
SPECIAL SECTION ON SECURE COMMUNICATION FOR THE NEXT GENERATION 5G AND
IOT NETWORKS

Received February 4, 2020, accepted February 17, 2020, date of publication February 27, 2020, date of current version March 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2976874

DIVDS: Docker Image Vulnerability
Diagnostic System
SOONHONG KWON AND JONG-HYOUK LEE , (Senior Member, IEEE)
Protocol Engineering Laboratory, Department of Software, Sangmyung University, Cheonan 31066, South Korea

Corresponding author: Jong-Hyouk Lee (jonghyouk@smu.ac.kr)

This work was supported by the research grant from Sangmyung University.

ABSTRACT Since the development of Docker in 2013, container utilization projects have emerged in various
fields. Docker has the advantage of being able to quickly share application build environments among
developers through container technology, but it does not provide security guarantees for known security
vulnerabilities inside Docker images. Since the Docker images are shared without a means of security
vulnerability diagnostic, polluted Docker images can be distributed so that the Docker-based application
build environments can be easily collapsed. In this paper, we introduce a Docker Image Vulnerability
Diagnostic System (DIVDS) for a reliable Docker environment. The proposed DIVDS diagnoses Docker
images when uploading or downloading the Docker images from a Docker image repository.

INDEX TERMS Container, Docker image security, Docker image vulnerability evaluation.

I. INTRODUCTION
Since the deployment of the Docker platform, various
research and container utilization projects on container-based
virtualization technologies have emerged. Nowadays Docker
containers are widely used to provision multiple applications
over shared physical hosts in a lighter form than a tradi-
tional Virtual Machine (VM) platform [1]. Docker creates
a quantitative form of a Docker image, which can be easily
shared and distributed through a Docker image repository
(e.g., Docker Hub, Gitlab, Quay.io, etc.). However, while
the rapid sharing and deployment of Docker images has the
advantage of allowing developers to share a variety of real-
time application deployment environments [2], [3], as there is
no separate Docker image vulnerability diagnosis procedure,
the Docker platform is easily exposed to various security
attacks. Docker images are divided into official and commu-
nity Docker images, and both Docker images would have
known security vulnerabilities. Older package containing
vulnerabilities in Docker images can be exposed to various
types of attacks (e.g., denial of service, gain privilege, etc.)
[4], [5]. For instance, there have been cases of distributing
cryptocurrency mining programs using Docker images, and
this attack showed that various attacks can be performed
usingDocker images regardless of the target operating system
(OS). Therefore, security for Docker images has become

The associate editor coordinating the review of this manuscript and

approving it for publication was Antonio Skarmeta Gómez .

one of the main concerns in establishing a reliable Docker
environment.

This Docker image vulnerability problem comes from the
fact that users do not perform a separate security verifica-
tion work on downloaded Docker images or Docker images
to be uploaded in a Docker image repository. Therefore,
we propose a Docker Image Vulnerability Diagnostic System
(DIVDS) that detects known vulnerabilities and evaluates
Docker images based on vulnerability scores.

The main contributions of this paper are the following.

• The proposed DIVDS enables users to identify the vul-
nerability level of each Docker image through a devel-
oped vulnerability evaluation process, which is based on
a combined relationship of vulnerable software pack-
ages and vulnerability information in a Docker image.

• The proposed DIVDS prevents users from download-
ing or uploading vulnerable Docker images to a Docker
image repository. It thus makes possible to maintain a
reliable Docker based application build environment.

The remainder of this paper is organized as fol-
lows. Section II introduces Docker and Docker images.
Section 3 presents an overview of the proposed DIVDS.
Section 4 shows how the DIVDS detects known vul-
nerabilities and how the vulnerabilities are evaluated for
Docker images. Section 5 evaluates the proposed DIVDS
and discusses possible limitations of the proposed system.
Section 6 concludes this paper.

42666 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-1753-1284
https://orcid.org/0000-0002-5525-1259


S. Kwon, J.-H. Lee: DIVDS: Docker Image Vulnerability Diagnostic System

FIGURE 1. Virtual machine and Docker architecture.

II. RELATED WORK
A. DOCKER
Docker is an open source container platform for developing,
deploying, and running applications released by Docker. Inc
inMarch 2013. Containers are generally compared to existing
Virtual Machine (VM). In the case of existing VM platforms,
an entire guest OS is virtualized on a host OS. This method
has an advantage of being able to virtualize and use various
OSs on the host OS and relatively simple to use, but there
is a limitation that it is difficult to use in the operating
environment due to the disadvantage that the environment is
relatively heavy and slow. Container technology has emerged
to address these limitations. Containers, along with the Linux
kernel, use kernel features such as Control groups (Cgroups)
and namespaces to separate processes so that they can run
independently. Namespaces, underlying technology for the
Docker container platform, are a feature of the Linux kernel
that provides isolated and independent spaces for file system,
process, network, IPC, hostname, and user. Cgroups is a
feature of the Linux kernel that provides control over the
resources (e.g., memory, CPU, I/O, network, device, etc.) of
a Linux system and provides ownership of the group for use
by specific users on the resources [2], [5].

Docker was first based on Linux kernel isolation technol-
ogy called LinuX Container (LXC), which had started with
chroot on Linux, but after version 11 of Docker, it did not des-
ignate support for LXC as a default execution environment.
Docker has replaced LXC with a self-implementation called
libcontainer. Finally, Docker was improved by a runC that
complies with the standard Open Container Initiative (OCI)
specifications of namespaces and Cgroups. Figure 1 shows
the structural differences between VM and Docker [5].

B. DOCKER IMAGES
Docker constructs a container environment based on its
Docker images [2]. Docker packages all the files which need
for application, library, middleware, OS, network configu-
ration, etc. into a quantitative form called a Docker image.
The Docker image is uploaded to a remote repository called
Docker image repository used to share the Docker images
among users. In the case of the repository, it can be configured
as public or private repositories. If we upload a Docker image
through the docker pull image name: tag command without
giving parameters related to a separate remote repository,

FIGURE 2. Docker Image deployment process.

FIGURE 3. Ubuntu container layer.

the Docker image is uploaded to Docker Hub by default, but
it can be also uploaded to a private repository with the private
repository information in the command. Figure 2 shows how
a Docker image is created by the docker build command and
uploaded or downloaded to the remote repository.

The Docker platform allows its Docker image to be cre-
ated as a container by the docker run command. When the
docker run command is performed through the Docker client,
the Docker first copies the Docker image to the file system
area managed by the Docker, adding one layer to the top
of the base image layer to create the container. Afterwards,
the Docker platform shows the user an integrated view using
the union file system in which the Docker image layer struc-
ture consisting of multiple layers appears as a single file
system. In addition, all tasks that the user reads and writes
through commands such as apt-get install or apt-get upgrade
inside the container are recorded in the container layer cre-
ated at the top of the base image layer. This is because the
Docker engine controls the file system and places the base
image layer in a read only mode and the container layer in
a read/write mode. Figure 3 shows that a container image
layer is created at the top of the base image layer as the user
performs its work in the container.

VOLUME 8, 2020 42667



S. Kwon, J.-H. Lee: DIVDS: Docker Image Vulnerability Diagnostic System

FIGURE 4. Architecture of the DIVDS.

TABLE 1. Metadata being extracted from a Docker image.

TABLE 2. Data structure for the IVD vulnerability database.

III. OVERVIEW OF THE DIVDS
In this section, we present an overview of the proposed
DIVDS. The architecture of the DIVDS is shown in Figure 4.
First, the user downloads a Docker image from the Docker
Hub using the docker pull command (e.g., docker pull image-
Name:tag) to diagnose the Docker image if the Docker image
contains known vulnerabilities. The five fields of information
described in Table 1 are extracted from the downloaded image
for security vulnerability analysis [6]. Last Update Time,
which shows the exact data and the latest update time of
the image among the data fields specified in Table 1, can
be checked by using the docker inspect command, which can
check the system architecture and OS of the Docker image.

The IVD module and IVE module are then used to detect
known vulnerabilities in Docker images and evaluate them by
calculating the image vulnerability score.

The IVD module operates on the basis of Clair, an open
source tool designed to detect known vulnerabilities within
the Docker image [7]. The IVDmodule collects several types
of vulnerability information from a set of resources (e.g.,
Ubuntu CVE Tracker, Debian Security Bug Tracker, RedHat

FIGURE 5. Docker image vulnerability detection result.

FIGURE 6. CVE information on the whitelist.

Security Data, etc.), shown in Table 2. It also performs static
analysis on a Docker image to extract version information
and OS metadata from each layer for all software packages
installed in the Docker image [8]. After completing all the
preparation for the Docker image vulnerability detection,
the IVD module compares the metadata of the Docker image
with the software package vulnerability information received
from a set of resources to detect unsafe known vulnerabilities.
The software package vulnerability detection results of the
IVD module represent the layer ID of the analyzed Docker
image, the name of the analyzedDocker image, the total num-
ber of vulnerabilities present in the Docker image, the number
of unapproved vulnerabilities, the CVE severity, the vulnera-
ble package name and version, and the CVE information. For
the CVE severity, the National Vulnerability Database (NVD)
is defined using the Common Vulnerability Scoring System
(CVSS). The CVSS assigns severity scores based on formulas
that include exploitable and impact metrics, while the NVD
provides severity levels of ‘‘Low’’, ‘‘Medium’’ and ‘‘High’’
based on the CVSS scores [9]. Figure 5 shows an example of
the vulnerability detection result with the ‘java:latest’ Docker
image by the IVD module.

Since the IVD module has been developed based on
Clair, users can approve vulnerabilities in Docker images
using a whitelist that allows the Docker images containing
the whitelisted vulnerabilities. Figure 6 shows an example
of the whitelisted vulnerability information ‘CVE-2019-
14855:gnupg’ in the ‘java:latest’ image.

The IVE module calculates the vulnerability score of
the Docker image and diagnoses the Docker image by

42668 VOLUME 8, 2020



S. Kwon, J.-H. Lee: DIVDS: Docker Image Vulnerability Diagnostic System

FIGURE 7. Docker image download process of the DIVDS.

TABLE 3. Notation of DIVDS operation procedure.

comparing the calculated Docker image vulnerability score
with the vulnerability threshold score. First, the IVE module
receives a Docker image vulnerability detection result from
the IVDmodule and parses the CVE severity from the Docker
image vulnerability detection result to count the number of
severity-specific counts. After counting the number of counts
per severity, the vulnerability score of the Docker image
is calculated according to the defined score per severity.
Although the score by severity of the vulnerability is based
on the CVSS score, it is possible to define the score by
severity according to the user’s settings. If the Docker image
vulnerability score is calculated based on the score by defined
vulnerability severity and is above the vulnerability threshold
score, the image is diagnosed as a vulnerable image and can-
not be uploaded or downloaded. The vulnerability threshold
score can also be defined by the user. As an example, Figure 7
shows the DIVDS operating procedure when downloading a
Docker image from aDocker image repository. Table 3 shows
the notation used in Figure 7.

The operation process of the proposed DIVDS is as
follows.

1) The IVD module of the DIVDS continuously requests
vulnerable software package metadata to the vulnera-
bility reporting site

2) Upon receiving requests from the IVDmodule, the cor-
responding vulnerability reporting site provides vulner-
able software package metadata to the IVD module

3) The client requests the Docker image from Docker
image repository through ‘docker pull image’ com-
mand

4) Docker engine, which receives the ‘docker pull’ com-
mand through the Docker cli, requests for the Docker
image download from Docker image repository

5) Docker image repository provides the requested
Docker image by the client to the Docker engine

6) Client who downloads the Docker image from Docker
image repository loads Docker image into the DIVDS
to diagnose vulnerability in the Docker image

7) For the Docker image loaded from Step (6), the IVD
module of the DIVDS extracts the software pack-
age metadata, OS metadata, and the metadata defined
in Table 1 (image_metadata) installed in the Docker
image

8) The IVD module detects vulnerable software package
installed in the Docker image by comparing the vulner-
able software package metadata (IVD_metadata) with
the metadata of the Docker image extracted in Step (7)

9) The IVDmodule outputs the vulnerable software pack-
age information existing in the Docker image (O)
through the comparison process performed in Step (8)

10) The IVD module loads the Docker image vulnerability
information output (O) in Step (9) into the IVE module
for Docker image vulnerability evaluation

11) The IVE module extracts and counts the number
of CVE severities (severity_num), one of the values
required for the Docker image vulnerability evaluation,
from theDocker image vulnerability result (O) received
from the IVD module in Step (10)

12) The IVE module calculates the Docker image vulner-
ability score (imagescore) using the number of CVE

VOLUME 8, 2020 42669



S. Kwon, J.-H. Lee: DIVDS: Docker Image Vulnerability Diagnostic System

severities (severity_num) extracted in Step (11) and the
severity weight defined in Table 4 (severity_weight)

13) The IVE module compares the Docker image vulnera-
bility score (imagescore) calculated in Step (12) with the
Docker image vulnerability threshold score (θ ) defined
in the IVE module

14) The IVE module outputs the Docker image vulnerabil-
ity evaluation result (K ), which is the result of com-
parison between the Docker image vulnerability score
(imagescore) and Docker image vulnerability threshold
score (θ ) performed in Step (13)

15) The IVE module provides the Docker image vulnera-
bility evaluation result (K ) from Step (14) to the client

Figure 7 shows the DIVDS’s operation when downloading
a Docker image. If the Docker image vulnerability score
imagescore exceeds the Docker image vulnerability thresh-
old score θ by comparing imagescore with θ in Step (12),
the Docker image is deleted by the Docker engine. Otherwise,
the Docker image is stored in the local image storage.

IV. MAIN MODULES OF THE DIVDS
In this section, we present the detailed operations of the IVD
and IVE modules.

A. IVD MODULE
The main function of the IVD module is to detect known vul-
nerabilities in the Docker image based on metadata received
from a set of resources (e.g., Ubuntu CVE Tracker, Debian
Security Bug Tracker, RedHat Security Data, etc.) where
software package vulnerability information is stored.

The Docker image vulnerability detection function is rep-
resented as Algorithm 1. All software package informa-
tion installed within the Docker image is provided by the
IVD module(D) as previously mentioned in Section 2. Set
D = {D[1],D[2],D[3], . . . ,D[α]}, where α represents the
total number of software packages installed in the Docker
image. Define D.index as the index of the software package.
D.layerID represents the layer ID of the Docker image, and
D.name describes the name of the software package installed
in the Docker image.D.version represents the version of soft-
ware package. The IVDvulnerability database (V ) is obtained
by a collector that stores V from a set of resources. Then
V = {V [1],V [2], . . . ,V [β]} is defined, where β represents
the total number of entries of V . Each entry of V consists
of the index of the entry, V .index; Layer ID of the Docker
image, V .layerID; Name of the vulnerable software pack-
age, V .name; Version of the vulnerable software package,
V .version; the CVE name of the vulnerable software package,
V .cvename; the CVE severity of vulnerable software pack-
age, V .severity; the CVE description of vulnerable software
package, V .description. In Algorithm 1, D and V are used
as inputs. The output is represented by entry O of vulnerable
software packages installed in the Docker image. Then O is
defined as O = {O[1],O[2], . . . ,O[L]}, where L is the last
index for the list.

In Algorithm 1, each software package is checked with
a layer ID, an attribute of D. The layer ID of the Docker
image, represented by D[x].layerID, to compare with the
attribute of V (V [y].layerID). If an entry in V (V [y].layerID)
equals D[x].layerID, then it is compared to the attribute of V
(V [y].name) with a vulnerable software package installed in
the Docker image represented by D[x].name. Then, if there
is an entry in V (V [y].name) that is the same as D[x].name,
then the version of the vulnerable software package, rep-
resented by D[x].version, is compared to the attribute of
V (V [y].version). This process is repeated α times, so all
software packages installed in the Docker image are checked.
At the end of Algorithm 1, O is returned as output, and the
user can get a list of vulnerable software packages installed
in the Docker image.

Algorithm 1 Docker Image Vulnerability Detection
1: begin
2: input D, V
3: index ← 1
4: for x ← 1 to α do
5: for y← 1 to β do
6: if D[x].layerID = V [y].layerID then
7: if D[x].name = V [y].name then
8: if D[x].version = V [y].version then
9: O[index]←(D[x].index,V [y].index)

10: index ← index + 1
11: end if
12: end if
13: end if
14: end for
15: end for
16: output O
17: end

B. IVE MODULE
The main function of the IVE module is to evaluate Docker
image vulnerabilities by counting the number of the CVE
severity in the Docker image vulnerability detection result
obtained through the IVDmodule and calculating the Docker
image vulnerability scores according to the severity scores
defined in Table 4 for each vulnerability. The vulnerability
of the Docker image is evaluated by comparing the calcu-
lated Docker image vulnerability score with the user-defined
Docker image vulnerability threshold score. To evaluate the
vulnerability of Docker images, we define weights by the
CVE severity as shown in Table 4. The scores by the CVE
severity were selected based on the CVSS scores, and not
limited to them. Those scores by the CVE severity can be
defined according to a user definition.

Since CVEs printed in the Docker image vulnerability
detection results obtained through the IVD module may not
be vulnerabilities. In such cases, the whitelist function allows
the user to disable detection for the CVE, which may not
be a vulnerability. For this reason, if a user sets up CVE

42670 VOLUME 8, 2020



S. Kwon, J.-H. Lee: DIVDS: Docker Image Vulnerability Diagnostic System

TABLE 4. Weight of severity.

information for software packages that are not vulnerable
to whitelist, the IVD module prints its CVE severity as
‘‘Approved’’ when detecting Docker image vulnerability.
In addition, the IVE module does not take into account
‘‘Approved’’ vulnerabilities when evaluating Docker image
vulnerability. In other words, the IVE module conducts the
vulnerability evaluation of the vulnerable software packages
that are installed within a Docker image that the user does not
set in the whitelist.

The Docker image vulnerability score calculation by the
IVE module is performed according to Equation (1) below,
where sv represents the CVE severity of the vulnerable soft-
ware package installed in the Docker image. And, rsv is the
total number of vulnerable software package CVEs from
the result of the Docker image vulnerability detection (O)
obtained through the IVD module. wsv means the weight for
each CVE severity defined in Table 4.

imagescore =
rsv∑
i=1

wsv (1)

Equation (1) calculates the Docker image vulnerability
score(imagescore) and compares it with the Docker image
vulnerability threshold score θ . By comparing imagescore and
θ according to Equation (2), if imagescore is higher than θ ,
upload or download is impossible for the Docker image.
However, according to Equation (3), when imagescore is less
than θ , upload or download is possible for the Docker image.

imagescore =
rsv∑
i=1

wsv > θ (2)

imagescore =
rsv∑
i=1

wsv < θ (3)

Figure 8 shows the result of performing a Docker image
vulnerability evaluation on the ‘java:latest’ Docker image
through the IVEmodule. As shown in Figure 8, the vulnerable
Docker image is detected.

Next, to understand how to perform a Docker image vul-
nerability evaluation by the IVE module, a description is
provided with Algorithm 2, where the input O is obtained
from Algorithm 1, and the output K is a result of the IVE
module.

Each entry in O consists of index of the software pack-
age dindex installed in the Docker image and index of
the IVD database, where vindex is defined as vindex =
{vindex[1], vindex[2], . . . , vindex[µ]}. µ means the entry

FIGURE 8. DIVDS execution screen.

of the IVD database. O[i] also contains information
about the CVE severity cve_severity associated with vul-
nerable software packages, defined as cve_severity =

{cve_severity[1], cve_severity[2], . . . , cve_severity[τ ]}where
τ represents the number of the CVE severity list. Therefore,
the CVE severity list is defined as O[i].C_severity[j] [10].
The purpose of Algorithm 2 is to calculate the Docker

image vulnerability score, compare it with the Docker
image vulnerability threshold score, and then evaluate the
Docker image vulnerability. First, O[i].cve_severity, number
by the CVE severity, and weight by the CVE severity are
needed to calculate the Docker image vulnerability score.
In case of the CVE severity weight, it is converted into
cve_weight value as defined in Table 4, and cve_weight
can be denoted through E[i].severity of IVE module(E).
The CVE severity name must be parsed from O to cal-
culate the total score of the CVE severity (imagescore).
To get the number of the CVE severity, parsing is possi-
ble in O through each O entry O[o_num].C_severity. For
each C_severity, C[cve_severity].status (vulnerable software
package the CVE severity status) is identified as either
‘‘Approved’’ or ‘‘Unapproved’’. As the CVE information
is set in the whitelist, 0 is added if status is ‘‘Approved’’.
Otherwise 1 is added to numCvesv. Using total_score and
numCvesv, we can calculate the imagescore as shown in Equa-
tion (1). Thereafter, when the imagescore is higher than the
Docker image vulnerability threshold score (θ ), the corre-
sponding Docker image is deleted. Otherwise the Docker
image is stored. The output of Algorithm 2 is K , which can
be seen in Figure 8.

V. EVALUATION
We have confirmed that the Docker does not provide security
guarantees for vulnerable software packages installed within
the Docker image. In this paper, when uploading or down-
loading Docker images, the proposed DIVDS is applied to
the Docker environment. To demonstrate the applicability of
the DIVDS, we evaluated whether the DIVDS works cor-
rectly to evaluate the Docker image vulnerability. To demon-
strate the applicability of the DIVDS, we have established a
Docker environment in the x86_64 CentOS 7 environment
and installed the IVD module and the IVE module that make

VOLUME 8, 2020 42671



S. Kwon, J.-H. Lee: DIVDS: Docker Image Vulnerability Diagnostic System

Algorithm 2 Docker Image Vulnerability Evaluation
1: begin
2: input O
3: imagescore← 0
4: for i← 1 to rsv do
5: cve_weight ← weight of E[i].severity
6: total_score← 0
7: io← 0
8: for all elements of O[i].index do
9: io← io+ 1
10: o_num← O[i].index[io]
11: ic← 0
12: numCvesv← 0
13: for all elements of O[o_num].C_severity do
14: ic← ic+ 1
15: cve_severity← O[o_num].C_severity[ic]
16: if C[cve_severity].status =‘‘Approved’’ then
17: numCvesv← numCvesv+ 0
18: else
19: numCvesv← numCvesv+ 1
20: end if
21: end for
22: total_score← total_score+ numCvesv
23: end for
24: imagescore← total_score× cve_weight
25: end for
26: if imagescore > θ then
27: Delete image
28: else
29: Save image
30: end if
31: K ← imagescore
32: output K
33: end

TABLE 5. DIVDS result for the official Docker images.

up DIVDS. The IVE module uses the CVE severity-specific
scores defined in Table 4 for the calculation of image vulner-
ability scores. In addition, for the Docker image vulnerability
threshold score θ , 200 points were set as default for the
evaluation of Docker image vulnerabilities through the IVE
module.

Table 5 below shows the results of vulnerability evalu-
ates performed on the official Docker images ‘ubuntu:latest’,
‘java:latest’, ‘centos:latest’, and ‘wordpress:latest’ with
10M+ downloads from the Docker Hub [11].

In the existing Docker environment, when the Docker
image upload or download is performed, the Docker image
vulnerability evaluation is not carried out, so it is exposed to

various types of security attacks (e.g., denial of service, gain
privilege, execution code, etc.).

To compensate for this, the DIVDS currently provides vul-
nerability evaluation for known security vulnerabilities that
exist inside Docker images that are not provided in existing
Docker environments. However, for the IVD module, there
is a disadvantage that the DIVDS are based on Clair that
performs static analysis, making it difficult to detect anoma-
lies [12], [13] that may occur during a container execution.
To secure the disadvantages of the current DIVDS, the appli-
cation of dynamic analysis techniques to detect anomalies
[4], [14]–[17] that may occur during container execution is
necessary.

VI. CONCLUSION
In this paper, we proposed the Docker Image Vulnerability
Diagnostic System (DIVDS) to establish a reliable Docker
environment that can quickly share and distribute various exe-
cution environments. The proposed DIVDS mainly consists
of the IVDmodule and IVEmodule. The IVDmodule detects
vulnerable software packages installed in a Docker image.
The IVE module calculates a Docker image vulnerability
score based on the detection results obtained from the IVD
module and compares with a Docker image vulnerability
threshold score to decide if the image is allowed or not for use.
By checking the operation of DIVDS through algorithms and
execution screens, we showed that the system can establish a
reliable Docker environment. However, there is a limitation
that it is difficult to detect abnormal behavior that may occur
at container runtime based on the static analysis of the current
DIVDS. In the future, we will apply deep learning technique
[16], [17] to the DIVDS and develop DIVDS based on static
and dynamic analysis to detect not only vulnerability evalua-
tion of images but also abnormal behaviors that can occur at
container runtime.

REFERENCES
[1] R. Shu, X. Gu, andW. Enck, ‘‘A study of security vulnerabilities on docker

hub,’’ in Proc. 7th ACM Conf. Data Appl. Secur. Privacy (CODASPY),
2017, pp. 269–280.

[2] D. Merkel, ‘‘Docker: Lightweight Linux containers for consistent devel-
opment and deployment,’’ Linux J. vol. 2014, no. 239, p. 2, 2014.

[3] C. Boettiger, ‘‘An introduction to docker for reproducible research,’’ ACM
SIGOPS Oper. Syst. Rev., vol. 49, no. 1, pp. 71–79, Jan. 2015.

[4] O. Tunde-Onadele, J. He, T. Dai, and X. Gu, ‘‘A study on container vul-
nerability exploit detection,’’ in Proc. IEEE Int. Conf. Cloud Eng. (ICE),
Jun. 2019, pp. 121–127.

[5] R. Yasrab, ‘‘Mitigating docker security issues,’’ 2018, arXiv:1804.05039.
[Online]. Available: http://arxiv.org/abs/1804.05039

[6] A. Zerouali, T. Mens, G. Robles, and J. M. Gonzalez-Barahona, ‘‘On the
relation between outdated docker containers, severity vulnerabilities, and
bugs,’’ in Proc. IEEE 26th Int. Conf. Softw. Anal., Evol. Reeng. (SANER),
Feb. 2019, pp. 491–501.

[7] Clair. Accessed: Jan. 14, 2020. [Online]. Available: https://github.com/
quay/clair/tree/master/Documentation

[8] O. Henriksson and M. Falk, ‘‘Static vulnerability analysis of docker
images,’’ M.S. thesis, Blekinge Inst. Technol., Karlskrona, Sweden, 2017.

[9] CVSS Score. Accessed: Jan. 14, 2020. [Online]. Available: https://www.
first.org/cvss/

[10] J.-H. Lee, S.-G. Sohn, B.-H. Chang, and T.-M. Chung, ‘‘PKG-VUL: Secu-
rity vulnerability evaluation and patch framework for package-based sys-
tems,’’ ETRI J., vol. 31, no. 5, pp. 554–564, Oct. 2009.

42672 VOLUME 8, 2020



S. Kwon, J.-H. Lee: DIVDS: Docker Image Vulnerability Diagnostic System

[11] Docker Hub. Accessed: Feb. 1, 2020. [Online]. Available: https://hub.
docker.com

[12] A. Zimba, Z. Wang, and H. Chen, ‘‘Multi-stage crypto ransomware
attacks: A new emerging cyber threat to critical infrastructure and industrial
control systems,’’ ICT Express, vol. 4, no. 1, pp. 14–18, Mar. 2018.

[13] A. Leandros Maglaras, K.-H. Kim, H. Janicke, M. A. Ferrag, and
J. Tiago Cruz, ‘‘Cyber security of critical infrastructures,’’ ICT Express,
vol. 4, no. 1, pp. 42–45, Mar. 2018.

[14] P. P. W. Pathirathna, V. A. I. Ayesha, W. A. T. Imihira, W. M. J. C. Wasala,
E. A. T. D. Edirisinghe, and N. A. G. Arachchilage, ‘‘Security testing as a
service with docker containerization,’’ in Proc. 17th Int. Conf. Adv. ICT
Emerg. Regions (ICTer), Sep. 2017, pp. 1–7.

[15] S. Srinivasan, A. Kumar, M. Mahajan, D. Sitaram, and S. Gupta, ‘‘Prob-
abilistic real-time intrusion detection system for docker containers,’’ in
Proc. Int. Symp. Secur. Comput. Commun. Singapore: Springer, 2018,
pp. 336–347.

[16] M. Du, F. Li, G. Zheng, and V. Srikumar, ‘‘DeepLog: Anomaly detection
and diagnosis from system logs through deep learning,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur. (CCS), 2017, pp. 1285–1298.

[17] A. Shenfield, D. Day, and A. Ayesh, ‘‘Intelligent intrusion detection
systems using artificial neural networks,’’ ICT Express, vol. 4, no. 2,
pp. 95–99, Jun. 2018.

SOONHONG KWON is currently pursuing the
bachelor’s degree in computer engineering from
SangmyungUniversity, Cheonan, SouthKorea. He
is currently a Research Assistant with the Protocol
Engineering Laboratory, Sangmyung University.
His research interests include protocol engineer-
ing, network security, and system security.

JONG-HYOUK LEE (Senior Member, IEEE)
received the Ph.D. degree in computer engi-
neering from Sungkyunkwan University, Suwon,
South Korea. He was with INRIA, France, for
IPV6 vehicular communication and security
research. He was an Assistant Professor with
TELECOM Bretagne, France. In 2013, he moved
to Sangmyung University, Cheonan, South Korea.
He is currently anAuthor of the Internet Standards:
IETF RFC 8127, IETF RFC 8191, and IETF RFC

8691. His research interests include protocol engineering and performance
analysis. He was a recipient of the Best Paper Award from the IEEE WiMob
2012, the 2015 Best Land Transportation Paper Award from the IEEE
Vehicular Technology Society, the Haedong Young Scholar Award, in 2017,
and the IEEE Systems Journal Best Paper Award from the IEEE Systems
Council, in 2018. He was a Tutorial Speaker at the IEEE WCNC 2013,
the IEEE VTC 2014 Spring, and the IEEE ICC 2016. He was introduced
as the Young Researcher of the month by the National Research Foundation
of Korea Webzine, in 2014.

VOLUME 8, 2020 42673


	INTRODUCTION
	RELATED WORK
	DOCKER
	DOCKER IMAGES

	OVERVIEW OF THE DIVDS
	MAIN MODULES OF THE DIVDS
	IVD MODULE
	IVE MODULE

	EVALUATION
	CONCLUSION
	REFERENCES
	Biographies
	SOONHONG KWON
	JONG-HYOUK LEE


