F-measure of 5-fold cross validation is illus-
trated in Figure.6. Furthermore, we illustrated the segmenta-
tion results of proposed method and state of the art methods
on crack defects and finger interruption defects in Figure.7.
The first and second column indicates the input images and
ground truth images while third to sixth column represents
corresponding segmentation results.
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FIGURE 7. Evaluation results on defect images: a) Input image, b) Tsai’s method, c) SEF method, d) Han’s U-net, e) Ours.

The Tsai’s method uses only defect-free images for train-
ing. Haar-like features are used to extract the information of
background patterns and the fuzzy c-means is applied for
clustering. The detection results vary in accordance to the
number of clusters c and the control constant t. In this paper
we use c = 30 and t = 0.02. The segmentation results
are shown in Figure.7(c). It can be seen that the method
easily locates the crack and finger interruption defects but the
segmentation is inaccurate and number of background objects
similar to defects are also detected as defects. The method
shows poor performance when the defects are submerged into
background objects.

The SEF method uses a novel steerable evidence filter
to create the contrast enhanced saliency map of defects.
Then local threshold and minimum spanning tree is applied
for defect segmentation. We set all the parameters same as
in original SEF paper. The segmentation results are shown
in Figure.7(d). SEFmethod segments both finger interruption
and crack defects better than Tsai’s method. However, some
defects are not segmented accurately and background objects
near to defects are also considered as defects by this method.

Hui uses a region proposal network to generate images
patches which might contain defects information. Then these
patches are fed into modified u-net for defects segmentation.

The modification is done in a sense that the first convolution
layers of 4th level and bottleneck are replaced by dilated
convolutions. In this paper we use the dilation rate of 2 and
4 in 4th level and bottleneck respectively. The results are
illustrated in Figure.7(e). This method segments all finger
interruption and crack defects and does better segmenta-
tion as compared to the former methods. However, some
background objects similar to cracks are also detected as
defects.

Context information is very important when analyzing
the defects from the background [33]. The proposed archi-
tecture considers the contextual information of defects and
can robustly differentiate them from the heterogenous back-
ground patterns. The insertion of Global attention block
between encode-decoder pass highlights the defect region
enabling the network to focus more on defects, improving
the m-IOU, precision and recall of defects segmentation. The
results of proposed method are given in Figure.7(f). It is
clear that all the defects are segmented accurately and the
background crystal grain patterns are successfully neglected.
Furthermore, the multi attention U-net is also prone to occlu-
sions. For-example, at the regions where crack area mixes
with the background, the proposed method robustly detects
and segments all the defects.
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TABLE 5. Evaluation of effectiveness of multi attention network.

TABLE 6. Evaluation of effectiveness of hybrid loss.

TABLE 7. Qualitative evaluation of defects detection results.

To test the robustness of the MAU-net against background
information, we concluded experiments on defect-free EL
images. We use 63 defect-free images for this comparison.
The segmentation results of Tsai’s method, SEF method,
Han’s U-net and MAU-net on defect-free EL images are
shown in Figure.8. Figure.8(a)-(b) shows the input images
and ground truth images respectively. On the other hand,
Figure8(c)-(f) shows the corresponding results of proposed
method and state of the art methods. It can be seen that the
SEF method shows poor performance on defect free images.
While Tsai’s method segments the background objects which
are similar to cracks and finger interruption defects. Han’s
U-net has better segmentation performance but still some
crystal grain patterns are detected as defects. On the other
hand, MAU-net did not segment any background object mak-
ing it superior to other methods.

E. EVALUATION OF MULTI-ATTENTION NETWORK
AND HYBRID LOSS
Wemodified the original U-net by starting the number of fea-
ture maps from 32, however, in the original U-net the features
start form 64 in the first-level of U-net. From experiments,
we found out that if the features of first-level start from 32,
it gives the same result as of 64 features maps in the first-
level of U-net. The effect of multi-attention network, channel
attention and spatial attention on modified U-net is shown
in Table.5. It can be seen that the introduction of channel

attention network into modified U-net increases the precision
and m-IOU of the model enabling the model to focus on
defects information. While the spatial attention successfully
suppresses the background noise and gives the better recall
rate. Furthermore, both channel attention network and spatial
attention network alone increase the performance while the
multi-attention network gives a further increase in segmenta-
tion performance. The final m-IOU of modified U-net with
multi-attention network is 0.699 which is significantly better
than former methods.

Furthermore, we experimented to test the effectiveness of
hybrid loss on multi-attention U-net. Table.6 shows the effect
of dice loss, focal loss and hybrid loss on the performance of
the proposed method. The first, second and third rows shows
the results of MAU-net with dice loss, MAU-net with focal
loss and MAU-net with Hybrid loss respectively. It can be
seen that the multi-attention U-net trained with hybrid loss
gives better m-IOU, F-measure and accuracy.

F. DETECTION RESULTS
In order to further evaluate the detection performance of multi
attention U-net, we use the scheme that any white object
larger than 3×3 pixels is considered as defect. Following this
scheme, we calculated the detection results of Tsai’s method,
SEF method, Han’s U-net and MAU-net on 78 crack defects
images, 67 finger interruption defect images and 63 defect-
free images. All the results are listed in Table.7. It is worth
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FIGURE 8. Evaluation results on defect free images: a) Input images, b) Ground truths, c) Tsai’s method, d) SEF method, e) Han’s U-net, f) MAU-net.

TABLE 8. Comparison of test time performances.

noticing that all the methods gave good defect detection
results, however, the multi attention U-net detects all the
defected images correctly. Furthermore, the Tsai’s method
and SEF method show poor detection performance on defect-
free images while Han’s U-net detects 12 defect free images
as defects.

We also made a comparison between Tsai’s method, SEF
methodHan’s U-net andMAU-net in terms of test time speed.
The test time speed of MAU-net and state of the art methods
on 512× 512 images are shown in table.8. It can be seen that
Tsai’s method is faster than SEF method and Han’s U-net.
While the MAU-net is faster than all methods and processes
one image in only 75 milliseconds. Thus, the MAU-net out-
performs all state-of-the-art methods in terms of test time

speed, segmentation and detection performance, enabling the
network to use in real-time industrial applications.

IV. CONCLUSION
In this paper, we present a fast, robust and efficient method
for defects inspection in photovoltaic Electroluminescence
images. For evaluation, we used crack and finger interruption
defect datasets. The proposed method has two key features:
the multi attention network and the hybrid loss. The multi
attention network helps the network to focus on defects while
suppressing the complex heterogenous background informa-
tion. Thus, enabling the network to segment complex defects
robustly and with higher accuracy. The hybrid loss helps to
overcome class imbalance problem and allowing the network
to learn poorly classified defects. The dataset for training
and testing is collected from real industrial environment.
The proposed network is evaluated on defected and defect-
free Photovoltaic EL images. Overall results show that the
proposed method is superior to the former methods and can
contribute to the establishment of more efficient and robust
methods for defects inspection in polycrystalline solar cells.
Further results show that the proposed method is fast and can
be used for real industrial applications.
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